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Abstract

Structured predictors require solving a combina-

torial optimization problem over a large num-

ber of structures, such as dependency trees or

alignments. When embedded as structured hid-

den layers in a neural net, argmin differentiation

and efficient gradient computation are further re-

quired. Recently, SparseMAP has been proposed

as a differentiable, sparse alternative to maxi-

mum a posteriori (MAP) and marginal inference.

SparseMAP returns an interpretable combination

of a small number of structures; its sparsity be-

ing the key to efficient optimization. However,

SparseMAP requires access to an exact MAP ora-

cle in the structured model, excluding, e.g., loopy

graphical models or logic constraints, which gen-

erally require approximate inference. In this pa-

per, we introduce LP-SparseMAP, an extension

of SparseMAP addressing this limitation via a lo-

cal polytope relaxation. LP-SparseMAP uses the

flexible and powerful language of factor graphs

to define expressive hidden structures, support-

ing coarse decompositions, hard logic constraints,

and higher-order correlations. We derive the for-

ward and backward algorithms needed for using

LP-SparseMAP as a structured hidden or output

layer. Experiments in three structured tasks show

benefits versus SparseMAP and Structured SVM.

1. Introduction

The data processed by machine learning systems often has

underlying structure: for instance, language data has inter-

word dependency trees, or alignments, while image data

can reveal object segments. As downstream models benefit
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Figure 1: Parsing model with valency constraints: each

“head” word is constrained to have at most k “modifiers”.

LP-SparseMAP is the first method for tractable, differen-

tiable decoding in such a model. Below: abridged imple-

mentation using our library (more in App. F).

from the hidden structure, practitioners typically resort to

pipelines, training a structure predictor on labelled data,

and using its output as features. This approach requires

annotation, suffers from error propagation, and cannot allow

the structure predictor to adapt to the downstream task.

Instead, a promising direction is to treat structure as latent,

or hidden: learning a structure predictor without supervi-

sion, together with the downstream model in an end-to-end

fashion. Several recent approaches were proposed to tackle

this, based on differentiating through marginal inference

(Kim et al., 2017; Liu and Lapata, 2018), noisy gradient

estimates (Peng et al., 2018; Yogatama et al., 2017), or both

(Corro and Titov, 2019a;b). The work in this area requires

specialized, structure-specific algorithms either for comput-
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ing gradients or for sampling, limiting the choice of the

practitioner to a catalogue of supported types structure. A

slightly more general approach is SparseMAP (Niculae

et al., 2018), which is differentiable and outputs combina-

tions of a small number of structures, requiring only an

algorithm for finding the highest-scoring structure (maxi-

mum a posteriori, or MAP). When increased expressivity

is required, for instance through logic constraints or higher-

order interactions, the search space becomes much more

complicated, and MAP is typically intractable. For example,

adding constraints on the depth of a parse tree makes the

problems NP-hard. Our work improves the hidden structure

modeling freedom available to practitioners, as follows.

• We propose a generic method for differentiable struc-

tured hidden layers, based on the flexible domain-

specific language of factor graphs, familiar to many

structured prediction practitioners.

• We derive an efficient and globally-convergent ADMM

algorithm for the forward pass.

• We prove a compact, efficient form for the backward

pass, reusing quantities precomputed in the forward

pass, without having to unroll a computation graph.

• Our overall method is modular: new factor types can

be added to our toolkit just by providing a MAP oracle,

invoked by the generic forward and backward pass.

• The generic approach may be overridden when special-

ized algorithms are available. We derive efficient spe-

cialized algorithms for core building block factors such

as pairwise, logical OR, negation, budget constraints,

etc., ensuring our toolkit is expressive out-of-the-box.

We show empirical improvements on inducing latent trees

on arithmetic expressions, bidirectional alignments in nat-

ural language inference, and multilabel classification. Our

library, with C++ and python frontends, is available at

https://github.com/deep-spin/lp-sparsemap.

2. Background

2.1. Notation

We denote scalars, vectors and matrices as a, a, and A,

respectively. The set of indices {1, . . . , d} is denoted [d].
The Iverson bracket JCK takes the value 1 if the condition

C is true, otherwise 0. The indicator vector ei is defined as

[ei]k := Ji = kK. The ith column of matrix A is ai. The

canonical simplex is △ := {p ∈ Rd : 〈1,p〉 = 1,p ≥
0}, and the convex hull is conv{a1, . . . ,ad} := {Ap :
p ∈ △}. We denote row-wise stacking of Ai ∈ Rmi×d

as [A1, . . . ,Ak] ∈ R(
∑

i mi)×d. Particularly, [a, b] is the

concatenation of two (column) vectors. Given a vector

b ∈ Rd, diag(b) ∈ Rd×d is the diagonal matrix with b

along the diagonal. Given matrices B1, . . . ,Bk of arbitrary

dimensions Bi ∈ Rmi×ni , define the block-diagonal matrix

bdiag(B1, . . . ,Bk) =

[
B1 · · · 0

.

.

.
. . .

.

.

.

0 · · · Bk

]
∈ R

∑
imi×

∑
ini .

2.2. Tractable structured problems

Structured prediction involves searching for valid structures

over a large, combinatorial space y ∈ Y . We assign a

vector representation ay to each structure. For instance, we

may consider structures to be joint assignments of d binary

variables (corresponding to parts of the structure) and define

(ay)i = 1 if variable i is turned on in structure y, else 0.

The set of valid structures Y is typically non-trivial. For

example, in matching problems between n workers and n
tasks, we have d = n2 binary variables, but the only legal

assignments give exactly one task to each worker, and one

worker to each task.

Maximization (MAP). Given a score vector over parts η,

we assign a score θy = 〈ay,η〉 to each structure. Assem-

bling all ay as columns of a matrix A, the highest-scoring

structure is the one maximizing

max
y∈Y
〈η,ay〉 = max

p∈△
〈η,Ap〉. (1)

MA = conv{ay : y ∈ Y} is called the marginal polytope

(Wainwright and Jordan, 2008), and points µ ∈ MA are

expectations Ey∼p[ay] under some p ∈ △.

In the sequel, we split A = [M ,N ] such that µ = Mp

is the output of interest, (e.g., variable assignments), while

Np captures additional structures or interactions (e.g., tran-

sitions in sequence tagging). We denote the corresponding

division of the score vector as η = [ηM ,ηN ]. This dis-

tinction is not essential, as we may always take M = A

and N = [] (i.e., treat additional interactions as first-class

variables), but it is more consistent with pairwise Markov

Random Fields (MRF).

Examples. A model with 3 variables and an XOR constraint

(exactly one variable may be on) has possible configurations

my = ey for y ∈ {1, 2, 3}, thus M = I , and no addition-

als (N = []). A model with the same dimension but without

the constraint has all 23 possible configurations as columns

of M , still with no additionals. One such configuration is

y = 011, with my = [0, 1, 1]. (Throughout this paper, y is

an arbitrary index type with no mathematical properties; we

may as well use an integer base-2 encoding.) A sequence

model with no constraints will have the same valid configu-

rations, but will include additionals for transition potentials:

here it is sufficient to have an additional bit for each con-

secutive pair of variables, assigning 1 if both variables are

simultaneously active. For y = 011 this gives ny = [0, 1].

https://github.com/deep-spin/lp-sparsemap
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Optimization as a hidden layer. Hidden layers in a neu-

ral network are vector-to-vector mappings, and learning

is typically done using stochastic gradients. We may cast

structured maximization in this framework. Assuming fixed

tie-breaking, we may regard the MAP computation as a

function that takes the scores η and outputs a vector of

variable assignments µ ∈ [0, 1]d,

MAPA(η) := µ

where µ := my, y = argmax
y∈Y

〈η,ay〉.
(2)

The solution is always a vertex in {0, 1}d, and, for almost

all η, small changes to η do not change what the highest-

scoring structure is. Thus, wherever MAPA is continuous,

its gradients are null, rendering it unsuitable as a hidden

layer in a neural network trained with gradient-based opti-

mization (Peng et al., 2018).

Marginal inference. In unstructured models (e.g., atten-

tion mechanisms), discrete maximization has the same null

gradient issue identified in the previous paragraph, thus it

is commonly replaced by its relaxation softmax(x). De-

note the Shannon entropy of a distribution p ∈ △ by

H(p) := −
∑

j pj log pj . The structured equivalent of soft-

max is the entropy-regularized problem

max
p∈△
〈η,Ap〉+H(p), (3)

whose solution is p⋆y ∝ exp〈ay,η〉. This Gibbs distribution

is dense and induces a marginal distribution over variable

assignments (Wainwright and Jordan, 2008):

MarginalsA(η) := µ where µ := Ep⋆ [my]. (4)

While generally intractable, for certain models, such as se-

quence tagging, one can efficiently compute MarginalsA(η)
and∇MarginalsA(η) (often, with dynamic programming,

Kim et al., 2017). In many, it is intractable, e.g., matching

(Valiant, 1979; Taskar, 2004, Section 3.5), dependency pars-

ing with valency constraints (McDonald and Satta, 2007).

SparseMAP (Niculae et al., 2018) is a differentiable mid-

dle ground between maximization and expectation. It is

defined via the quadratic objective

max
p∈△
〈η,Ap〉 −

1

2
‖Mp‖2. (5)

where an optimal sparse distribution p and the unique

µ = Mp can be efficiently computed via the active set

method (Nocedal and Wright, 1999, Ch. 16.4 & 16.5), a gen-

eralization of Wolfe’s min-norm point method (Wolfe, 1976)

and an instance of conditional gradient (Frank and Wolfe,

1956). Remarkably, the active set method only requires calls

to a maximization oracle (i.e., finding the highest-scoring

Figure 2: Matching model under two equivalent decomposi-

tions. Left: a coarse one with a single factor. Right: a fine

one with multiple XOR factors.

structure repeatedly, after adjustments), and has linear, finite

convergence. Thus, SparseMAP can be computed efficiently

even when marginal inference is not available, potentially

turning any structured problem with a maximization algo-

rithm available into a differentiable sparse structured hidden

layer. The sparsity not only brings computational advan-

tages, but also aids visualization and interpretation.

However, the requirement of an exact maximization algo-

rithm is still a rather stringent limitation. In the remain-

der of the section, we look into a flexible family of struc-

tured models where maximization is hard. Then, we extend

SparseMAP to cover all such models.

2.3. Intractable structured problems

and factor graph representations

We now turn to more complicated structured problems, con-

sisting of multiple interacting subproblems. As we shall see,

this covers many interesting problems.

Essentially, we represent the global structure as assignments

to d variables, and posit a decomposition of the problem

into local factors f ∈ F , each encoding locally-tractable

scoring and constraints (Kschischang et al., 2001). A factor

may be seen as smaller structured subproblem. Crucially,

factor must agree whenever they overlap, rendering the

subproblems interdependent, non-separable.

Examples. Figure 1 shows a factor graph for a depen-

dency parsing problem in which prior knowledge dictates

valency constraints, i.e., disallowing words to be assigned

more than k dependent modifiers. This encourages depth,

preventing trees from being too flat. For a sentence with m
words, we use m2 binary variables for every possible arc,

(including the root arcs, omitted in the figure). The global

tree factor disallows assignments that are not trees, and the

m budget constraint factors, each governing m− 1 different

variables, disallow more than k dependency arcs out of each

word. Factor graph representations are often not unique.

For instance, consider a matching (linear assignment) model

(Figure 2). We may employ a coarse factorization consist-

ing of a single matching factor, for which maximization

is tractable thanks to the Kuhn-Munkres algorithm (Kuhn,

1955). This problem can also be represented using multiple
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XOR factors, constraining that each row and each column

must have exactly (exclusively) one selected variable.

Denote the variable assignments as µ ∈ [0, 1]d. We regard

each factor f as a separate structured model in its own right,

encoding its permissible assignments as columns of a matrix

Af = [Mf ,Nf ], and define a selector matrix Cf such

that Cfµ “selects” the variables from the global vector µ

covered by the factor f . Then, a valid global assignment can

be represented as a tuple of local assignments yf , provided

that the agreement constraints are satisfied:

Y = {y = (yf )|f∈F : ∃ µ, ∀f ∈ F , Cfµ = myf
}. (6)

Finding the highest scoring structure has the same form as

in the tractable case, but the discrete agreement constraints

in Y make it difficult to compute, even when each factor is

computationally friendly:

max
y∈Y

∑

f∈F

〈ηf ,ayf
〉. (7)

In the tractable case, we were able to relax the discrete maxi-

mization into a continuous one with respect to a distribution

over global configurations p ∈ △ (Eq. 1). We take the same

approach, but locally, considering distributions over local

configurations pf ∈ △f for each factor. For compactness,

we shall use the concatenations

p := [pf1 , . . . ,pfn ], C := [Cf1 , . . . ,Cfn ]

and the block-diagonal matrices

A := bdiag(Af1 , ...,Afn),M := bdiag(Mf1 , ...,Mfn).

