
Streaming k-Submodular Maximization under Noise subject to Size Constraint

Lan N. Nguyen 1 My T. Thai 1

Abstract
Maximizing on k-submodular functions subject
to size constraint has received extensive attention
recently. In this paper, we investigate a more real-
istic scenario of this problem that (1) obtaining ex-
act evaluation of an objective function is imprac-
tical, instead, its noisy version is acquired; and
(2) algorithms are required to take only one single
pass over dataset, producing solutions in a timely
manner. We propose two novel streaming algo-
rithms, namely DSTREAM and RSTREAM, with
their theoretical performance guarantees. We fur-
ther demonstrate the efficiency of our algorithms
in two applications in Influence Maximization and
Sensor Placement, showing that our algorithms
can return comparative results to state-of-the-art
non-streaming methods while using a much fewer
number of queries.

1. Introduction
Maximizing a k-submodular function subject to size con-
straint (MkSC) has been studied by Ohsaka & Yoshida
(2015); Zhou et al. (2019); Qian et al. (2017a); Sakaue
(2017). In this problem, a finite set V is given, let (k +
1)V = {(X1, X2, ...Xk) | Xi ⊆ V ∀i ∈ [k], Xi ∩ Xj =
∅ ∀i 6= j} be a family of k disjoint sets. Given a k-
submodular function f : (k + 1)V → R and a positive
integer B, MkSC asks for s = {S1, ..., Sk} ∈ (k + 1)V

subject to |S1 ∪ ... ∪ Sk| ≤ B that maximizes f(s).

Many applications of MkSC have been investigated in lit-
erature. For example, in Influence Maximization with k
topics (Ohsaka & Yoshida, 2015; Zhou et al., 2019; Qian
et al., 2017a), the problem asks for B social users, each
initially adopts a topic, that maximizes the expected number
of users, who are eventually activated by at least one topic.

1Department of Computer and Information Science and Engi-
neering, University of Florida, Gainesville, Florida, United States.
Correspondence to: Lan N. Nguyen <lan.nguyen@ufl.edu>, My
T. Thai <mythai@cise.ufl.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Another readily application is Sensor Placement with k
types of measures (Ohsaka & Yoshida, 2015; Qian et al.,
2017a), which asks for B locations within n given locations
and each with what type of sensors that maximizes the in-
formation gain. Another applications of MkSC can also be
found in information coverage problem (Qian et al., 2017a)
and coupled feature selection (Singh et al., 2012).

However, existing literature has largely ignored the fact that
querying f may be expensive and could only be achieved
with some errors. For example, in the Influence Maximiza-
tion or Information Coverage problem, exact computing
f(s) is #P-hard (Kempe et al., 2003), which requires at least
exponential number of computations.

Therefore, instead of exact querying, an approximate or-
acle of f , which approximates f within an amount of
error, should be considered. In this paper, we consider
a noisy version of f , denoted as F , which is accessible
with a multiplicative error (Qian et al., 2015) ε, guarantee
(1− ε)f(s) ≤ F (s) ≤ (1 + ε)f(s) for all s ∈ (k + 1)V .

Moreover, in many applications, data volumes are increas-
ing massive in scale, making it impractical to store a whole
dataset in computer memory. It is critical to process data one
by one in a streaming fashion, which not only reduces the
burden on memory storage but also be able to produce solu-
tions in a timely manner. Motivated by these observation,
we aim to solve the noisy MkSC problem in the stream-
ing fashion. Our algorithms require only one single scan
over V while providing performance guarantees in terms of
approximation ratios, memory, and query complexity.

Solving MkSC with noisy f in streaming fashion is quite
challenging, indeed. First, F may shadow f ’s properties,
i.e. F is not k-submodular and even decreasing when f is
increasing. Also, the noise ε can mislead a process of con-
structing solution by magnifying the marginal gain of a se-
lection whose contribution may be insignificant. On another
hand, even streaming algorithms for the monotone submod-
ular function maximization (a special case of MkSC) has
been studied, directly applying them to noisy MkSC gives
unclear performance guarantees due to intrinsic differences
between submodularity and k-submodularity. That leaves a
task of solving noisy MkSC in the streaming fashion widely
open and to our knowledge, we are the first one studying
the problem.

Streaming k-Submodular Maximization under Noise within Size Constraint

Our Contribution. We propose two novel streaming algo-
rithms to approximate noisy MkSC. Both our algorithms
have an approximation ratio of O((1− ε)−2εB) when f is
monotone; and O((1− ε)−3εB) when f is non-monotone.
To be specific, our main contributions are:

• Our first algorithm is DSTREAM, a deterministic
streaming method, which exploits a Greedy concept to
work in the streaming scenario. In general, for each
e ∈ V when being observed, DSTREAM will greed-
ily put e into set i that maximizes the ε-estimate of f
as long as the estimated value is sufficiently large in
comparison with an estimate of the optimal solution.

• The second algorithm is RSTREAM, a randomized
streaming method, which exploits the randomized
framework for unconstrained k-submodular maximiza-
tion and introduces a new probability distribution with
a constraint to bound solution size. In general, for each
e ∈ V when being observed, RSTREAM will randomly
add e into set i with probability proportional to an up-
per bound of marginal gain on f , as long as the bound
is sufficiently large in comparison with an estimate of
the optimal solution. Since the bound may be signif-
icantly larger than f ’s actual marginal gain due to ε,
RSTREAM proposes a denoise step to improve returned
solution quality.