We may then write the optimization problem

maximize
µ, p

∑

f∈F

〈ηf ,Afpf 〉

subject to p ∈ △f1 ×△f2 × · · · × △fn ,

Cµ = Mp,

(8)

continuously relaxing each factor independently while en-

forcing agreement. The objective in Eq. 8 is separable, but

the constraints are not. The feasible set,

L = {Ap : p ∈ △f1 × · · · × △fn , Cµ = Mp}, (9)

is called the local polytope and satisfies L ⊇ M =
conv{ay : y ∈ Y}. Therefore, (8) is a relaxation of (7),

known as LP-MAP (Wainwright and Jordan, 2008). In

general, the inclusion L ⊇M is strict. Many LP-MAP al-

gorithms exploiting the graphical model structure have been

proposed, from the perspective of message passing or dual

decomposition (Wainwright et al., 2005; Kolmogorov, 2006;

Komodakis et al., 2007; Globerson and Jaakkola, 2007; Koo

et al., 2010). In particular, AD3 (Martins et al., 2015) tackles

LP-MAP by solving a SparseMAP-like quadratic subprob-

lem for each factor.

It may be tempting to consider building a differentiable

structured hidden layer by using SparseMAP with an LP-

MAP approximate oracle. However, since LP-MAP is an

outer relaxation, solutions are in general not feasible, lead-

ing to divergence. Instead, in the sequel, we apply the LP

relaxation to a smoothed objective, resulting in a general

algorithm for sparse differentiable inference.

3. LP-SparseMAP

By analogy to Eq. 5, we propose the differentiable LP-

SparseMAP inference strategy:

maximize
µ, p

(∑

f∈F

〈ηf ,Afpf 〉
)
− 1/2 ‖µ‖2

subject to p ∈ △f1 ×△f2 × · · · × △fn ,

Cµ = Mp.

(10)

Unlike LP-MAP (Eq. 8), LP-SparseMAP has a non-

separable ℓ2 term in the objective. The next result refor-

mulated the problem as separable consensus optimization.

Proposition 1. Denote by deg(j) = |{f ∈ F : j ∈
f}| > 0, the number of factors governing µj .1 Define

δ as δj =
√

deg(j), and D = diag(Cδ). Denote

C̃ = D−1C,M̃ = D−1M . Then, the problem below

is equivalent to (10):

maximize
µ, p

∑

f∈F

(
〈ηf ,Afpf 〉 − 1/2 ‖M̃fpf‖

2
)

subject to p ∈ △f1 ×△f2 × · · · × △fn ,

C̃µ = M̃p.

(11)

Proof. The constraints Cµ = Mp and C̃µ = M̃p are

equivalent since δ > 0 ensures D invertible. It remains

to show that, at feasibility, ‖µ‖2 = ‖M̃p‖2. This follows

from ‖µ‖2 = ‖C̃µ‖2 (shown in App. A).

3.1. Forward pass

Using this reformulation, we are now ready to introduce an

ADMM algorithm (Glowinski and Marroco, 1975; Gabay

and Mercier, 1976; Boyd et al., 2011) for maximizing

Eq. 11. The algorithm is given in Algorithm 1 and derived

in App. B. Like AD3, it iterates alternating between:

1. solving a SparseMAP subproblem for each factor;

(With the active set algorithm, this requires only cheap

calls to a MAP oracle.)

1Variables not attached to any factor can be removed from the
problem, so we may assume deg(j) > 0.
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Algorithm 1 ADMM for LP-SparseMAP

1: Input: η (scores), T (max. iterations), γ (ADMM step size),

εp, εd (primal and dual stopping criteria).

2: Output: (µ,p) solving Eq. 10.

3: Initialization: µ
(0)
i = 1/deg(i),λ(0) = 0.

4: for t = 1, . . . , T

5: for all f ∈ F # SparseMAP subproblem

6: η̃f,M ←
1

γ+1

(
Dfηf,M − λ

(t−1)
f + γC̃fµ

(t−1)
)

7: η̃f,N ←
1

γ+1
ηf,N

8: p
(t)
f ← argmin

pf∈△f

1

2
‖η̃f,M −M̃fpf‖

2−〈η̃f,N ,Nfpf 〉

9: end for

10: µ(t) ← C̃⊤M̃p(t) # agreement by local averaging

11: λ(t) ← λ(t−1) + γ
(
C̃µ(t) − M̃p(t)

)
# dual update

12: if ‖µ(t) − µ(t−1)‖ < εd & ‖C̃µ(t) − M̃p(t)‖ < εp
13: return # converged

14: end if

15: end for

2. enforcing global agreement by averaging;

3. performing a gradient update on the dual variables.

Proposition 2. Algorithm 1 converges to a solution of (10);

moreover, the number of iterations needed to reach ǫ dual

suboptimality is O(1/ǫ).

Proof. The algorithm is an instantiation of ADMM to

Eq. 11, inheriting the proof of convergence of ADMM.

(Boyd et al., 2011, Appendix A). From Proposition 1, this

problem is equivalent to (10). Finally, the rate of conver-

gence is established by Martins et al. (2015, Proposition 8),

as the problems differ only through an additional regulariza-

tion term in the objective.

When there is a single factor, i.e., F = {f}, running for one

iteration with γ = 0 recovers SparseMAP. In practice, in

the inner active set solver we use warm starts and perform

a small number of MAP calls. This leads to an algorithm

more similar in spirit to Frank-Wolfe splitting (Gidel et al.,

2018), with the key difference that by solving the nested

QPs we obtain the necessary quantities to ensure a more

efficient backward pass, as described in the next section.

3.2. Backward pass

Unlike marginal inference, LP-SparseMAP encourages the

local distribution at each factor to become sparse, and yields

a simple form for the LP-SparseMAP Jacobian, defined

in terms of the local SparseMAP Jacobians of each factor

(App. C.1). Denote the local solutions µf = M̃pf and the

Jacobians of the SparseMAP subproblem for each factor as

Jf,M :=
∂µf

∂ηf,M

, Jf,N :=
∂µf

∂ηf,N

. (12)

Algorithm 2 Backward pass for LP-SparseMAP

1: Input: d (the gradient of the loss w.r.t. µ), T (the maximum

number of iterations), ε (stopping criterion).

2: Output: dM ,dN,f (loss gradient w.r.t. ηM and ηN,f ).

3: for t = 1, . . . , T

4: for all f ∈ F

5: df ← C̃fd; # split d into copies for each factor

6: dM,f ← J⊤
M,fdf , dN,f ← J⊤

N,fdf ; # local∇

7: end for

8: dM ←
∑

f C̃
⊤
f df . # local averaging

9: if ‖dM − d‖ ≤ ε

10: return (dM ,dN,f ). # converged

11: else

12: d← dM

13: end if

14: end for

When using the active set algorithm for SparseMAP,

Jf,{M,N} are precomputed in the forward pass (Niculae

et al., 2018). The LP-SparseMAP backward pass combines

the local Jacobians while taking into account the agreement

constraints, as shown next.

Proposition 3. Let JM = bdiag(Jf,M ) and JN =
bdiag(Jf,N ) denote the block-diagonal matrices of local

SparseMAP Jacobians. Let J = J⊤ ∈ Rd×d satisfying

J := C̃⊤JM C̃ J . (13)

Then,
∂µ

∂ηM

= J and
∂µ

∂ηN

= JC̃⊤JN . (14)

The proof is given in App. C.2, and J may be computed

using an eigensolver. However, to use LP-SparseMAP as a

hidden layer, we don’t need a materialized Jacobian, just its

multiplication by an arbitary vector d ∈ Rd, i.e.,

( ∂µ

∂ηM

)⊤
d, and

( ∂µ

∂ηN

)⊤
d.

These can be computed iteratively by Algorithm 2. Since

Cf are highly sparse and structured selector matrices, lines

5 and 8 are fast indexing operations followed by scaling;

the bulk of the computation is line 6, which can be seen

as invoking the backward pass of each factor, as if that

factor were alone in the graph. The structure of Algorithm 2

is similar to Algorithm 1, however, our backward is much

more efficient than “unrolling” Algorithm 1 within a com-

putation graph: Our algorithm only requires access to the

final state of the ADMM solver (Algorithm 1), rather than

all intermediate states, as would be required for unrolling.

3.3. Implementation and specializations

The forward and backward passes of LP-SparseMAP, de-

scribed above, are appealing from the perspective of modu-
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Table 1: Examples of logic constraint factors.

name constraints

XOR (exactly one)
∑d

i=1 µi = 1

AtMostOne
∑d

i=1 µi ≤ 1

OR
∑d

i=1 µi ≥ 1

BUDGET
∑d

i=1 µi ≤ B

Knapsack
∑d

i=1 ciµi ≤ B

OROut
∑d−1

i=1 µi ≥ µd;µi ≤ µd for all i

lar implementation. The outer loop interacts with a factor

with only two interfaces: a SolveSparseMAP function and

a JacobianTimesVector function. In turn, both methods

can be implemented in terms of a SolveMAP maximization

oracle (Niculae et al., 2018).

For certain factors, such as the logic constraints in Ta-

ble 1, faster direct implementations of SolveSparseMAP

and JacobianTimesVector are available, and our algo-

rithm easily allows specialization. This is appealing from a

testing perspective, as the specializations must agree with

the generic implementation. For example, the exclusive-or

XOR factor requires that exactly one out of d variables can

be on. Its marginal polytope is the convex hull of allowed

assignments,MXOR = conv{e1, . . . , ed} = △
d. The re-

quired SparseMAP subproblem with degree corrections is

minimize 1/2 ‖µ− η‖22

subject to

d∑

j=1

δjµj = 1, and 0 ≤ µi ≤ 1/δi.
(15)

When δ = 1 this is a projection onto the simplex (sparse-

max), for which efficient algorithms are well-studied (Mar-

tins and Astudillo, 2016). For general δ, the algorithm of

Pardalos and Kovoor (1990) applies, and the backward pass

involves a generalization of the sparsemax Jacobian.

In App. D, we derive specialized forward and backward

passes for XOR, and the constraint factors in Table 1, as

well as for negated variables, OR, OR-Output, Knapsack

and pairwise (Ising) factors.

4. LP-SparseMAP loss for structured outputs

So far, we described LP-SparseMAP for structured hidden

layers. When supervision is available, either as a down-

stream objective or as partial supervision, a natural convex

loss relaxes the SparseMAP loss (Niculae et al., 2018):

ℓ(η, y) :=max
p,µ

∑

f

〈A⊤
f ηf ,pf−eyf

〉+
1

2
(‖my‖

2−‖µ‖2),

(16)

Figure 3: F1 score for tagging ListOps nodes with their

valency, using a latent tree. Incorporating inductive bias via

budget constraints improves performance.

under the constraints of Eq. 10. Like the SparseMAP loss,

this LP-SparseMAP loss falls into the recently-proposed

class of Fenchel-Young losses (Blondel et al., 2019), which

confirms its convenient properties, notably the margin prop-

erty (Blondel et al., 2020, Proposition 8). Its gradients are

obtained from the LP-SparseMAP solution (µ,p) as

∇ηM
ℓ(η, y) = µ−my, (17)

∇ηf ,N ℓ(η, y) = Nfpf − nyf
. (18)

When already using LP-SparseMAP as a hidden layer, this

loss provides a natural way to incorporate supervision on

the latent structure at no additional cost.

5. Experiments

In this section, we demonstrate LP-SparseMAP for learn-

ing complex latent structures on both toy and real-world

datasets, as well as on a structured output task. Learning

hidden structures solely from a downstream objective is

challenging for powerful models that can bypass the latent

component entirely. For this reason, we design our experi-

ments using simpler, smaller networks where the inferred

structure is an un-bypassable bottleneck, ensuring the predic-

tions depend on it. We use Dynet (Neubig et al., 2017) and

list hyperparameter configurations and ranges in App. E.

5.1. ListOps valency tagging

The ListOps dataset (Nangia and Bowman, 2018) is a syn-

thetic collection of bracketed expressions, such as [max 2

9 [min 4 7 ] 0 ]. The arguments are lists of integers, and

the operators are set summarizers such as median, max, sum,

etc. It was proposed as a litmus test for studying latent tree

learning models, since the syntax is essential to the seman-

tics. Instead of tackling the challenging task of learning to

evaluate the expressions, we follow Corro and Titov (2019b)

and study a tagging task: labeling each operator with the

number of arguments it governs.
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Table 2: ListOps tagging results with non-projective latent

trees. The budget constraints bring improvement.

validation test
Acc. F1 Acc. F1

left-to-right 28.14 17.54 28.07 17.43
tree 68.23 68.74 68.74 69.12
tree+budget 82.35 82.59 82.75 82.95

Model architecture. We encode the sequence with a BiL-

STM, yielding vectors h1, . . . ,hL. We compute the score

of dependency arc i → j as the dot product between the

outputs of two mappings, one for encoding the head and

one for the modifier (target word):

fhd(h) = Whdh+ bhd; fmo(h) = Wmoh+ bmo;

ηi→j = 〈fhd(hi),ReLU(fmo(hj))〉.