• We experimentally investigate our algorithms’ perfor-
mance in comparison with existing methods on two
applications of Noisy MkSC: Influence Maximization
with k topics and Sensor Placement with k measures.
The experimental results show our algorithms perform
comparatively to state-of-the-art non-streaming algo-
rithms in quality of solutions but outperform them in
term of number of queries. We further investigate the
trade-offs between quality of solution versus number
of queries of our algorithms on different settings.

Organization. In Section 2, we review definition of k-
submodular functions and most recent works related to our
paper. Section 3 and 4 provide detail description and anal-
ysis of our two streaming algorithms. Section 5 shows
experimental results and Section 6 concludes our paper.

2. Preliminaries
2.1. Problem Definition

Given a finite set V , let (k + 1)V = {(X1, X2, ...Xk) |
Xi ⊆ V ∀i ∈ [k], Xi ∩Xj = ∅ ∀i 6= j} be a family of k
disjoint subsets of V . For simplicity, we call a tuple of k
disjoint subsets a k-set.

Given a k-set x = {X1, X2, ..., Xk}, x can be written as a
mapping that x(e) = i if e ∈ Xi; x(e) = 0 if e /∈ ∪i∈[k]Xi.
Also, let supp(x) = ∪i∈[k]Xi. For simplicity, denote |x| =

|supp(x)|.

A function f : (k + 1)V → R is k-submodular iff for any
x = (X1, ..., Xk) and y = (Y1, ..., Yk) ∈ (k + 1)V

f(x) + f(y) ≥ f(x u y) + f(x t y)

where x u y = (X1 ∩ Y1, ..., Xk ∩ Yk); and x t y =
(Z1, ...Zk) where Zi = Xi ∪ Yi \ (

⋃
j 6=iXj ∪ Yj).

A function f : (k + 1)V → R is monotone iff for any
x ∈ (k + 1)V , e /∈ supp(x) and i ∈ [k]:

∆e,if(x) = f(X1, ..., Xi−1, Xi ∪ {e}, Xi+1, ..., Xk)

− f(X1, ..., Xk) ≥ 0

A function f : (k + 1)V → R is normalized iff
f({∅, ∅, ...∅}) = 0.

With x = {X1, ..., Xk} ∈ (k + 1)V that Xi = {e} and
Xj = ∅ ∀j 6= i, denote x as 〈e, i〉. Therefore, given x =
{X1, ..., Xk} and e /∈ supp(x), adding e into Xi can be
represented by x t 〈e, i〉.

Given x = {X1, ..., Xk} and y = {Y1, ..., Yk}, denote
x v y iff Xi ⊆ Yi for all i ∈ [k].

A function F : (k + 1)V → R is an ε-estimate of f iff
(1− ε)f(x) ≤ F (x) ≤ (1 + ε)f(x) for all x ∈ (k + 1)V .

The noisy MkSC problem is formally defined as follows:

Definition 1. (Noisy MkSC) Given a finite set V , an ε-
estimate F of a normalized k-submodular function f : (k +
1)V → R and a positive integer B, identify s ∈ (k + 1)V

such that |s| ≤ B and f(s) is maximized.

Denote o as an optimal solution, i.e f(o) = max|s|≤B f(s).

With k = 1, MkSC becomes submodular maximization
under cardinality constraint. Thus, in this paper, we only
consider k ≥ 2.

2.2. Related Work

To our knowledge, we are the first one studying Noisy
MkSC in the streaming fashion. In the following discussion,
we pay attention to recent studies on the MkSC problem,
optimization on problems involving noisy function or re-
quiring streaming processing.

Maximizing k-submodular function: k-submodular con-
cept was first introduced by Singh et al. (2012) and further
investigated by Ward & Živnỳ (2014; 2016); Iwata et al.
(2016); Oshima (2017); Soma (2019). However, the au-
thors only focused on studying unconstrained k-submodular
maximization, a special case of MkSC where B = |V |.

MkSC was first studied by Ohsaka & Yoshida (2015), in
which the authors extended the greedy framework of Ward

Streaming k-Submodular Maximization under Noise within Size Constraint

& Živnỳ (2014) to solve MkSC with monotone objective
function. Two algorithms, proposed by the authors, were
basically variation of classical greedy and both have approx-
imation ratio of 2. Greedy algorithm also showed to be
efficient on k-submodular maximization subject to matroid
constraint (Sakaue, 2017). In Appendix B, we prove that
with Noisy MkSC, Greedy is able to provide 2+2εB

1−ε approx-

imation ratio when f is monotone and (2+2ε+4εB)(1+ε)
(1−ε)2 + 1

in case of non-monotonicity. Greedy would be used as a
baseline to compare with our two streaming algorithms.

MkSC with monotone function was then further studied by
Zhou et al. (2019); Qian et al. (2017a) using multi-objective
evolutionary algorithms. In term of theoretical performance
guarantee, their algorithms run in 8eB iterations, each may
takeO(k|V | ln2B) queries in expectation, in order to obtain
2-ratio.

Noisy Function Optimization. Although there is no study
on Noisy MkSC in general, its special case with k = 1
(submodular function) has been studied extensively recently.
Submodular optimization under noise was first introduced
by Hassidim & Singer (2017) and further studied by Horel
& Singer (2016); Singer & Hassidim (2018); Crawford et al.
(2019); Qian et al. (2017b); Qian (2019). However, existing
algorithms are either: (1) impractical to apply to Noisy
MkSC due to intrinsic difference between submodularity
and k-submodularity; or (2) lack of noise awareness; or (3)
too expensive in runtime complexity.

Also, in many application of noisy MkSC such as Influence
maximization (Ohsaka & Yoshida, 2015; Zhou et al., 2019;
Qian et al., 2017b) or Information Coverage (Qian et al.,
2017b), the noise ε can be obtained. In appendix E, we
illustrate how to to control the value of ε in the application of
Influence Maximization with k topics. The same technique
can also be applied to control ε’s value in the Information
Coverage application.

Indeed, known ε is very critical. Considering an instance
of Noisy MkSC that: due to extreme noise, F decreases
when f increases, and increases when f decreases; exist-
ing algorithms without ε awareness like Greedy could end
up with elements which decrease f . Meanwhile, our algo-
rithms, by utilizing the fact that the noise ε is known, can
add elements that increase f by considering the bound of
their gains, which involves ε.

Streaming Optimization. Although there is no study for
solving MkSC in the streaming fashion in general, two of
its special cases have been investigated, when B = |V |
(unconstrained k-submodular maximization) and when k =
1 (submodular maximization with cardinality constraint).

In unconstrained k-submodular maximization, without di-
rectly stating, one can trivially see that algorithms proposed
by Ward & Živnỳ (2014; 2016); Iwata et al. (2016); Soma

(2019); Oshima (2017) work in the streaming manner, which
requires only one pass over dataset. However, those algo-
rithms cannot be directly applied to MkSC because they
utilized a fact that: a k-submodular function f implies
pairwise monotonicity. Thus, f always reach maximum
at |o| = |V |. Indeed, RSTREAM exploits the randomized
framework proposed by Ward & Živnỳ (2014) and intro-
duces a new probability distribution, restricting elements
with insignificant contribution and obeying the size con-
straint of Noisy MkSC.

Streaming submodular maximization with cardinality con-
straint has been studied by Gomes & Krause (2010); Kumar
et al. (2015); Bateni et al. (2017); Badanidiyuru et al. (2014);
Yang et al. (2019) but inapplicable to MkSC due to intrinsic
differences between submodularity and k-submodularity. In-
deed, our work was inspired by Badanidiyuru et al. (2014);
Yang et al. (2019), in which we also first assume the optimal
solution is known in order to sequentially make decision for
each element observation. That assumption is removed by
establishing a sequence of estimate on the optimum.

However, in contrast to Badanidiyuru et al. (2014); Yang
et al. (2019), solving MkSC struggles from the fact that
there could be multiple favourable sets that satisfy a se-
lection condition. A fair set choice with approximation
guarantee is of interest. Furthermore, their algorithms work
by exploiting the submodularity of the objective function,
which does not exist on k-submodular functions. For exam-
ple, a union of the optimal solution with any solution may
not have better f value than the optimal one, i.e. f(o t x)
may be less than f(o) if o(e) 6= x(e) 6= 0 ∀e ∈ V . Instead,
our algorithms work by exploiting a sequence of k-sets
{oj}j , created from o and a sequence of k-sets obtained by
the algorithms. The novelty of our approaches comes from
mathematically modelling relationship between oj and the
returned solution with size constraint, no matter the returned
solution reaches budget B or not after a single pass over V .

3. DSTREAM Algorithm
In general, DSTREAM is a streaming algorithm by taking
only one single pass over V . For each element e ∈ V
when being observed, DSTREAM works in greedy manner
by putting e into a set i that guarantees the ε-estimate of f
is maximized and large enough in comparison with f(o).
For an ease of presentation, we first assume f(o) is known
to investigate DSTREAM approximation ratio. Then, the
assumption is removed by adapting a lazy estimation method
(Badanidiyuru et al., 2014) to the Noisy MkSC.

3.1. DSTREAM with known f(o)

Description. With f(o) is known, DSTREAM receives an
input o that satisfies f(o) ≥ o × B ≥ 1

1+γ f(o). The

Streaming k-Submodular Maximization under Noise within Size Constraint

Algorithm 1 DSTREAM with known f(o)

Input F,B, k and o that f(o) ≥ o×B ≥ f(o)/(1 + γ)

1: s0 = {∅, ...∅}; t = 0
2: for each e in V do
3: if |st| < B then
4: i = argmaxi′∈[k]F (st t 〈e, i′〉)
5: if F (stt〈e,i〉)

1−ε ≥ (t+ 1) oM then
6: st+1 = st t 〈e, i〉
7: t = t+ 1

Return st if f is monotone; argmaxsj ;j≤tF (sj) if f is
non-monotone.

algorithm starts with s, which is initially empty.

DSTREAM takes a single pass over V . For each e ∈ V when
being observed, DSTREAM identifies i ∈ [k] that maximizes
F (st〈e, i〉). 〈e, i〉 is added into s if F (st〈e,i〉)

1−ε ≥ (|s|+1) oM
where M is the algorithm’s parameter. This constraint is
to filter out elements with insignificant contribution from
being added into s. The factor 1

1−ε of F (s t 〈e, i〉) is to
present the largest possible value of f(s t 〈e, i〉).

After a single pass over V , DSTREAM returns s if f is mono-
tone. Otherwise, the algorithm returns argmaxsj ;j≤tF (sj),
where sj v s is a k-set containing the first j elements
selected by DSTREAM.

DSTREAM’s pseudocode with known f(o) is fully pre-
sented in Alg. 1. The algorithm’s approximation ratio with
known f(o) is presented in Proposition 1 and detail proofs
are provided in Appendix C.1.

Proposition 1. Given an instance of Noisy MkSC with
input V, k,B, o,M and F is an ε-estimate of the monotone
k-submodular objective function f . If o satisfies f(o) ≥
oB ≥ f(o)/(1 + γ), s is an output of Alg. 1, then f(o) ≤
max

(
(1 + γ)(1 + ε), 2+4Bε

M−1

)
M

1−εf(s).