We perform LP-SparseMAP optimization to get the sparse

arc posterior probabilities, using different factor graph struc-

tures F , described in the next paragraph.

µ = LP-SparseMAPF (η) (19)

The arc posteriors µ correspond to a sparse combination

of dependency trees. We perform one iteration of a Graph

Convolutional Network (GCN) along the edges in µ. Cru-

cially, the input to the GCN is not the BiLSTM output

(h1, . . . ,hL) but a “de-lexicalized” sequence (v, . . . ,v)
where v is a learned parameter vector, repeated L times

regardless of the tokens. This forces the predictions to rely

on the GCN and thus on the latent trees, preventing the

model from using the global BiLSTM to “cheat”. The GCN

produces contextualized representations (g1, . . . , gL) which

we then pass through an output layer to predict the valency

label for each operator node.

Factor graphs. Unlike Corro and Titov (2019b), who use

projective dependency parsing, we consider the general non-

projective case, making the problem more challenging. The

MAP oracle is the maximum arborescence algorithm (Chu

and Liu, 1965; Edmonds, 1967).

First, we consider a factor graph with a single non-projective

TREE factor: in this case, LP-SparseMAP reduces to a

SparseMAP baseline. Motivated by multiple observations

that SparseMAP and similar latent structure learning meth-

ods tend to learn trivial trees (Williams et al., 2018) we next

consider overlaying constraints in the form of BUDGET

factors on top of the TREE factor. For every possible head

i, we include a BUDGET factor allowing at most five of the

possible outgoing arcs (µi→1, . . . , µi→L) to be selected.

Results. Figure 3 confirms that, unsurprisingly, the base-

line with access to gold dependency structure quickly learns

Table 3: NLI accuracy scores with structured attention. The

LP-SparseMAP models perform competitively.

SNLI MultiNLI
valid test valid test

softmax 84.44 84.62 70.06 69.42
matching 84.57 84.16 70.84 70.36
LP-matching 84.70 85.04 70.57 70.64
LP-sequential 83.96 83.67 71.10 71.17

to predict perfectly, while the simple left-to-right base-

line cannot progress. LP-SparseMAP with BUDGET con-

straints on the modifiers outperforms SparseMAP by over

10 percentage points (Table 2).

5.2. Natural language inference

with decomposable structured attention

We now turn to the task of natural language inference, using

LP-SparseMAP to uncover hidden alignments for structured

attention networks. Natural language inference is a pairwise

classification task. Given a premise of length m, and a

hypothesis of length n, the pair must be classified into one

of three possible relationships: entailment, contradiction, or

neutrality. We use the English language SNLI and MultiNLI

datasets (Bowman et al., 2015; Williams et al., 2017), with

the same preprocessing and splits as Niculae et al. (2018).

Model architecture. We use the model of Parikh et al.

(2016) with no intra-attention. The model computes a joint

attention score matrix S of size m× n, where sij depends

only on ith word in the premise and the jth word in the

hypothesis (hence decomposable). For each premise word

i, we apply softmax over the ith row of S to get a weighted

average of the hypothesis. Then, similarly, for each hypothe-

sis word j, we apply softmax over the jth row of S yielding

a representation of the premise. From then on, each word

embedding is combined with its corresponding weighted

context using an affine function, the results are sum-pooled

and passed through an output multi-layer perceptron to make

a classification. We propose replacing the independent soft-

max attention with structured, joint attention, normalizing

over both rows and columns simultaneously in several dif-

ferent ways, using LP-SparseMAP with scores ηij = sij .

We use frozen GloVe embeddings (Pennington et al., 2014),

and all our models have 130k parameters (cf. App. E).

Factor graphs. Assume m ≤ n. First, like Niculae et al.

(2018), we consider a matching factor f :

Mf =
{
µ ∈ [0, 1]mn;

∑

j∈[n]

µij = 1,
∑

i∈[m]

µij ≤ 1
}
. (20)

When m = n, linear maximization on this constraint set
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Figure 4: Attention induced using softmax (left) and LP-

SparseMAP sequential (right) on a MultiNLI example. With

this inductive bias, LP-SparseMAP learns a bi-directional

alignment anchoring longer phrases.

corresponds to the linear assignment problem, solved by the

Kuhn-Munkres (Kuhn, 1955) or Jonker-Volgenant (Jonker

and Volgenant, 1987) algorithms, and the solution is a dou-

bly stochastic matrix. When m < n, the scores can be

padded with −∞ to a square matrix prior to invoking the

algorithm. A linear maximization thus takes O(n3), and

this instantiation of structured matching attention can be

tackled by SparseMAP. Next we consider a relaxed equiva-

lent formulation which we call LP-matching, as shown in

Figure 2, with one XOR factor per row and one AtMostOne

factor per column:

F = {XOR(µi1, . . . , µin) : i ∈ [m]}

∪ {AtMostOne(µ1j , . . . , µmj) : j ∈ [n]}
(21)

Each subproblem can be solved inO(n) for a total complex-

ity of O(n2) per iteration (cf. Appendix D). While more

iterations may be necessary to converge, the finer-grained

approach might make faster progress, yielding more useful

latent alignments. Finally, we consider a more expressive

joint alignment that encourages continuity. Inspired by the

sequential alignment of Niculae et al. (2018), we propose

a bi-directional model called LP-sequence, consisting of

a coarse, linear-chain Markov factor (with MAP provided

by the Viterbi algorithm; Rabiner, 1989) parametrized by

a single transition score ηN for every pair of alignments

(i, j)−(i+1, j±1). By itself, this factor may align multiple

premise words to the same hypothesis word. We symmetrize

it by overlaying m AtMostOne factors, like in Eq. 21, en-

suring each hypothesis word is aligned on average to at most

one premise word. Effectively, this results in a sequence

tagger constrained to use each of the m states at most once.

For both LP-SparseMAP approaches, we rescale the result

by row sums to ensure feasibility.

Results. Table 3 reveals that LP-matching is the best

performing mechanism on SNLI, and LP-sequential on

Table 4: Multilabel classification test F1 scores.

bibtex bookmarks

Unstructured 42.28 35.76
Structured hinge loss 37.70 33.26
LP-SparseMAP loss 43.43 36.07

MultiNLI. The ηN transition score learned by LP-sequential

is 1.6 on SNLI and 2.5 on MultiNLI, and Figure 4 shows

an example of the useful inductive bias it learns. On

both datasets, the relaxed LP-matching outperforms the

coarse matching factor, suggesting that, indeed, equivalent

parametrizations of a model may perform differently when

not run until convergence.

5.3. Multilabel classification

Finally, to confirm that LP-SparseMAP is also suitable as in

the supervised setting, we evaluate on the task of multilabel

classification. Our factor graph has k binary variables (one

for each label), and a pairwise factor for every label pair:

F = {PAIR(µi, µj ; ηij) : 1 ≤ i < j ≤ k}. (22)

This yields the standard fully-connected pairwise MRF:

〈η,µ〉 =
∑

i

µiηi +
∑

i<j

µiµjηij . (23)

Neural network parametrization. We use a 2-layer

multi-layer perceptron to compute the score for each vari-

able. In the structured models, we have an additional
1/2 k(k−1) parameters for the co-occurrence score of every

pair of classes. We compare an unstructured baseline (using

the binary logistic loss for each label), a structured hinge

loss (with LP-MAP inference) and a LP-SparseMAP loss

model. We solve LP-MAP using AD3 and LP-SparseMAP

with our proposed algorithm (cf. Appendix E).

Results. Table 4 shows the example F1 score on the

test set for the bibtex and bookmarks benchmark datasets

(Katakis et al., 2008). The structured hinge loss model

is worse than the unstructured (binary logistic loss) base-

line; the LP-SparseMAP loss model outperforms both. This

suggests that the LP-SparseMAP loss is promising for struc-

tured output learning. We note that, in strictly-supervised

setting, approaches that blend inference with learning (e.g.,

Chen et al., 2015; Tang et al., 2016) may be more efficient;

however, LP-SparseMAP can work both as a hidden layer

and a loss, with no redundant computation.

6. Related work

Differentiable optimization. The most related research

direction involves bi-level optimization, or argmin differ-
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entiation (Gould et al., 2016; Djolonga and Krause, 2017);

Typically, such research assumes problems are expressible

in a standard form, for instance using quadratic programs

(Amos and Kolter, 2017) or generic disciplined convex pro-

grams (Section 7, Amos, 2019; Agrawal et al., 2019a;b).

We take inspiration from this line of work by developping

LP-SparseMAP as a flexible domain-specific language for

defining latent structure. The generic approaches are not

applicable for the typical optimization problems arising in

structured prediction, because of the intractably large num-

ber of constraints typically necessary, and the difficulty of

formulating many problems in standard forms. Our method

instead assumes interacting through the problem through

local oracle algorithms, exploiting the structure of the factor

graph and allowing for more efficient handling of coarse

factors and logic constraints via nested subproblems.

Latent structure models. Our motivation and applica-

tions are mostly focused on learning with latent structure.

Specifically, we are interested in global optimization meth-

ods, which require marginal inference or similar relaxations

(Kim et al., 2017; Liu and Lapata, 2018; Corro and Titov,

2019a;b; Niculae et al., 2018), rather than incremental

methods based on policy gradients (Yogatama et al., 2017).

Promising methods exist for approximate marginal infer-

ence in factor graphs with MAP calls (Belanger et al., 2013;

Krishnan et al., 2015; Tang et al., 2016), relying on entropy

approximation penalties. Such approaches focus on super-

vised structure prediction, which is not our main goal; and

their backward passes has not been studied to our knowl-

edge. Importantly, as these penalties are non-quadratic,

the active set algorithm does not apply, falling back to the

more general variants of Frank-Wolfe. The active set al-

gorithm is a key ingredient of our work, as it exhibits fast

finite convergence, finds sparse solutions and – crucially –

provides precomputation of the matrix inverse required in

the backward pass (Niculae et al., 2018). In contrast, the

quadratic penalty (Meshi et al., 2015; Niculae et al., 2018)

is more amenable to optimization, as well as bringing other

sparsity benefits. The projection step of Peng et al. (2018)

can be cast as a SparseMAP problem, thus our algorithm

can be used to also extend their method to arbitrary factor

graphs. For pairwise MRFs (a class of factor graphs), dif-

ferentiating belief propagation, either through unrolling or

perturbation-based approximation, has been studied (Stoy-

anov et al., 2011; Domke, 2013). Our approach instead

computes implicit gradients, which is more efficient, thanks

to quantities precomputed in the forward pass, and in some

circumstances has been shown to work better (Rajeswaran

et al., 2019). Finally, MRF-based approaches have not been

explored in the presence of logic constraints or coarse fac-

tors, while our formulation is built from the beginning with

such use cases in mind.

7. Conclusions

We introduced LP-SparseMAP, an extension of SparseMAP

to sparse differentiable optimization in any factor graph,

enabling neural hidden layers with arbitrarily complex struc-

ture, specified using a familiar domain-specific language.

We have shown LP-SparseMAP to outperform SparseMAP

for latent structure learning, and outperform the structured

hinge for structured output learning. We hope that our

toolkit empowers future research on latent structure, lead-

ing to powerful models based on domain knowledge. In

future work, we shall investigate further applications where

expertise about the domain structure, together with mini-

mal self-supervision deployed via the LP-SparseMAP loss,

may lead to data-efficient learning, even for more expressive

models without artificial bottlenecks.
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Supplementary Material

A. Separable reformulation of LP-SparseMAP

Lemma 1. Let δ, D, C̃, M̃ defined as in Proposition 1. Let S = diag(δ). Then,

(i) C⊤C = S2

(ii) C̃ = CS−1;

(iii) C̃⊤C̃ = I;

(iv) For any feasible pair (µ,p), µ = C̃⊤M̃p, and ‖µ‖ = ‖M̃p‖.

Proof. (i) The matrix C, which expresses the agreement constraint Cµ = Mp, is a stack of selector matrices, in other

words, its sub-blocks are either the identity I or the zero matrix 0. We index its rows by pairs (f, k) : f ∈ F , k ∈ [df ], and

its columns by j ∈ [d]. Denote by f(k) = j the fact that the kth variable under factor f is µj . Then, (C)(f,k),j = Jf(k) = jK.

We can then explicitly compute

(C⊤C)ij =
∑

f∈F

∑

k∈[df ]

Jf(k) = iKJf(k) = jK.

If i 6= j, Jf(k) = iKJf(k) = jK = 0, so (C⊤C)ij =

{
deg(j) i = j,

0, o.w.
= S2.