Proof overview. Observe that after a single pass over V , t
may or may not reach a value of B. If t = B, then

f(s) ≥ F (sB)

1 + ε
≥ 1− ε

1 + ε
B
o

M
≥ 1− ε

1 + ε

f(o)

(1 + γ)M
(1)

and the result follows. Thus, for the rest of the proof, we
focus on the case t < B.

For each j ∈ {1, ..., t}, define oj = (o t sj) t sj . The key
points of this proof come from two following claims.

Claim 1. f(o)− f(ot) ≤ 1+ε+2Bε
1−ε f(s)

This claim is obtained by exploiting the k-submodularity
and monotonicity of the objective function f .

Moreover, as t < B, there exists no e ∈ V \ supp(st) and
i ∈ [k] that F (st t 〈e, i〉) ≥ (t+ 1) oM , which is critical to
obtain the following claim

Claim 2. f(ot)− f(s) ≤ 1
M f(o) + 2εB

1−εf(s)

The ratio is obtained by combing these two claims.

3.2. DSTREAM without known f(o)

In this part, we remove the assumption that f(o) is known
and investigate DSTREAM’s memory and query complexity.

To find o such that f(o) ≥ oB ≥ f(o)
1+γ , DSTREAM adapts a

lazy estimation method (Badanidiyuru et al., 2014) to Noisy
MkSC as follows: First, it is a natural observation that:

f(o) ≤ B · max
e∈V,i∈k

f(〈e, i〉) ≤ B · max
e∈V,i∈k

F (〈e, i〉)
1− ε

Furthermore, f(o) can be lower bounded by:

f(o) ≥ max
e∈V,i∈k

f(〈e, i〉) ≥ max
e∈V,i∈k

F (〈e, i〉)
1 + ε

Let ∆u = maxe,i
F (〈e,i〉)

1−ε ; ∆l = maxe,i
F (〈e,i〉)

(1+ε)(1+γ) and

define O = {(1 + γ)j | j ∈ Z≥, ∆l

B·M ≤ (1 + γ)j ≤ ∆u

M }.

As f(o) ∈ [∆l, B∆u], there should exist v ∈ O such that
v ∈ [f(o)

M ·B(1+γ) ,
f(o)
M ·B]. vM is an ideal value for o. We

can simply run Alg. 1 with input o = vM to produce
a candidate solution for each v ∈ O and return the best
solution obtained.

The only remaining challenge now is: identifying ∆u and
∆l requires at least one pass over V . DSTREAM handles
that by lazily maintaining ∆u =

maxe∈Vp,i∈[k] F (〈e,i〉)
1−ε and

∆l =
maxe∈Vp,i∈[k] F (〈e,i〉)

(1+ε)(1+γ) where Vp is a set of elements
that were already observed; and considering all v = (1 +
γ)j ∈ [∆l

BM , (1 + ε)∆u]. Note that the upper bound of
that range is (1 + ε)∆u instead of ∆u

M in order to cover the
largest v that DSTREAM can produce a non-empty solution
with already observed elements, i.e. F (s)

1−ε ≤ (1 + ε)|s|∆u

∀s ∈ (1 + k)V that supp(s) ⊆ Vp. That helps DSTREAM
preserve potential solution if that range shifts forward when
observing next elements.

The full pseudo code of DSTREAM is presented in Alg. 2.
In Alg. 2, tj and {sij}i are to keep track the number of
selected elements and k-sets produced by DSTREAM when
v is estimated by (1 + γ)j . Theorem 1 shows DSTREAM’s
memory and query complexity; and approximation ratio
when f is monotone increasing.

Theorem 1. Given an instance of Noisy MkSC with
input V, k,B, γ,M and F is an ε-estimate of the k-
submodular objective function f . DSTREAM has query

Streaming k-Submodular Maximization under Noise within Size Constraint

Algorithm 2 DSTREAM

Input V, F, k,B,M > 1, γ > 0

1: ∆u = ∆l = ∆ = 0; tj = 0 ∀j ∈ Z+

2: for each e in V do
3: ∆ = max

(
∆,maxj∈[k] F (〈e, j〉)

)
4: ∆u = ∆/(1− ε); ∆l = ∆/

(
(1 + ε)(1 + γ)

)
5: O = {(1 + γ)j | ∆l

B·M ≤ (1 + γ)j ≤ (1 + ε)∆u}
6: for each j that (1 + γ)j ∈ O do
7: o = M(1 + γ)j

8: if tj < B then
9: i = argmaxj′∈[k]F (s

tj
j t 〈e, j′〉)

10: if F (s
tj
j t〈e,i〉)
1−ε ≥ (tj + 1) oM then

11: s
tj+1
j = s

tj
j t 〈e, i〉

12: tj = tj + 1

Return argmax
s
tj
j ;j∈OF (s

tj
j) if f is monotone;

argmaxsij ;i≤tj ,j∈OF (sij) if f is non-monotone.

complexity of O
(|V |k

γ log((1+ε)(1+γ))
1−ε BM)

)
and takes

O
(
B
γ log((1+ε)(1+γ)

1−ε BM)
)

memory. If f is monotone,
then f(o) ≤ 1+ε

1−ε minx∈(1,M] h(x)f(s) where s is an output
of DSTREAM, o is an optimal solution and:

h(x) = max
(

(1 + γ)(1 + ε),
2 + 4Bε

x− 1

) x

1− ε

Proof. Although we have proven that the approxima-
tion guarantee of the algorithm is max

(
(1 + γ)(1 +

ε), 2+4Bε
M−1

)
M

1−ε if f(o) is known, the final pseudocode has
shown that M only plays a role in deciding a lower bound
of (1 + γ)j . Thus, the algorithm with a value of M would
achieve a ratio no worse than the one with smaller M . Thus:

min
x∈(1,M]

h(x) max
s
tj
j

f(s
tj
j) ≥ f(o)

The final ratio follows by observing that f(s) ≥ F (s)
1+ε ≥

1
1+ε max

s
tj
j

F (s
tj
j) ≥ 1−ε

1+ε max
s
tj
j

f(s
tj
j).

As ∆u = (1+ε)(1+γ)
1−ε ∆l, the maximum number of j’s values

to be considered is l = O(log((1+ε)(1+γ)
1−ε BM) 1

γ). Thus,
for each e ∈ V , the algorithm queries f at most lk times.
Also, due to constraint |sj | ≤ B, the algorithm occupies at
most Bl memory to store sj .

We further investigate DSTREAM’s approximation ratio
when f is non-monotone. The ratio is stated in Theorem 2
and proof is provided in Appendix. C.2.

Theorem 2. Given an instance of Noisy MkSC with input
V, k,B, γ,M and F is an ε-estimate of the k-submodular

objective function f . If f is non-monotone, then f(o) ≤
1+ε
1−ε minx∈(1,M] max

(
a(x), b(x)

)
f(s), where s is an out-

put of DSTREAM, o is an optimal solution and

a(x) =
(1 + γ)(1 + ε)

1− ε
x

b(x) =
3 + 4ε+ 6εB + ε2 + 2ε2B

(1− ε)2

x

x− 1

4. RSTREAM Algorithm
RSTREAM is also a streaming algorithm, taking only one
single pass over V . For each e ∈ V when being observed,
〈e, i〉 is randomly selected by RSTREAM with a probability
proportional to its upper bound on the marginal gain. How-
ever, RSTREAM is vulnerable to ε. Thus a denoise stage is
proposed to improve RSTREAM’s performance.

Description. Similar to DSTREAM, RSTREAM also re-
quires to know o, which satisfies f(o) ≥ o × B ≥

1
1+γ f(o). Thus RSTREAM uses a similar lazy estimation as
in DSTREAM to obtain o. Without loss of generality, in the
following algorithm description, we assume that o is already
obtained. RSTREAM starts with s as an empty set initially.

RSTREAM takes a single scan over V . For each e ∈ V
when being observed, a probability for e to be put into set i
of s is derived from:

di =
F (s t 〈e, i〉)

1− ε
− F (s)

1 + ε

The factor 1
1−ε of F (s t 〈e, i〉) and 1

1+ε of F (s) is to cover
the worst case that F (st〈e, i〉) < F (s) even f is monotone
increasing. To filter out elements with insignificant contri-
bution, RSTREAM ignores 〈e, i〉 that di < o

M , i.e. di = 0 if
di <

o
M , otherwise di keeps its value. Then, the probability

for e to be added into set i is computed as:

Pr[〈e, i〉 is added to s] = dT−1
i

/ ∑
j∈[k]

dT−1
j

where T = |{j : dj ≥ o
M }|. Intuitively, T is for scaling up

placements with high di to be likely selected.

However, the algorithm still struggles that ε could make
di much larger than ∆e,if(s). For example, if F (s) ≈
f(s) = f(st〈e, i〉) ≈ F (st〈e, i〉), then 1

1−εF (st〈e, i〉)−
1

1+εF (s) ≈ 2ε
1−ε2 f(s), which could exceed o

M and 〈e, i〉 has
chance to be added into s even ∆e,if(s) = 0.

To tackle such challenges, RSTREAM proposes a denoise
step, introducing a parameter η whose role is to fragment
ε into thresholds ε′ = ε, (η−2)ε

η−1 , (η−3)ε
η−1 , ...0 and treat F as

an ε′-estimate of f . Note that, with η = 1, RSTREAM only
considers ε′ = ε. RSTREAM then runs multiple copies, each
corresponding to a hypothesis that F is an ε′-estimate of

Streaming k-Submodular Maximization under Noise within Size Constraint

f and produces a candidate solution for each ε′. Finally,
RSTREAM returns the best solution obtained.

The full RSTREAM’s pseudocode is presented in Alg. 3.
In Alg. 3, tj,ε′ and {sij,ε′} keep track the number of se-
lected elements and k-sets produced by RSTREAM when
o is estimated by M(1 + γ)j and assuming that F is ε′-
estimate of f . There is a slight difference to DSTREAM
on the way RSTREAM lazily estimates ∆u. To be spe-
cific, ∆u = (1+ε)2+4εB

(1−ε2)(1−ε) maxe∈Vp,i∈[k] F (〈e, i〉) to guaran-

tee F (st〈e,i〉)
1−ε − F (s)

1+ε ≤ ∆u for all e ∈ Vp, i ∈ [k] and
s ∈ (1 + k)V that supp(s) ⊆ Vp and |s| ≤ B.

Theorem 3 shows RSTREAM’s performance guarantee when
f is monotone. Detail proofs are provided in Appendix D.1.