(ii) By construction, D(f,k),(f,k) = (Cδ)(f,k) =
∑

i∈[d]Jf(k) = iK
√
deg(i) =

√
deg(j), for the unique variable j with

f(k) = j. Thus,

(D−1C)(f,k),j = Jf(k) = jK
√
deg(j) = (CS−1)(f,k),j .

(iii) It follows from (i) and (ii) that C̃⊤C̃ = S−1C⊤CS−1 = S−1S2S−1 = I .

(iv) Since D is full-rank, the feasibility condition is equivalent to C̃µ = M̃p. Left-multiplying by C̃⊤ yields µ = C̃⊤M̃p.

Moreover, ‖M̃p‖2 = ‖C̃µ‖2 = µ⊤C̃⊤C̃µ = ‖µ‖2.

B. Derivation of updates and comparison to LP-MAP

Recall the problem we are trying to minimize, from Eq. 11:

maximize
µ, p

∑

f∈F

〈ηf ,Afpf 〉 − .5‖M̃fpf‖
2 subject to p ∈ △f1 ×△f2 × · · · × △fn , C̃µ = M̃p. (24)

Since the simplex constraints are separable, we may move them to the objective, yielding

maximize
µ, p

∑

f∈F

〈ηf ,Afpf 〉 − .5‖M̃fpf‖
2 − ι△f

(pf ) subject to C̃µ = M̃p. (25)

The γ-augmented Lagrangian of problem 25 is

Lγ(µ,p.λ) =
∑

f∈F

(
〈ηf ,Afpf 〉 − .5‖M̃fpf‖

2 − ι△f
(pf )

)
− 〈λ, C̃µ− M̃p〉 −

γ

2
‖C̃µ− M̃p‖2. (26)

The solution µ⋆,p⋆,λ⋆ is a saddle point of the Lagrangian, i.e., a solution of

min
λ

max
p,µ
Lγ(µ,p,λ) (27)

ADMM optimizes Eq. 27 in a block-coordinate fashion; we next derive each block update.
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B.1. Updating p

We update pf for each f ∈ F independently by solving:

p
(t)
f ← argmax

pf

Lγ(µ
(t−1),p,λ(t−1)) (28)

Denoting ηf = [ηf,M ,ηf,N ], we have that

〈ηf ,Afpf 〉 = 〈ηf,M ,Mfpf 〉+ 〈ηf,N ,Nfpf 〉 = 〈Dfηf,M ,M̃fpf 〉+ 〈ηf,N ,Nfpf 〉

The γ-augmented term regularizing the subproblems toward the current estimate of the global solution µ(t−1) is

γ

2
‖C̃fµ

(t−1) − M̃fpf‖
2 =

γ

2
‖M̃fpf‖ − γ〈C̃fµ

(t−1),M̃fpf 〉+ const

For each factor, the subproblem objective is therefore:

f(pf ) = 〈ηf ,Afpf 〉 − 〈λ
(t)
f ,M̃fpf 〉 −

γ

2
‖C̃fµ

(t−1) − M̃fp‖
2 −

1

2
‖M̃fp‖

2

= 〈Dfηf,M − λ
(t−1)
f + γC̃fµ

(t−1),M̃fpf 〉+ 〈ηf,N ,Nfpf 〉 −
1 + γ

2
‖M̃fpf‖

2 + const

∝ 〈η̃f,M ,M̃fpf 〉+ 〈η̃f,N ,Nfpf 〉 −
1

2
‖M̃fpf‖

2 + const.

(29)

This is exactly a SparseMAP instance with η̃f,M = 1
1+γ

(
Dfηf,M − λ

(t−1)
f + γC̃fµ

(t−1)
)

and η̃f,N = 1
1+γ

ηf,N .

Observation. For comparison, when solving LP-MAP with AD3, the subproblems minimize the objective

f(pf ) = 〈ηf ,Afpf 〉 − 〈λ
(t)
f ,Mfpf 〉 −

γ

2
‖Cfµ

(t) −Mfpf‖
2

= 〈ηf,M − λ
(t)
f + γCfµ

(t),Mfpf 〉+ 〈ηf,N ,Nfpf 〉 −
γ

2
‖Mfpf‖

2,
(30)

so the p-update is a SparseMAP instance with η̃f,M = 1
γ

(
ηf,M −λ

(t)
f +γCfµ

(t)
)

and η̃f,N = 1
γ
ηf,N . Notable differences

is the scaling by 1 + γ instead of γ (corresponding to the added regularization), and the diagonal degree reweighting.

B.2. Updating µ

We must solve
µ(t) ← argmax

µ
Lγ(µ,p

(t),λ(t−1))

= argmin
µ

γ

2
‖C̃µ− M̃p(t)‖2 + 〈C̃⊤λ(t−1),µ〉.

(31)

This is an unconstrained problem. Setting the gradient of the objective to 0, we get

0
!
= γC̃⊤(C̃µ− M̃p(t)) + C̃⊤λ(t−1)

= γ(µ− C̃⊤M̃p(t)) + C̃⊤λ(t−1)
(32)

with the unique solution

µ(t) ← C̃M̃p(t) −
1

γ
C̃⊤λ(t−1) (33)

= C̃M̃p(t), (34)

where the last step follows from the fact that our resulting algorithm maintains the invariant C̃⊤λ(·) = 0, as we show in the

next section.



LP-SparseMAP

B.3. Updating the Lagrange multipliers

Since Lγ is linear in λ, minλ Lγ(λ) = −∞, therefore we may not globally minimize w.r.t. λ. Instead, we make only a

small gradient step:

λ(t) ← λ(t−1) + γ
(
C̃µ(t) − M̃p(t)

)
. (35)

As promised, we inspect below the value of C̃⊤λ under this update rule.

C̃⊤λ(t) = C̃⊤λ(t−1) + γ(✓✓̃C⊤✓✓̃Cµ(t) − C̃⊤M̃pt)

= C̃⊤λ(t−1) + γ
(
µ(t) − (µ(t) +

1

γ
C̃⊤λ(t−1))

)
(from Eq. 33)

= C̃⊤λ(t−1) −
γ

γ
C̃⊤λ(t−1) = 0.

(36)

C. Backward pass

C.1. SparseMAP

As a reminder, we repeat here the form of the SparseMAP Jacobian (Niculae et al., 2018), along with a brief derivation. This

result plays an important role in LP-SparseMAP backward pass.

Proposition 4. Given a structured problem with A = [M ,N ], denote the SparseMAP solution for input scores η =
[ηM ,ηN ] as µ where

(µ,p) = argmax
µ=Mp
p∈△

〈η,Ap〉 −
1

2
‖µ‖2. (37)

Let S = {y1, . . . , yk} ⊂ Y denote the support set of selected structures, and denote M̄ := MS ∈ RdM×|S|, N̄ := NS ∈
RdN×|S|, and

Z = (M̄⊤M̄)−1, z = Z1, Q = Z −
zz⊤

1⊤z
. (38)

Then, we have
∂µ

∂ηM

(ηM ,ηN ) = M̄QM̄⊤,
∂µ

∂ηN

(ηM ,ηN ) = M̄QN̄ . (39)

Proof. Rewrite the optimization problem in Eq. 37 in terms of a convex combination of structures:

minimize 〈θ,p〉 −
1

2
‖Mp‖2 subject to p ∈ △. (40)

The Lagrangian is given by

L(p,ν, τ) =
1

2
‖Mp‖2 − 〈θ − τ1− ν,p〉. (41)

The solution p is sparse with nonzero coordinates S . Small changes to θ only lead to changes in S on a measure-zero set of

critical tie-breaking points, and there is always a direction of change that leaves S unchanged. We may thus assume that S
does not change with small changes to θ, yielding the Jacobian at most points, and a generalized Jacobian otherwise (Clarke,

1990).

From complementary slackness, ν̄ = 0, so the conditions ∇p̄L
!
= 0 and 1⊤p̄

!
= 1 can be written as

[
M̄⊤M̄ 1

1⊤ 0

] [
p̄

τ

]
=

[
θ̄

1

]
. (42)

Therefore, differentiating w.r.t. θ̄, the Jacobians ∂p̄

∂θ̄
and ∂τ

∂θ̄
must satisfy

[
M̄⊤M̄ 1

1⊤ 0

] [
∂p̄

∂θ̄
∂τ
∂θ̄

]
=

[
I

0

]
. (43)



LP-SparseMAP

Denote by Z := (M̄⊤M̄)−1, z = Z1, t := 1⊤z,Q = Z − zz⊤

t
. Using block-matrix inversion,

[
M̄⊤M̄ 1

1⊤ 0

]−1

=

[
Q z/t

z⊤

/t −1/t

]
. (44)

Therefore, ∂p̄

∂θ̄
= Q. Since µM = M̄p̄ and θ̄ = M̄⊤ηM + N̄⊤ηN , the chain rule gives Eq. 39. Importantly, when using

the active set method for computing the SparseMAP solution (Niculae et al., 2018), the inverse in Eq. 44, and thus Q, is

precomputed incrementally during the forward pass, and thus readily available for no extra cost..

C.2. LP-SparseMAP

Proof. Given variable scores ηM and factor scores ηf,N , we construct a vector θ = M̄⊤C̃ηM +Nηf,N . To derive the

backward pass, we start from the Lagrangian with simplex constraints:

L(µ,p.λ.τ ,ν) = 〈θ,p〉 −
1

2
‖M̃p‖2 − 〈λ, C̃µ− M̃p〉 − 〈τ ,Bp− 1〉 − 〈ν,p〉. (45)

where B is a matrix with row-vectors 1 along the diagonal (so that Bp = [· · · ,1pf , · · · ]). For any feasible (p,µ) we have

that ‖M̃p‖2 = ‖µ‖2, so we may rewrite the Lagrangian as:

L(µ,p.λ.τ ,ν) = 〈θ,p〉 −
1

4
‖M̃p‖2 −

1

4
‖µ‖2 − 〈λ, C̃µ− M̃p〉 − 〈τ ,Bp− 1〉 − 〈ν,p〉. (46)

The corresponding optimality conditions are

0
!
= ∇pf

L = θ − .5M̃⊤
f M̃fpf + M̃⊤

f λf − τf1− νf for all f ∈ F , (47)

0
!
= ∇µL = −.5µ− C̃⊤λ (48)

0
!
= ∇λL = C̃µ− M̃p (49)

0
!
= ∇τL = Bp− 1 (50)

along with ν ≥ 0,p ≥ 0, and the complementarity slackness conditions 〈ν,p〉 = 0. As in App. C.1, we observe that

the support Sf of each factor f does not change with small changes to η. Once again, we use the overbar ·̄ to denote the

restriction of a vector or matrix to the (block-wise) support Sf , resulting in, for instance,

p̄ > 0 ∈ R
∑

f |Sf |, M̄ ∈ R(
∑

f df) × (
∑

f |Sf |), etc.

On the support, ν̄f vanishes, so we rewrite the conditions in terms of p̄. In matrix form,




.5M̄⊤M̄ B̄⊤ 0 −M̄⊤

B̄ 0 0 0

0 0 .5I C̃⊤

−M̄ 0 C̃ 0







p̄

τ

µ

λ


 =




θ̄

1

0

0


 (51)

Differentiating w.r.t. θ̄ yields




.5M̄⊤M̄ B̄⊤ 0 −M̄⊤

B̄ 0 0 0

0 0 .5I C̃⊤

−M̄ 0 C̃ 0







Jp̄

Jτ

Jµ

Jλ


 =




I

0

0

0


 (52)

Observe that the top-left block can be re-organized into a block-diagonal matrix with blocks with known inverses (similar to

Eq. 44) [
.5M̄⊤

f M̄f 1

1⊤ 0

]−1

=

[
2Qf ·
· ·

]
(53)
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where the values except for the top-left block can be easily obtained in terms of the blocks of Eq. 44, but this is not necessary,

since all others rows and columns corresponding to τ are zero.

We multiply the top half of the system by this inverse and eliminate τ , leaving




I 0 −2QM̄⊤

0 .5I C̃⊤

−M̄ C̃ 0






Jp̄

Jµ

Jλ


 =




2Q
0

0


 . (54)

Multiplying the first row of blocks by M̄ , the second by −2C, gives




M̄ 0 −2M̄QM̄⊤

0 −C̃ −2C̃C̃⊤

−M̄ C̃ 0






Jp̄

Jµ

Jλ


 =




2M̄Q

0

0


 . (55)

Finally, we may add up all rows to reach the expression

Jλ = −
(
M̄QM̄⊤ + C̃C̃⊤

)+
M̄Q.

and, since Jµ = −2C̃⊤Jλ, then

Jµ = 2C̃⊤
(
M̄QM̄⊤ + C̃C̃⊤

)+
M̄Q.