Theorem 3. Given an instance of Noisy MkSC with
input V, k,B, γ,M and F is an ε-estimate of the k-
submodular objective function f . RSTREAM has query com-
plexity of O

(η|V |k
γ log((1+γ)((1+ε)2+4εB)

(1−ε)2 BM)
)

and takes

O
(
ηB
γ log((1+γ)((1+ε)2+4εB)

(1−ε)2 BM)
)

memory. If f is mono-
tone, then 1+ε

1−ε minx∈(1,M] max(α(x), β(x))E[f(s)] ≥
f(o) where s is an output of RSTREAM and:

α(x) = (1 + ε+ 2Bε)(1 + γ) x / (1− ε)

β(x) =
((1 + ε)2 + 4Bε

1− ε2
(
1− 1

k

)
+ 1
) kx

kx− k − 1

Proof overview. Without loss of generality, we abuse the
notation and simply write t and si to indicate tj,ε′ and sij,ε′

when ε′ = ε and o = M(1 + γ)j that f(o) ≥ oB ≥ f(o)
1+γ .

The key of our proof is to show that:

max
(
α(M), β(M)

)
E[f(st)] ≥ f(o) (2)

Then, the approximation ratio of RSTREAM can be trivially
inferred as in DSTREAM proof.

Equ. 2 is proven by using Lemma 1 and Lemma 2.

Lemma 1. If t = B then α(M) f(st) ≥ f(o)

To prove lemma 1, we expand F (st) to sum of sequences
of F (si)− F (si−1) for i = 0→ t and utilize the filter that
F (si)
1−ε −

F (si−1)
1+ε ≥ o

M .

Lemma 2. If t < B then β(M) E[f(st)] ≥ f(o).

Define oj = (o t sj) t sj for i = 0→ t. The key proof of
lemma 2 comes from the following claims.

Claim 3. For all j ∈ {1, ..., t}, f(oj−1) − E[f(oj)] ≤(
1− 1

k

)(
1+ε
1−εE[f(sj)]− 1−ε

1+εf(sj−1)
)

+ o
kM

In general, claim 3 is proven by considering all cases of re-
lation between oj and oj−1, and novelly applying AM-GM
theorem (Hirschhorn, 2007) to bound f(oj−1)− f(oj) in
term of f(sj) and f(sj−1), in which scaling di by exponent
T plays a critical role. Claim 3 allows us to obtain a key
relation between o and ot as follows.

Claim 4.

f(o)−E[f(ot)] ≤
(
1− 1

k

) (1+ε)2+4Bε
1−ε2 E[f(st)] + 1

kM f(o)

Furthermore, as s v ot, we have the following claim

Claim 5. E[f(ot)]− E[f(st)] ≤ 1
M f(o)

Lemma 2 follows by combining claims 4 and 5.

Memory and query complexity of RSTREAM can be trivially
inferred as in the proof of DSTREAM.

Theorem 4 shows RSTREAM’s ratio when f is non-
monotone. Detail proof is provided in Appendix. D.2.

Theorem 4. Given an instance of Noisy MkSC with
input V, k,B, γ,M and F is an ε-estimate of the k-
submodular objective function f . If f is non-monotone,
then 1+ε

1−ε minx∈(1,M] max(α(x), β(x))E[f(s)] ≥ f(o),
where s is an output of RSTREAM, o is an optimal solution

α(x) = (1 + ε+ 2Bε)(1 + γ)x / (1− ε)

β(x) =
(3k − 2)(1 + ε)2 + (8k − 8)εB

(1− ε)2

x

kx− k − 2

5. Experimental Evaluation
In this section, we compare our two algorithms with existing
methods on two applications of Noisy MkSC1. In general,
our algorithms return solutions approximately close to that
of Greedy, the current best non-streaming algorithm for
MkSC, and outperform any other algorithms in term of
number of queries. We further investigate the trade-off
between quality of solution and number of queries of our
algorithms with different parameter settings.

5.1. Influence Maximization with k Topics

In this problem, a social network is modeled under an di-
rected graph G = (V,E) where V is a set of social users;
and each edge (u, v) ∈ E (u, v ∈ V) is associated with
weights {wiu,v}i∈[k], where wiu,v represents the strength of
influence from user u to v on topic i.

We use Linear Threshold (LT) Model (Kempe et al., 2003)
to model a diffusion process of a topic. The process is as

1The source code is available at https://github.com/
lannn2410/streamingksubmodular

https://github.com/lannn2410/streamingksubmodular
https://github.com/lannn2410/streamingksubmodular

Streaming k-Submodular Maximization under Noise within Size Constraint

Algorithm 3 RSTREAM

Input F, k,B,M > 1, γ > 0, η ≥ 1

1: ∆u = ∆l = ∆ = 0; tj,ε′ = 0 ∀j ∈ Z+, ε′ ∈ R+

2: for each e in V do
3: ∆ = max

(
∆,maxj∈[k] F (〈e, j〉)

)
4: ∆u = (1+ε)2+4εB

(1−ε2)(1−ε)∆; ∆l = ∆/
(
(1 + ε)(1 + γ)

)
5: O = {(1 + γ)j | ∆l

B·M ≤ (1 + γ)j ≤ ∆u}
6: for each j that (1 + γ)j ∈ O do
7: o = M(1 + γ)j

8: for each ε′ = ε, (η−2)ε
η−1 , (η−3)ε

η−1 , ...0 do
9: if tj,ε′ < B then

10: for each i ∈ [k] do

11: di =
F (s

t
j,ε′
j,ε′ t〈e,i〉)

1−ε′ −
F (s

t
j,ε′
j,ε′)

1+ε′

12: di = 0 if di < o
M , di otherwise

13: T = no. di that di > 0
14: D =

∑
i∈[k] d

T−1
i

15: if tj,ε′ < B and T > 0 then
16: if T = 1 then
17: i = the only one that di > 0
18: else
19: i = selected with prob. dT−1

i /D

20: s
tj,ε′+1

j,ε′ = s
tj,ε′

j,ε′ t 〈e, i〉
21: tj,ε′ = tj,ε′ + 1

Return argmax
s
t
j,ε′
j,ε′ ,j∈O

F (s
tj,ε′

j,ε′) if f is monotone;

argmaxsi
j,ε′ |i<tj,ε′ ,j∈O

F (sij,ε′) if f is non-monotone;

follows: Given a seed k-set s = {S1, ...Sk} ∈ (k + 1)V ,
at first all users in Si become active by i. Each v ∈ V has
a threshold θiv chosen uniformly at random in [0, 1] and v
becomes active by i if

∑
active u w

i
u,v ≥ θiv . The diffusion

process of a topic is independent from other topics.

The problem’s objective is to maximize an expected number
of users who eventually become active in at least one of
k diffusion processes given a seed k-set s. To be specific,
the objective function is I(s) = E

[
| ∪i∈[k] Di(Si)|

]
where

Di(Si) is a random variable representing the set of active
users in the diffusion process of topic i with seed Si. The
problem asks for s subject to |s| ≤ B that maximizes I(s).

Ohsaka & Yoshida (2015) have shown that I(·) under Inde-
pendent Cascade model is monotone k-submodular. It is triv-
ial that I(·) under LT Model is also monotone k-submodular.

However, exactly computing I(s) is extremely expensive.
Kempe et al. (2003) has shown that computing influence
spread of a single topic is #P-hard already. Therefore, to
reduce computational cost, it is common to estimate I(s)
using sampling, although it comes with a cost on estimate
error. And in this paper context, that error is represented by

ε. Sampling detail is presented in Appendix E.

Settings. We use Facebook dataset from SNAP database
(Leskovec & Krevl, 2014), an undirected graph with 4,039
nodes and 88,234 edges. Since it is undirected, we treat
each edge as two directed edges. Weights {wiu,v}i∈[k] of
the directed edge (u, v) is randomly shuffled from values of
{ 1
k·dv ,

2
k·dv , ...

k
k·dv } where dv is in-degree of v. We set k =

3, ε = 0.5 and compare our algorithms with the following:

• Greedy - the current best algorithm for MkSC in a
non-streaming setting. In Appendix B, we prove that
Greedy is able to achieve a ratio of 2+2εB

1−ε for mono-
tone Noisy MkSC. Since we can only obtain ε-estimate
of I(·), it is impractical to apply the lazy greedy method
(Minoux, 1978) to reduce number of queries.

• Influence Maximization (IM) with a single topic. With
k = 1, this problem becomes the classical IM prob-
lem which has been investigated extensively under sev-
eral variants (Nguyen et al., 2016a; Dinh et al., 2014;
Zhang et al., 2016; Shen et al., 2012; Zhang et al.,
2014; Nguyen et al., 2013; Li et al., 2017; Nguyen
et al., 2019). To apply an IM algorithm into Noisy
MkSC, we first randomly select a topic i and run the
algorithm to find k nodes initially adopting i in order
to maximize the number of activated users. We use the
SSA algorithm (Nguyen et al., 2016b; 2018) to solve
IM.

• Streaming Greedy (SGr) - a simple streaming heuristic.
SGr takes a single scan over V and for each e ∈ V
when being observed, if the size constraint is not vio-
lated, the algorithm picks e with probability B

|V | and
puts e into a set i of s that maximizes F (s t 〈e, i〉).

Although we have shown how to obtain values of M,γ that
our algorithms can get their best ratio, we still varied values
ofM and γ to show a trade-off in their performance between
solution quality and the number of queries. To be specific,
we vary M between 3, 4, 5 and γ between 0.5, 1.0, 1.5. El-
ements in V are observed in random order. We compare
algorithms’ performance in various values of B. Results are
averaged over 3 repetitions.

Results. Figure 1 shows a comparison of our two stream-
ing algorithms (M = 3 and γ = 1) with Greedy and
IM in term of quality of solutions and number of queries.
We also measure RSTREAM’s performances with η = 2
and η = 1 (no denoise step). With quality of solutions
(Fig. 1a), DSTREAM and RSTREAM (η = 2) outperformed
IM in almost cases and totally dominated SGr. Moreover,
RSTREAM (η = 2) was able to perform approximately to
Greedy and even outperformed Greedy with B = 50.

Figure 1b shows the number of queries of our algorithms
versus Greedy. Since SSA worked in a manner that samples

Streaming k-Submodular Maximization under Noise within Size Constraint

20 40
0

100
200
300

10 20 30 40 50
500

600

700

800

B

es
tim

at
e
f

(s
)

Greedy DSTREAM

R η = 2 R η = 1
SGr IM

(a) Quality of solution

10 20 30 40 50

0

2

4

6

·105

B

N
o.

qu
er

ie
s

Greedy
DSTREAM

R η = 2
R η = 1
SGr

(b) No. queries

Figure 1. Comparison in Influence Maximization with k topics.
For shorter legends, R stands for RSTREAM.

D 0.5 D 1 D 1.5 R 0.5 R 1 R 1.5
0.4

0.6

0.8

1

fa
ct

or
to

w
he

n
γ

=
0.