The Jacobians we have been solving for so far are w.r.t. η. We first apply the chain rule to get the Jacobian w.r.t. θM , giving

∂µ

∂ηM

= JµM̄
⊤C̃

= 2C̃⊤
(
M̄QM̄⊤ + C̃C̃⊤

)+
M̄QM̄⊤C̃

= 2C̃⊤
(
JM + C̃C̃⊤

)+
JM C̃,

(56)

where JM is the block-wise Jacobian of each SparseMAP subproblem.

Now, observe that C̃C̃⊤ and JM are orthogonal projection matrices: the former because C̃ is orthogonal, the latter because

QM̄⊤M̄Q = Q, since for each block

QfM̄
⊤
f M̄fQf =

(
Zf −

zfz
⊤
f

tf

)
M̄⊤

f M̄f

(
Zf −

zfz
⊤
f

tf

)

=

(
Zf −

zfz
⊤
f

tf

)(
I −

1z⊤
f

tf

)

= Zf −
zfz

⊤
f

tf
−Zf

1z⊤
f

tf
+

zfz
⊤
f

tf

1z⊤
f

tf

= Zf −
zfz

⊤
f

tf
−

zfz
⊤
f

tf
+

tfzfz
⊤
f

t2f

= Qf .

(57)

Orthogonal projection matrices are projection operators onto affine subspaces. We next invoke a result about the projection

onto an intersection of affine subspaces:

Lemma 2. (Piziak et al., 1999) Let A,B denote the affine spaces such that projA(x) = PAx and projB(x) = PBx.

Then, the projection onto their intersection has the following expressions:

projA∩B = lim
n→∞

PB(PAPB)
n, (58)

= 2PB(PA + PB)
+PA (59)
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Using this lemma, we may apply Eq. 59, to rewrite the Jacobian as

∂µ

∂ηM

= 2C̃⊤
(
JM + C̃C̃⊤

)+
JM C̃

= C̃⊤
(
2C̃C̃⊤

(
JM + C̃C̃⊤

)+
JM

)
C̃

= C̃⊤PA∩B C̃.

(60)

where PA = JM and PB = C̃C̃⊤. Then, using the power iteration expression (Eq. 58),

∂µ

∂ηM

= lim
n→∞

C̃⊤
(
C̃C̃⊤(JM C̃C̃⊤)n

)
C̃

= lim
n→∞

C̃⊤C̃︸ ︷︷ ︸
I

C̃⊤(JM C̃C̃⊤)n−1JM C̃ C̃⊤C̃︸ ︷︷ ︸
I

= lim
n→∞

(C̃⊤JM C̃)n

(61)

Multiplying both sides by C̃⊤JM C̃ leaves the r.h.s. unchanged, so

C̃⊤JM C̃
∂µ

∂ηM

=
∂µ

∂ηM

. (62)

Finally, we compute the gradient w.r.t. ηN . Thus we have

∂µ

∂ηN

= JµM̄
⊤C̃

= 2C̃⊤
(
JM + C̃C̃⊤

)+
M̄QN̄ .

= 2C̃⊤
(
JM + C̃C̃⊤

)+
M̄

Q︷ ︸︸ ︷
QM̄⊤M̄QN̄ .

= C̃⊤PA∩BM̄QN̄ .

= C̃⊤PA∩BC̃︸ ︷︷ ︸
∂µ

∂ηM

C̃⊤ M̄QN̄︸ ︷︷ ︸
JN

,

(63)

If the actual Jacobians are desired, observe that Eq. 62 says that the columns of ∂µ
∂ηM

are eigenvectors of C̃⊤JM C̃

corresponding to eigenvalue 1. We know that the spectrum commutes, so the spectrum of C̃⊤JM C̃ is equal to that of

JuC̃C̃⊤, which is a product of two orthogonal projections, thus its eigenvalues are between 0 and 1 (Anderson Jr et al.,

1985; Omladic, 1987). (This also shows why power iteration in Eq. 58 converges, since all eigenvalues strictly less than 1
shrink to 0.) We may use Arnoldi iteration to obtain the largest eigenvectors of C̃⊤JM C̃.

D. Specialized algorithms for common factors

Like in AD3, any local quadratic subproblem can be solved via the active set method provided a local linear oracle

(MAP). However, for some special factors, we can derive more efficient direct algorithms. Many such factors involve

logical operations and constraints which are essential building blocks for expressive inference problems. We extend the

derivations for logic and pairwise factors of AD3 (Martins et al., 2015), nontrivially, in two ways: first, to accommodate

the degree reweighting needed for LP-SparseMAP, and second, to derive efficient expressions for the local backward

passes. Indeed, a useful check is that our expressions in the case of δj = 1 for all j (i.e., when the factor is alone in the

graph) correspond exactly to the non-reweighted QP solutions derived by Martins et al. (2015).
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Consider a constraint factor f over d boolean variables. In this case there are no additional variables, so that the subproblem

on line 1 of Algorithm 1 becomes simply:

minimize 1/2 ‖η̃f − M̃fpf‖
2
2

subject to pf ∈ △f .
(64)

Since it enforces constraints over boolean variables, the allowable set of assignments (i.e., columns of Mf ) is a subset of

{0, 1}d. Therefore, for any pf ∈ △f , we have Mfpf ∈ [0, 1]d as a convex combination of zero-one vectors. Recalling

that M̃f = D−1
f Mf with Df = diag(δf ), with (δf )i =

√
deg(i), we introduce the variable µf = M̃fpf . We have

that Dfµf = Mfpf ∈ [0, 1]d. Since we are focusing on a single factor, we will next drop the subscript f . Warning:

this notation should not be confused with the use of µ in the context of the full LP-SparseMAP algorithm: consider the

remainder of the section self-contained. Equation 64 becomes

minimize 1/2 ‖µ− η‖22

subject to Dµ ∈M ⊂ [0, 1]d,
(65)

whereM := {Mp | p ∈ △} denotes the set of local constraints over the binary variables.

For any nonempty convexM, this problem has a unique solution, which we denote by µ⋆ =: FM(η). We will study several

specific cases where we can derive efficient algorithms for computing FM(η) and its Jacobian ∂FM

∂η
.

D.1. Preliminaries

D.1.1. PROJECTION ONTO BOX CONSTRAINTS

Consider the projection where there are no additional constraints beyond boolean variables, i.e.M = [0, 1]d. The constraint

Dµ ∈ [0, 1]d can be equivalently written

µ ∈ B := {u ∈ R
d | 0 ≤ ui ≤ δ−1

i }. (66)

Consider the more general problem:

minimize 1/2 ‖µ− η‖22

subject to αi ≤ µi ≤ βi.
(67)

Its solution is obtained by noting that it decomposes into d independent one-dimensional problems (Parikh and Boyd, 2014,

Section 6.2.4)

µ⋆
i = clip[αi,βi](ηi) =





αi, ηi ≤ αi;

ηi, αi < ηi < βi;

βi, ηi ≥ βi.

(68)

The derivative of the solution can be obtained by considering all the cases and is therefore

dµ⋆
i

dηi
=

{
1, αi < µ⋆

i < βi

0, otherwise.
(69)

The Jacobian of the vector-valued mapping is therefore simply the diagonal matrix with
dµ⋆

i

dηi
along the diagonal;

∂µ⋆

∂η
= diag(Jαi < µ⋆

i < βiK). (70)

D.1.2. SIFTING LEMMA

This result allows us to break down an otherwise complicated inequality-constrained optimization problem into two cases

which may be simpler to solve. This turns out to be the case for many factors over relaxed boolean variables, since the

projection onto the set B can be done in linear time.
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Lemma 3. Consider the constraint convex optimization problem

minimize f(x)

subject to x ∈ X

g(x) ≤ 0.

(71)

where f, g are convex and X ⊂ Rd is nonempty. Suppose the problem 71 is feasible and bounded below. Consider the set of

solutions of the relaxed problem obtained by dropping the inequality constraint, i.e. A = argminx∈X f(x). Then

1. If some x̃ ∈ A is feasible for problem (71)—i.e., g(x̃) ≤ 0—then x̃ is a solution of problem (71).

2. If for all x̃ ∈ A, g(x̃) > 0, then the inequality constraint must be active, i.e., problem (71) is equivalent to

minimize f(x)

subject to x ∈ X

g(x) = 0.

(72)

For a proof, see (Martins et al., 2015, Lemma 17).

D.1.3. SINGLY-CONSTRAINED BOUNDED QUADRATIC PROGRAMS

Consider the quadratic program

minimize 1/2 ‖µ− η‖22

subject to αi ≤ µi ≤ βi for i ∈ [d]

d∑

j=1

wjµj = B.

(73)

Unlike the box constraints above, this problem is rendered more complicated by the sum constraint which couples all

variables together. An efficient algorithm can be derived due to the following observation.

Proposition 5. (Pardalos and Kovoor, 1990) Let µ be a feasible point of (73). Then, µ is the global minimum if and only if

there exists a scalar τ ∈ R such that, for all i ∈ [d],

µi(τ) = clip[αi,βi](wiτ + ηi). (74)

Proof is provided by Pardalos and Kovoor (1990).2 This proposition reduces the optimization problem to a one-dimensional

search, which can be solved iteratively by bisection, in O(d log d) via sorting, or in O(d) using selection (as proposed in

Pardalos and Kovoor, 1990). Its sparse Jacobian can be computed efficiently, as shown by the following original result,

resembling the result of Peters et al. (2019).

Proposition 6. Let G : Rd → Rd denote the solution mapping of problem 73, i.e., µ⋆ = G(η). Denote the set

I = {i ∈ [d] | µ⋆
i 6∈ {αi, βi}. Then,

1. (J)ij = 0 whenever i 6∈ I or j 6∈ I.

2. Denoting J̄G the restriction of the Jacobian to the rows and columns in I, J̄G = I − ww⊤

w⊤w
.

Then, JG ∈
∂G
∂η

, i.e., it is a generalized Jacobian.

Proof. If µ⋆
i = αi (respectively βi), then decreasing (respectively increasing) ηi by any amount does not change the solution,

therefore a subgradient is zero. It remains to consider the support. Let µ̄, η̄, w̄ denote the restrictions of those vectors to the

indices in I. The KKT conditions on the support form a linear system
[

I w̄

w̄⊤ 0

] [
µ̄

τ

]
=

[
η̄

B

]
. (75)

2Our formulation recovers problem (2) of Pardalos and Kovoor (1990) under the change of variable xi = µi−ηi
wi

and choice of

constants ci = w2
i , d = B −

(∑d

j=1 wiηi
)
, ai =

αi−ηi
wi

, bi =
βi−ηi
wi

.
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Differentiating w.r.t. η̄ yields [
I w̄

w̄⊤ 0

] [
J̄G

Jτ

]
=

[
I

0

]
. (76)

Gaussian elimination readily gives

J̄G = I −
ww⊤

w⊤w
. (77)

D.2. Logic factors

D.2.1. XOR FACTOR (EXACTLY ONE OF D)

The exclusive OR (XOR) factor over d boolean variables only accepts assignments in which exactly one is turned on.

The accepted bit vectors are thus indicator vectors e1, . . . , ed, so the matrix M = I and the constraint set isMXOR =
conv{e1, . . . , ed} = △d = {µ ∈ [0, 1]d | 1⊤µ = 1}. Rewriting the constraint Dµ ∈ MXOR more explicity, the

optimization problem becomes

minimize 1/2 ‖µ− η‖22

subject to 0 ≤ µi ≤ 1/δi for i ∈ [d]

d∑

j=1

δjµj = 1.

(78)

Therefore, we may invoke the algorithm from §D.1.3, with αi = 0, βi = 1/δi, wi = δi, B = 1. Note that when all δi = 1
(e.g., if the XOR factor is the only factor in the factor graph), this recovers the differentiable sparsemax transform (Martins

and Astudillo, 2016), commonly used in neural networks as a sparse attention mechanism.

D.2.2. OR FACTOR (AT LEAST ONE OF D)

A logical OR factor over d boolean variables encodes the constraint that at least one variable is turned on; in other words, it

permits all assignments except the one where all variables are off. Such a factor is useful for encoding existential constraints.

Its constraint set isMOR = conv
(
{0, 1}d − {0}

)
= {µ ∈ [0, 1]d | 1⊤µ ≥ 1}, leading to

minimize 1/2 ‖µ− η‖22

subject to 0 ≤ µi ≤ 1/δi for i ∈ [d]

d∑

j=1

δjµj ≥ 1.

(79)

Using the sifting lemma with set X = {µ ∈ Rd | 0 ≤ µi ≤ 1/δi}, we reduce this problem to either a simple clipping

operation or the XOR problem (78), as shown in Algorithm 3. In practice, since we don’t need the full Jacobian but just

access to Jacobian-vector products, we just need to store an indicator of which branch was taken as well as the set of indices

I = {i | 0 < µ⋆
i < 1/δi}.

Algorithm 3 OR factor: forward and backward pass.

1: µ̃i = clip
[0,δ−1

i
]
(ηi) # compute solution candidate

2: if
∑

j δj µ̃j ≥ 1 # by the sifting lemma, we found the solution

3: µ⋆ ← µ̃

4: J ← diag(J0 < µ⋆
i < 1/δiK)

5: else

6: µ⋆ ← FXOR(η) # from §D.2.1

7: J ← JFXOR
# from Proposition 6

8: end if

9: return µ⋆,J
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D.2.3. KNAPSACK FACTOR

The knapsack constraint factor is parameterized by a non-negative cost assigned to each variable w ∈ Rd
+, and a budget

B ∈ R. Its marginal polytope is

MK(c,B) =
{
µ ∈ [0, 1]d | c⊤µ ≤ B

}
. (80)

The degree-adjusted quadratic subproblem required in the LP-SparseMAP algorithm can be written as

minimize 1/2 ‖µ− η‖22

subject to 0 ≤ µi ≤ 1/δi for i ∈ [d]

d∑

j=1

cjδjµj ≤ B

(81)

We may solve this problem again using the sifting lemma, noting that, when the inequality constraint is tight, we may invoke

the algorithm from §D.1.3, with αi = 0, βi = 1/δi, wi = δici, B = B. The procedure is specified in Algorithm 4.

Algorithm 4 Knapsack factor: forward and backward pass.

1: µ̃i = clip
[0,δ−1

i
]
(ηi) # compute solution candidate

2: if
∑

j cjδj µ̃j ≤ B # by the sifting lemma, we found the solution

3: µ⋆ ← µ̃

4: J ← diag(J0 < µ⋆
i < 1/δiK)

5: else

6: µ⋆ ← G(η) # from §D.1.3

7: J ← JG # from Proposition 6

8: end if

9: return µ⋆,J

D.2.4. BUDGET AND AT-MOST-ONE FACTORS

A special case of the Knapsack factor is useful when we have a budget over the total number of variables that can be switched

on at the same time. In other words, we take the budget B to be the maximum allowed number of variables, and the cost

ci = 1 for all i, leading to

minimize 1/2 ‖µ− η‖22

subject to 0 ≤ µi ≤ 1/δi for i ∈ [d]

d∑

j=1

δjµj ≤ B.

(82)

Perhaps the most commonly encountered version is when B = 1, meaning at most one variable can be active (but keeping

all variables off is also a legal solution.)

minimize 1/2 ‖µ− η‖22

subject to 0 ≤ µi ≤ 1/δi for i ∈ [d]

d∑

j=1

δjµj ≤ 1.

(83)

D.2.5. LOGICAL NEGATION

The ability to impose logical constraints on negated boolean variables opens up many new possiblities, through algebraic

manipulation, e.g., DeMorgan’s laws. For instance, we may obtain a negated conjuction factor, since

YNAND = {m ∈ {0, 1}d | ¬(m1 ∧ · · · ∧md)} = {m ∈ {0, 1} | ¬m1 ∨ · · · ∨ ¬md}, (84)
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and so (m1, . . . ,md) ∈ YNAND is equivalent to (¬m1, . . . ,¬md) ∈ YOR. Similarly, implication may be written as

YIMPLY = {m ∈ {0, 1}d | m1 ∧ . . . md−1 =⇒ md}, (85)

and computed using negations and the OR factor, because

(m1, . . . ,md) ∈ YIMPLY is equivalent to (¬m1, . . . ,¬md−1,md) ∈ YOR. (86)

Proposition 7. Denote by FM(η) the solution of the relaxed boolean QP in Eq. 65. Consider the set obtained fromM by

negating the interpretation of the kth boolean variable in the constraints, i.e.

ν ∈M¬k ⇐⇒ (ν1, . . . , 1− νk, . . . , νd) ∈M (87)

Define the weight-aware transformation flipk(x) =
(
x1, x2, . . . ,

1
δk
− xk, . . . , xd

)
. Then, we have

FM¬k(η) = flipk(FM(flipk(η))). (88)

Proof. We are looking for the solution µ̄⋆ of the “flipped” problem

minimize ‖µ̄− η‖22

subject to Dµ̄ ∈M¬k.
(89)

Denote ν̄ := Dµ̄ = (δ1µ̄1, · · · , δdµ̄d). Applying Eq. 87 we consider the un-flipped variable

ν := (δ1µ̄1, · · · , 1− δkµ̄k, · · · , δdµ̄d) ∈M. (90)

To go back to the form of (65), we make the change of variable into µ such that Dµ = ν, i.e.

µ̄ :=

(
µ̄1, · · · ,

1

δk
− µ̄k, · · · , µ̄d

)
= flipk(µ).

The objective value after this change of variable becomes

∑

j

(µ̄j − ηj)
2 =

∑

j 6=k

(µj − ηj)
2 +

(
1

δk
− µk − ηk

)2

=
∑

j 6=k

(µj − ηj)
2 +

(
µk −

(
1

δk
− ηk

))2
(91)

Under the constraints Dµ ∈ M, this is an instance of (65) with modified potentials η̄ = flipk(η), thus its minimizer is

µ⋆ = FM(flipk(η)). Undoing the change of variable from Eq. 90 yields µ̄⋆ = flipk
(
FM(flipk(η))

)
.

Corollary 7.1. The Jacobian of FM¬k can be obtained from the Jacobian of FM by flipping the sign of the kth row and

column, i.e.,
∂FM¬k

∂η
= Lk

∂FM

∂η̄
Lk where Lk = diag(1, . . . , −1︸︷︷︸

k

, . . . , 1). (92)

D.2.6. OR-WITH-OUTPUT FACTOR

This factor lays the foundation for deterministically defining new binary variables in a factor graph as a logical function of

other variables. The set of boolean vectors valid according to the OR-with-output factor is

YORout = {m ∈ {0, 1}
d | md = m1 ∨m2 ∨ · · · ∨md−1}. (93)

Its convex hullMORout = convYORout can be shown to be (Martins et al., 2015)

MORout =



µ ∈ [0, 1]d

∣∣∣∣∣∣

d−1∑

j=1

µj ≥ µd, µi ≤ µd for all i ∈ [d− 1]



 . (94)
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This leads to the degree-adjusted QP

minimize 1/2 ‖µ− η‖22

subject to 0 ≤ µi ≤ 1/δi for i ∈ [d]

δiµi ≤ δdµd for i ∈ [d− 1],

d−1∑

j=1

δjµj ≤ δdµd.

(95)

We follow Martins et al. (2015) and write this as the projection onto the set A = U ∩A2 ∩A3, where the individual sets are

slightly different because of the degree correction:

U :=[0, 1/δi]× · · · × [0, 1/δd] (96)

A1 :={µ ∈ R
d | δiµi ≤ δdµd for i ∈ [d− 1]} (97)

A2 :=



µ ∈ R

d

∣∣∣∣∣∣

d−1∑

j=1

δjµj ≤ δdµd



 (98)

We may apply the sifting lemma iteratively as such:

1. Set µ̃ = FU (η). If µ̃ ∈ A1 ∩ A2, then µ⋆ = µ̃. Else, if µ̃ 6∈ A1, go to step 2, else (if µ̃ 6∈ A2) go to step 3.

2. Compute µ̃ = FU∩A1 . If µ̃ ∈ A2, then µ⋆ = µ̃, else, go to step 3.

3. From the sifting lemma, the equality constraint in A2 must be tight, so we must solve

minimize 1/2 ‖µ− η‖22

subject to 0 ≤ µi ≤ 1/δi for i ∈ [d]

δiµi ≤ δdµd for i ∈ [d− 1],

d−1∑

j=1

δjµj = δdµd.

(99)

Let’s start by tackling problem (99). Since the sum inequality is tight, every elementwise inequality becomes

δiµi ≤

d−1∑

j−1

δjµj ⇐⇒ 0 ≤
∑

j∈[d−1]−{i}

δjµj (100)

which is trivially true (since δj ≥ 0 and µj ≥ 0) and so the inequalities in A1 are redundant. Next, notice that

d−1∑

j−1

δjµj = δdµd ⇐⇒

d−1∑

j−1

δjµj + (1− δdµd) = 1. (101)

Therefore, direct application of Proposition 7 shows that the remaining problem,

minimize 1/2 ‖µ− η‖22

subject to 0 ≤ µi ≤ 1/δi for i ∈ [d]

d−1∑

j=1

δjµj = δdµd,

(102)

is equivalent to the XOR problem (§D.2.1) with the last variable negated.

It remains to show how to project onto the intersection U ∩ A1. To this end, we prove the following slight generalization of

Martins et al. (2015, Proposition 19). Furthermore, we provide a more detailed derivation of the resulting algorithm.
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Proposition 8. LetA1 be defined as in Eq. 97. Denote by σ[·] the permutation that sorts the sequence δσ[j]µσ[j] decreasingly,

i.e.

δσ[1]ησ[1] ≥ δσ[2]ησ[2] ≥ · · · ≥ δσ[d−1]ησ[d−1]. (103)

For any ρ ∈ [d− 1], define

S(ρ) := {σ[1], . . . , σ[ρ]} ∪ {d} (104)

τ(ρ) :=

∑
j∈S(ρ)

ηj/δj∑
j∈S(ρ)

1/δ2j
(105)

Let ρ̄ be the smallest ρ < d− 1 satisfying τ(ρ) ≥ δσ[ρ+1]ησ[ρ+1], or ρ = d− 1 if none exists. Then, FA1
(η) is

µ⋆
i =

{
τ(ρ̄)
δi

, i ∈ S(ρ̄);

ηi, i 6∈ S(ρ̄).
(106)

Proof. The problem we are trying to solve is

minimize 1/2 ‖µ− η‖22

subject to δiµi ≤ δdµd for i ∈ [d− 1].
(107)

The objective fully decomposes into d subproblems, but they are all coupled with the last variable µd through the constraints,

so we can write the problem equivalently as

argmin
µd∈R


1/2 (µd − ηd)

2 +

d−1∑

j=1

min
δjµj≤δdµd

1/2 (µj − ηj)
2


 , (108)

or, after making the change of variable τ := δdµd, i.e., µd = τ
δd

,

argmin
τ∈R


1/2

(
τ

δd
− ηd

)2

+
d−1∑

j=1

min
δjµj≤τ

1/2 (µj − ηj)
2


 . (109)

Consider one of the nested minimizations,

min
δjµj≤τ

1/2 (µj − ηj)
2. (110)

Ignoring the constraints for a moment, the solution would be µ⋆
j = ηj with an objective value of 0. If this solution is

infeasible, the constraint must be tight, leading to the two cases:

µ⋆
j =

{
ηj , if δjηj ≤ τ,
τ
δj
, otherwise.

(111)

The contribution of the jth term to the objective value is

1/2 (µ⋆
j − ηj)

2 =




0, if δjηj ≤ τ,

1/2
(

τ
δj
− ηj

)2
, otherwise.

(112)

Assume for now that we know upfront the support S⋆ := {j : δjηj > τ} ∪ {d}. The optimum objective value is

F (τ ;η) = 1/2

(
τ

δd
− ηd

)2

+
∑

j:δjηj>τ

1/2

(
τ

δj
− ηj

)2

=
∑

j∈S⋆

1/2

(
τ

δj
− ηj

)2

, (113)

so we can solve for τ⋆ given S⋆ by setting the gradient to zero:

0
!
= F (τ ;η) =

∑

j∈S⋆

1

δj

(
τ

δj
− ηj

)
(114)



LP-SparseMAP

which leads to the expression

τ⋆ =


∑

j∈S⋆

1

δ2j




−1
∑

j∈S⋆

ηj
δj


 . (115)

The entire solution µ⋆ minimizing Eq. 107 is therefore uniquely determined by its S⋆, since the support lets us identify τ⋆

(Eq. 115) and the remaining variables are a function of τ⋆ (Equation 111). At a glance, there appear to be exponentially

many choices for S . We next prove a few results that, taken together, simplify this search to a linear sweep over a sorted set,

corresponding to the procedure described in the proposition.

The possible supports are ordered. Pick i, j ∈ [d − 1] such that δiηi ≤ δjηj . If i ∈ S⋆, we have τ < δiηi ≤ δjηj ,

therefore j ∈ S⋆ as well. Consequently, defining σ as in Equation 103, the possible supports are:

S(0) = {d}; S(1) = {σ[1], d}; . . . ; S(d− 1) = {σ[1], σ[2], . . . , σ[d− 1], d} = [d]. (116)

Not all of the d sets above are feasible. For each ρ ∈ {0, . . . , d − 1}, Equation 115 yields the τ(ρ) that would be

obtained if S(ρ) were the true support. But if S(ρ) is the true support S⋆, then by definition τ ≥ δjηj for any j 6∈ S(ρ).
If ρ = d − 1, S(ρ − 1) = [d] so this is vacuously true. For ρ < d − 1 we have to check that τ(ρ) ≥ δjηj for

j ∈ SC(ρ) = {σ[ρ+ 1], . . . , σ[d− 1]}. This is equivalent to checking τ(ρ) > maxj∈SC(ρ) δjηj = δσ[ρ+1]ησ[ρ+1].

Smaller S are better. Inspecting the objective value in Equation 113, for any ρ < ρ′, the difference F (τ(ρ′);η) −
F (τ(ρ);η) ≥ 0 as a sum of squares. Therefore, a smaller ρ is always as least as good in terms of objective value, so the

smallest feasible ρ must be optimal, concluding the proof.

It remains to show that incorporating the box constraints U can be done through simple composition. To this end, we will

first prove two observations about the invariance of projections onto A1.

Corollary 8.1. Let η̃j := ηj +
c
δj

for a constant c ∈ R. We have µ̃⋆
j = µ⋆

j +
c
δj

, τ̃⋆ = τ⋆ + c, and S̃⋆ = S⋆.

Proof. For i, j, if δiηi ≥ δjηj , then δiη̃i ≥ δjηj , so the permutation σ remains the same. We have

τ̃(ρ) =


∑

j∈S⋆

1

δ2j




−1
∑

j∈S⋆

ηj + c/δj

δj


 =


∑

j∈S⋆

1

δ2j




−1
∑

j∈S⋆

ηj
δj

+ c
∑

j∈S⋆

1

δ2j


 = τ(ρ) + c. (117)

The feasability condition for ρ remains equivalent:

τ̃(ρ) > δσ[ρ+1]η̃σ[ρ+1] ⇐⇒

τ(ρ) + c > δσ[ρ+1]

(
ησ[ρ+1] +

c

δσ[ρ+1]

)
= δσ[ρ+1]ησ[ρ+1] + c.

(118)

Therefore, the optimal ρ for η is also optimal for η̃. As τ̃⋆ = τ⋆ + c, we have µ̃⋆
j = µ⋆

j +
c
δj

for all j.

Corollary 8.2. Let µ⋆ = FA1
(η) with support S⋆. Define

η̃j :=

{
any η̃j ≤

τ
δj
, j 6∈ S⋆

ηj , j ∈ S⋆.
(119)

Then, FA1(η̃) := µ̃⋆ = µ⋆.

Proof. By construction, the permutation σ̃ is constant for the first ρ⋆ indices. By choice of η̃σ[ρ+1], the feasability condition

is satisfied, so ρ̃⋆ = ρ̃. Since τ̃⋆ depends only on the unchanged indices, the solution is the same.

With these observations, we may now prove the following decomposition result.

Proposition 9. For any η ∈ Rd, FB∩A1 = FB (FA1(η)).



LP-SparseMAP

Proof. We invoke Martins et al. (2015, Lemma 18), in order to show that Dykstra’s algorithm for projecting onto A1 ∩ B
converges after one iteration. This requires showing

FA1
(η + µ⋆ − µ′

︸ ︷︷ ︸
η′

) = µ⋆, (120)

where µ′ = FA1(η) and µ⋆ = FB(µ
′).

We have

µ′
j =

{
τ
δj
, j ∈ S⋆

ηj , j 6∈ S
⋆.

(121)

We apply Corollary 8.1 with c = clip[0,1](τ)− τ , yielding

µ̃j = FA1(η̃) =





τ
δj

+ clip[0,δ−1
j ]

(
τ
δj

)
− τ

δj
, j ∈ S⋆

ηj + clip[0,δ−1
j ]

(
τ
δj

)
− τ

δj
, j 6∈ S⋆

=




clip[0,δ−1

j ]

(
τ
δj

)
, j ∈ S⋆

ηj + clip[0,δ−1
j ]

(
τ
δj

)
− τ

δj
, j 6∈ S⋆.

(122)

Now, observe that

η′j =




ηj +

clip[0,1](τ)−τ

δj
, j ∈ S⋆

clip[0,δ−1
j ](ηj), otherwise.

=

{
η̃j , j ∈ S⋆

clip[0,δ−1
j ](ηj), otherwise

. (123)

We can now apply Corollary 8.2 to show that µ̃⋆ = FA1
(η′). This requires showing that clip[0,δ−1

j ](ηj) ≤
τ̃
δj

for j 6∈ S⋆.

But the latter implies

δjηj ≤ τ

⇐⇒ clip[0,1](δjηj) ≤ clip[0,1](τ) (clipping is non-decreasing)

⇐⇒ clip[0,1](δjηj) ≤ τ + clip[0,1](τ)− τ
︸ ︷︷ ︸

=c

⇐⇒ clip[0,1](δjηj) ≤ τ̃

⇐⇒
clip[0,1](δjηj)

δj
≤

τ̃

δj

⇐⇒ clip[0,δ−1
j ](ηj) ≤

τ̃

δj

(124)

Putting together the second branch from Equation 123 with the first branch from Equation 122, we get

µ̃⋆
j =




clip[0,δ−1

j ]

(
τ
δj

)
, j ∈ S⋆

clip[0,δ−1
j ](ηj), otherwise

= clip[0,δ−1
j ](µ

′
j) = µ⋆

j . (125)

Gradient computation The Jacobian of FORout depends on which branch was taken. If taking the first branch (i.e., the

clipping solution was feasible), it is simply the Jacobian of clipping, JORout = diag(J0 < δiµj < 1K). If taking the third

branch, it is the XOR Jacobian with the last variable negated, i.e. JORout = LdJXORLd. Otherwise, if taking the second

branch, µ⋆ = FB(FA1(η)) and we must work out the Jacobian of FA1 . Recall that µ⋆ = FA1(η) has the expression

µ⋆
j =

{
ηj , j 6∈ S
τ/δj, j ∈ S.

(126)
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For indices j 6∈ S, we then have the jth row
∂µj

∂η
= ej . For j ∈ S,

∂µj

∂η
= diag(δ)−1 ∂τ

∂η
. Differentiating τ⋆ from

Equation 115 gives

∂τ

∂ηi
=




0 i 6∈ S(∑

k∈S⋆
1
δ2
k

)−1
1
δi

i ∈ S.
so

∂µj

∂ηi
=




0 i 6∈ S(∑

k∈S⋆
1
δ2
k

)−1
1

δiδj
i ∈ S.

(127)

Combining the cases and applying the chain rule gives the Jacobian for this branch, which is rank-1 plus diagonal.

D.3. Pairwise factors for Ising models

The pairwise factor is a fundamental building block in factor graphs, allowing to capture soft correlations between two

binary variables.

D.3.1. DERIVING THE MARGINAL POLYTOPE

In a naive, fully explicit parametrization, we would have two scores for each binary variable (one for each state), and four

scores for every joint assignment. In this section, however, we show how to reduce this parametrization to a problem with

only three variables µ1, µ2, and µ12. Denoting the binary variable states as F and T , we have

DµM =




δ1(µM )1,F
δ1(µM )1,T
δ2(µM )2,F
δ2(µM )2,T


 =




1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


p and µN = Ip. (128)

each element of DµM and µN is a sum of elements of p, hence non-negative. Write p = (pFF , pFT , pTF , pTT )
corresponding to the four possible joint assignments, and observe that

δ1 ((µM )1,F + (µM )1,T ) = (pFF + pFT ) + (pTF + pTT ) = 1, (129)

and similarly δ2 ((µM )2,F + (µM )2,T ) = 1. We may thus write, for simplicity

µM = (1/δ1 − µ1, µ1, 1/δ2 − µ2, µ2) such that DµM = (1− δ1µ1, δ1µ1, 1− δ2µ2, µ2) . (130)

Denote pTT =: µ12; we may eliminate p as:

pTF = δ1µ1 − µ12,

pFT = δ2µ2 − µ12,

pFF = 1 + µ12 − δ1µ1 − δ2µ2.

(131)

Considering p ≥ 0, this gives the constraints on µ:

δ1µ1 ≥ µ12,

δ1µ2 ≥ µ12,

µ12 ≥ δ1µ1 + δ2µ2 − 1.

(132)

In addition, we have the inherited constraints from the definition of µ:

0 ≤ δ1µ1 ≤ 1

0 ≤ δ1µ2 ≤ 1

0 ≤ µ12 ≤ 1

(133)

Therefore, the standard pairwise factor may be reparametrized using the following constraint set (δ1 = δ2 = 1):

Mpair =
{
µ ∈ R

3
+ | µ12 ≤ µ1 ≤ 1;µ12 ≤ µ2 ≤ 1;µ1 + µ2 − 1 ≤ µ12

}
. (134)

and the constraint set for the degree-adjusted QP is

M̃pair =
{
µ ∈ R

3
+ | µ12 ≤ δ1µ1 ≤ 1;µ12 ≤ δ2µ2 ≤ 1; δ1µ1 + δ2µ2 − 1 ≤ µ12

}
. (135)
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Assume we are given [ηM ;ηN ], how to convert them to (η1, η2, η3) such that the solution to the degree-adjusted QP is

the same? To answer this, we compute the objective value as a function of (µ1, µ2, µ12). The objective is 〈ηM ,µM 〉 +
〈ηN ,µN 〉 −

1
2‖µM‖

2. Substituting µM , the first term is

〈ηM ,µM 〉 = (ηM )1,F

(
1

δ1
− µ1

)
+ (ηM )1,Tµ1 + (ηM )2,F

(
1

δ2
− µ2

)
+ (ηM )2,Tµ2

=
(
(ηM )1,T − (ηM )1,F

)
µ1 +

(
(ηM )2,T − (ηM )2,F

)
µ2 + const.

(136)

The regularizer becomes

1

2
‖µ‖2 =

1

2

((
1

δ1
− µ1

)2

+ µ2
1 +

(
1

δ2
− µ2

)2

+ µ2
2

)

= µ2
1 + µ2

2 +
µ1

δ1
+

µ2

δ2
+ const.

(137)

Noting that µN = p and using Equation 131, the second term becomes

〈ηN ,µN 〉 = (ηN )FF (1 + µ12 − δ1µ1 − δ2µ2) + (ηN )TF (δ1µ1 − µ12) + (ηN )FT (δ2µ2 − µ12) + (ηN )TT (µ12)

= (δ1(ηN )TF − δ1(ηN )FF )µ1 + (δ2(ηN )FT − δ2(ηN )FF )µ2

+ ((ηN )FF − (ηN )TF − (ηN )FT + (ηN )TT )µ12 + const.

(138)

Adding all terms leads to a polynomial with coefficients 1 for µ1 and µ2. Scaling by 2 and identifying the coefficients to

align with η1µ1 + η2µ2 + η12µ12 −
1
2

(
µ2
1 + µ2

2

)
yields the answer:

η1 = 1/2
(
(ηM )1,T − (ηM )1,F + 1/δ1 + δ1

(
(ηN )TF − (ηN )FF

))

η2 = 1/2
(
(ηM )2,T − (ηM )2,F + 1/δ2 + δ2

(
(ηN )FT − (ηN )FF

))

η12 = 1/2
(
(ηN )FF − (ηN )FT − (ηN )TF + (ηN )TT

)
.

(139)

D.3.2. CLOSED-FORM SOLUTION

The optimization problem we tackle is

minimize 1/2 (η1 − µ1)
2 + 1/2 (η2 − µ2)

2 − η12µ12 (140)

subject to 0 ≤ δ1µ1 ≤ 1; 0 ≤ δ2µ2 ≤ 1; 0 ≤ µ12; (141)

δ1µ1 ≥ µ12; δ2µ2 ≥ µ12; (142)

µ12 ≥ δ1µ1 + δ2µ2 − 1. (143)

If η12 < 0, we can make a change of variable to obtain an equivalent problem with η12 ≥ 0: set µ′
1 = µ1, µ

′
2 = 1

δ2
−µ2 and

µ′
12 = δ1µ1 − µ12; we can show that wherever µ′ is feasible so is µ by inspecting the constraints. The box constraints on

µ′
1 are unchanged, and on µ′

2 they are simply flipped. The constraint 0 ≤ µ′
12 is equivalent to δ1µ1 ≥ µ12. The constraint

δ1µ
′
1 ≥ µ′

12 yields µ12 ≥ 0. The constraint δ2µ
′
2 ≥ µ′

12 becomes δ2(δ
−1
2 − µ2) ≥ δ1µ1 − µ12, equivalent to the final

constraint. And finally, µ′
12 ≥ δ1µ

′
1+δ2µ

′
2−1 is equivalent to µ12 ≤ δ2µ2. The feasible set is thus preserved by this change

of variable. Setting η′1 = η1 + δ1η12, η
′
2 = 1

δ2
− η2, and η′12 = −η12, we reach an equivalent problem (same objective value

and constraints) from which we can easily recover the original solution.

We can thus focus on the case η12 ≥ 0.

Note that the objective is linear in µ12 so the largest feasible µ12 is optimal. This value can be shown to be:

µ12 = min(δ1µ1, δ2µ2) (144)

Indeed, any larger one would violate at least one constraint in Equation 142. As the minimum of two non-negative numbers,

it is non-negative itself, and we can show that it satisfies Equation 143 by assuming δ1µ1 ≥ δ2µ2, so µ12 = δ2µ2. Plugging
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into the constraint yields 1 ≥ δ1µ1, which is true under the upper bound in Equation 141. (The other case is also verified, by

symmetry.)

Therefore, the lower bounds on µ12 are always inactive, and we are left with:

minimize 1/2 (η1 − µ1)
2 + 1/2 (η2 − µ2)

2 − η12µ12

subject to 0 ≤ δ1µ1 ≤ 1; 0 ≤ δ2µ2 ≤ 1

δ1µ1 ≥ µ12; δ2µ2 ≥ µ12;

(145)

Proposition 10. The problem in Equation 145 with η12 ≥ 0 has the solution:





(µ1 =) (µ2 =)
clip[0,δ−1

1 ](η1), clip[0,δ−1
2 ](η2 + δ2η12), if δ1η1 > δ2η2 + δ22η12;

clip[0,δ−1
1 ](η1 + δ1η12), clip[0,δ−1

2 ](η2), if δ2η2 > δ1η1 + δ21η12;

clip[0,1]

(
δ1δ

2
2η1 + δ21δ2η2 + δ21δ

2
2η12

δ21 + δ22

)
/δ1, clip[0,1]

(
δ1δ

2
2η1 + δ21δ2η2 + δ21δ

2
2η12

δ21 + δ22

)
/δ2, otherwise.

Proof. If η12 = 0, the problem separates and we get µ⋆
1 = clip[0,δ−1

1 ](η1) and µ⋆
2 = clip[0,δ−1

2 ](η2).

The Lagrangian is

L(µ,α,λ,ν) =1/2 (µ1 − η1)
2 + 1/2 (µ2 − η2)

2 − µ12η12 + α1(µ12 − δ1µ1) + α2(µ12 − δ2µ2)

− λ1µ1 − λ2µ2 + ν1(δ1µ1 − 1) + ν2(δ2µ2 − 1)
(146)

and the KKT conditions are:

(∇µi
L

!
= 0) µi = ηi + δiαi + λi − δiνi i ∈ {1, 2} (147)

(∇µ12L
!
= 0) α1 + α2 = η12 (148)

(complementary slackness) λ1µ1 = 0 i ∈ {1, 2} (149)

αi(µ12 − δiµi) = 0 i ∈ {1, 2} (150)

νi(δiµi − 1) = 0 i ∈ {1, 2} (151)

(primal feas.) µ12 ≤ δiµi i ∈ {1, 2} (152)

0 ≤ δiµi ≤ 1 i ∈ {1, 2} (153)

(dual feas.) α,λ,ν ≥ 0 (154)

We consider three cases.

1. δ1µ1 > δ2µ2.

Considering the slacknesses gives

δ1µ1 > 0 =⇒ λ1 = 0; (155)

δ2µ2 < 1 =⇒ ν2 = 0; (156)

µ12 = δ2µ2 < δ1µ1 =⇒ α1 = 0 =⇒ α2 = η12. (157)

Plugging into the first two conditions gives

µ1 = η1 − δ1ν1; µ2 = η2 + δ2η12 + λ2. (158)

Note that ν1, λ2 ≥ 0, so µ1 ≤ η1 and µ2 ≥ η2 + δ2η12. Were it the case that δ1η1 ≤ δ2η2 + δ22η12, we’d have

δ1µ1 ≤ δ1η1 ≤ δ2η2 + δ22η12 ≤ δ2µ2 (159)

which contradicts our assumption. Therefore, we must have

δ1η1 > δ2η2 + δ22 . (160)

If µ1 < 1
δ1

then ν1 = 0, and if µ2 > 0 then λ2 = 0. Thus the solution has the form

µ1 = clip[0,δ−1
1 ](η1), µ2 = max(0, η2 + δ2η12). (161)
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2. δ1µ1 < δ2µ2.

By symmetry to case 1, we must have

δ2η2 > δ1η1 + δ21 (162)

and the solution

µ1 = max(0, η1 + δ1η12), µ2 = clip[0,δ−1
2 ](η2). (163)

3. δ1µ1 = δ2µ2.

In this case, µ12 = δ1µ1 = δ2µ2 and the problem reduces to

minimize 1/2

(
µ12

δ1
− η1

)2

+ 1/2

(
µ12

δ2
− η2

)2

− η12µ12

subject to 0 ≤ µ12 ≤ 1.

(164)

Setting the gradient to 0 yields
µ12

δ21
−

η1
δ1

+
µ12

δ22
−

η2
δ2
− η12 = 0 (165)

leading to the solution

µ12 = clip[0,1]

[(
1

δ21
+

1

δ22

)−1(
η1
δ1

+
η2
δ2

+ η12

)]
. (166)

which, after some manipulation, takes the desired form.

D.3.3. GRADIENT COMPUTATION

The Jacobian of this projection is rather straightforward, albeit involving a lot of branching. Denoting by Jpair :=
∂Fpair

∂η
, if

η12 ≥ 0 we can differentiate the expressions in Proposition 10 to get:

Jpair =





diag(J0 < δiµi < 1K) ·

[
1 0 0

0 1 δ2

]
, δ1µ1 > δ2µ2

diag(J0 < δiµi < 1K) ·

[
1 0 δ1

0 1 0

]
, δ1µ1 < δ2µ2

J0<µ12<1K
δ21+δ22

[
δ22 δ1δ2 δ1δ

2
2

δ1δ2 δ21 δ21δ2

]
, δ1µ1 = δ2µ2

(if η12 ≥ 0) (167)

If η12 < 0, we must make a change of variable. We construct the modified potentials η′ = (η1 + δ1η12, 1/δ2 − η2,−η12).
This transformation has Jacobian

∂η′

∂η
=



1 0 δ1
0 −1 0
0 0 −1


 (168)

Then, we solve w.r.t. µ′ defined as µ′ = (µ1, δ
−1
2 − µ2, δ1µ1 − µ12). We discard µ′

12 and map back to a solution to the

original problem with µ = (µ′
1, 1/δ2 − µ′

2), giving

∂µ

∂µ′
=

[
1 0
0 −1

]
(169)

Therefore, applying the chain rule, we have

Jpair =
∂µ

∂µ′

∂Fpair

∂η′

∂η′

∂η
(170)
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which, after evaluating and commuting, gives the expression (branching using the intermediate solution µ′):

Jpair =





diag(J0 < δiµ
′
i < 1K) ·

[
1 0 δ1

0 1 δ2

]
, δ1µ

′
1 > δ2µ

′
2

diag(J0 < δiµ
′
i < 1K) ·

[
1 0 0

0 1 0

]
, δ1µ

′
1 < δ2µ

′
2

J0<µ′

12<1K

δ21+δ22

[
δ22 −δ1δ2 0

−δ1δ2 δ21 0

]
, δ1µ

′
1 = δ2µ

′
2

(if η12 < 0) (171)

E. Experimental details

E.1. Computing infrastructure

Our infrastructure consists of 4 machines with the specifications shown in Table 5. The machines were used interchangeably,

and all experiments were executed in a single GPU. We did not observe large differences in the execution time of our models

across different machines. Furthermore, all of our models fit in a single GPU.

# GPU CPU

1. 4 × Titan Xp - 12GB 16 × AMD Ryzen 1950X @ 3.40GHz - 128GB
2. 4 × GTX 1080 Ti - 12GB 8 × Intel i7-9800X @ 3.80GHz - 128GB
3. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB
4. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB

Table 5: Computing infrastructure.

E.2. ListOps

Dataset. Starting with the ListOps dataset, following Corro and Titov (2019b) we convert the constituent structures to

dependency trees and remove the sequences longer than 100 tokens. We put aside a subset of the training data for validation

purposes, leading to a train/validation/test split of 70446/10000/8933 sequences.

Network and optimization settings. We use an embedding size and hidden layer size of 50. The BiLSTM uses a hidden

and output size of 25 (so that its concatenated output has dimension 50). Like Corro and Titov (2019b), we optimize using

Adam with a learning rate of 0.0001. We use a batch size of 64 and no dropout. We monitor tagging F1 score on the

validation set and decay the learning rate by a factor of .9 when there is no improvement.

LP-SparseMAP settings. For the SparseMAP baseline, we perform 10 iterations of the active set method. For LP-

SparseMAP, we use γ = 0.5, perform 10 outer ADMM iterations, and 10 inner active set iterations, warm-started from the

previous solution. We use a primal and dual convergence criterion of ǫp = ǫd = 10−6. In the backward pass, we perform

100 power iterations.

E.3. Natural Language Inference

Network and optimization settings. We use 300-dimensional GloVe embeddings, kept frozen (not updated during

training.) We use a dimension of 100 for all other hidden layers, and ReLU non-linearities. We use a batch size of 128,

dropout of .33, and tune the Adam learning rate among 0.001 · 2k for k ∈ {−3,−2,−1, 0, 1}.

LP-SparseMAP settings. We use exactly the same configuration as for the ListOps task above.

E.4. Multilabel

Datasets. The bibtex dataset comes with a given test split. For the bookmarks dataset we leave out a random test set. The

dimensions and statistics of the data are reported in Table 6.
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Table 6: Multilabel dataset statistics.

samples train test features labels density cardinality

bibtex 7395 4880 2515 1836 159 0.015 2.402

bookmarks 87856 70284 17572 2150 208 0.010 2.028

Network and optimization settings. We use two 300-dimensional hidden layers with ReLU non-linearities.. We use a

batch size of 32, no dropout, and an Adam learning rate of 0.001.

LP-SparseMAP settings. For both LP-MAP and LP-SparseMAP, we employ the same ADMM optimization settings.

For bibtex, we use 100 iterations of ADMM, while for the larger bookmarks we use only 10. We use γ = 0.1, the default

value in AD3. We use a primal and dual convergence criterion of ǫp = ǫd = 10−6. (As pairwise factors have closed-form

solutions, the active set algorithm is not used.)

F. Code Samples

We include here some self-contrained example scripts demonstrating the use of LP-SparseMAP for two of the models

used in this paper. Up-to-date versions of these scripts are available at https://github.com/deep-spin/lp-sparsemap/

tree/master/examples.

Listing 1 Linear assignment problem using LP-SparseMAP with fine-grained constraints. (Figure 2 right).

import torch

from lpsmap import TorchFactorGraph, Xor, AtMostOne

def main():

m, n = 3, 5

eta = torch.randn(m, n, requires_grad=True)

fg = TorchFactorGraph()

u = fg.variable_from(eta)

for i in range(m):

fg.add(Xor(u[i, :]))

for j in range(n):

fg.add(AtMostOne(u[:, j])) # some columns may be 0

fg.solve()

print(u.value)

u.value[0, -1].backward()

print(x.grad)

if __name__ == '__main__':

main()

https://github.com/deep-spin/lp-sparsemap/tree/master/examples
https://github.com/deep-spin/lp-sparsemap/tree/master/examples


LP-SparseMAP

Listing 2 Full code for constrained dependency parsing problem (Figure 1).

import torch

from lpsmap import TorchFactorGraph, DepTree, Budget

def main(n=5, constrain=False):

print(f"n={n}, constrain={constrain}")

torch.manual_seed(4)

x = torch.randn(n, n, requires_grad=True)

fg = TorchFactorGraph()

u = fg.variable_from(x)

fg.add(DepTree(u, packed=True, projective=True))

if constrain:

for k in range(n):

# don't constrain the diagonal (root arc)

ix = list(range(k)) + list(range(k + 1, n))

fg.add(Budget(u[ix, k], budget=2))

fg.solve()

print(u.value)

u.value[1, -1].backward()

print(x.grad)

if __name__ == '__main__':

main(constrain=False)

main(constrain=True)


	Introduction
	Background
	Notation
	Tractable structured problems
	Intractable structured problemsand factor graph representations

	LP-SparseMAP
	Forward pass
	Backward pass
	Implementation and specializations

	LP-SparseMAP loss for structured outputs
	Experiments
	ListOps valency tagging
	Natural language inferencewith decomposable structured attention
	Multilabel classification

	Related work
	Conclusions
	Separable reformulation of LP-SparseMAP
	Derivation of updates and comparison to LP-MAP
	Updating p
	Updating the marginals
	Updating the Lagrange multipliers

	Backward pass
	SparseMAP
	LP-SparseMAP

	Specialized algorithms for common factors
	Preliminaries
	Projection onto box constraints
	Sifting lemma
	Singly-constrained bounded quadratic programs

	Logic factors
	XOR factor (exactly one of d)
	OR factor (at least one of d)
	Knapsack factor
	Budget and at-most-one factors
	Logical negation
	OR-with-output factor

	Pairwise factors for Ising models
	Deriving the marginal polytope
	Closed-form solution
	Gradient computation


	Experimental details
	Computing infrastructure
	ListOps
	Natural Language Inference
	Multilabel

	Code Samples