5

F (s) No. queries

(a) Tradeoff w.r.t γ
D 3 D 4 D 5 R 3 R 4 R 5

0.8

0.85

0.9

0.95

1

fa
ct

or
to

w
he

n
M

=
5

F (s) No. queries

(b) Tradeoff w.r.t M

Figure 2. Algorithms’ tradeoff. Labels in x-axis represented algo-
rithms’ initials and their parameter values, i.e. D for DSTREAM, R
for RSTREAM. In Fig. 2a, D 0.5 means DSTREAM with γ = 0.5.
In Fig. 2b, R 5 means RSTREAM with M = 5

a sufficient large number of graph realization and solve Max-
Coverage on top of samples, it is unfair and impractical
to measure and compare its number of queries with other
algorithms. Therefore, there is no plot of IM in Fig. 1b.
Except whenB ≤ 20, it is easy to see that our two streaming
algorithms total outperformed Greedy by a huge margin in
term of number of queries. For example, with B = 50,
Greedy takes 2 times more queries than RSTREAM with
η = 2 and 6 times more than DSTREAM.

Fig. 1 also shows the important role of the denoise step in
RSTREAM. RSTREAM without denoise (η = 1) returned
the worst solutions comparing to any other algorithms ex-
cept SGr. That was due to ε mislead RSTREAM’s estimation
of f ’s marginal gain. Thus RSTREAM tends to add elements
who have no contribution to f(s) and prematurely reaches
budget B before finishing passing V .

With the presence of the denoise step in RSTREAM,
RSTREAM performed better than DSTREAM in term of so-
lution quality but takes approximately 4 times more queries.
That was due to: (1) RSTREAM is less likely to prematurely
reach B; and (2) ∆u of DSTREAM is much smaller than the
one of RSTREAM, so DSTREAM needs fewer (1+γ)j’s val-
ues than RSTREAM to estimate the optimal solution. That

is also reflected in the two algorithms’ query complexity.

We further investigate our two streaming algorithms’ per-
formance with different settings. Figure 2a shows their
performance with M = 4 and B = 20. The tradeoff be-
tween solution quality and number of queries can easily be
seen in both algorithm. For example, with DSTREAM, the
solution quality drops by 13% for γ = 0.5 to 1.5 but the
number of queries decreases by almost 40% . That can be
explained intuitively by the fact that larger γ means fewer
values of j that satisfy ∆l

B·M ≤ (1 + γ)j ≤ ∆u. Thus the
algorithms take fewer queries but acquire lower solution
quality, which is also reflected by their approximation ratio.

It looks like M does not impact much on the two streaming
algorithms’ performance. Figure 2b shows their measure-
ments with γ = 1.0 and B = 50. Both algorithms’ results
show that increasing M slightly improves solution quality
but also takes a few more queries. That is also reflected
theoretically by their approximation ratio - the ratio with
larger value of M should be at least better than the ratio
with smaller one. In term of number of queries, increasing
M reduces ∆l

B·M , thus the algorithms have to consider a few
more values of j that ∆l

B·M ≤ (1 + γ)j ≤ ∆u.

5.2. Sensor placement with k types of measures.

In this part, we study a problem: given k types of sensors
for different measures and a set V of n locations, each of
which can be instrumented with exactly one sensor. The
problem asks for B locations with their types of sensor
placement (represented by s) that maximizes the entropy
of s. In another words, denote Xi

e as the random variable
representing the observation collected from a sensor of kind
i if it is placed at location e. Then the problem asks for s ∈
(k + 1)V that maximizes f(s) = H

(
∪e∈supp(s) {X

s(e)
e }

)
subject to |s| ≤ B, where H(·) is entropy function. Ohsaka
& Yoshida (2015); Qian et al. (2017a) have proven that f is
monotone k-submodular.

Settings. We re-implemented exact settings as in Ohsaka
& Yoshida (2015). We also use Intel Lab dataset (Bodik
et al., 2004), containing a log of readings collected from 58
sensors deployed in the Intel Berkeley research lab between
February 28th and April 5th, 2004. Temperature, humidity
and light values are extracted from each reading and dis-
cretized into bins of 2 degrees Celsius each, 5 points each
and 100 luxes each, respectively. Since f can be computed
exactly in polynomial number of computations, ε = 0 in this
experiment and the denoise step is no more necessary, thus
η = 1 for RSTREAM. Again, we compare our algorithms
with SGr and Greedy.

Results. Fig. 3 shows the entropy achieved by the algo-
rithms with M = 3 and γ = 0.5. We observe the same
pattern as in Influence Maximization experiments that our

Streaming k-Submodular Maximization under Noise within Size Constraint

6 8 10 12 14

4

6

8

10

12

14

B

f
(s

)

Greedy
DSTREAM

RSTREAM

SGr

(a) Quality of solution

6 8 10 12 14

0

5

10

15

20

25

B

N
o.

qu
er

ie
s

(×
1
0

2
)

Greedy
DSTREAM

RSTREAM

SGr

(b) No. queries

Figure 3. Comparison in Sensor Placement

algorithms performed closely to Greedy in term of solution
quality but totally outperformed Greedy in the number of
queries. An only difference is that RSTREAM now takes
only a slight more queries than DSTREAM. That is due to
RSTREAM and DSTREAM have a same value of ∆u with
ε = 0; and a k-set constructed by RSTREAM would also
satisfy DSTREAM’s selection condition but not vice versa.

6. Conclusion
In this work, we propose two novel streaming algorithms
for maximizing a noisy k-submodular function subject to
size constraint; and investigate their theoretical performance
guarantees. Experimental results have shown that our al-
gorithms require a much smaller number of queries than
that of the state-of-the-art non-streaming algorithm, while
returning comparable solutions in term of quality.

Acknowledgements
This work was supported in part by the National Science
Foundation (NSF) grants IIS-1908594, CNS-1814614, and
the University of Florida Informatics Institute Fellowship
Program. We would like to thank the anonymous reviewers
for their helpful feedback.

References
Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., and

Krause, A. Streaming submodular maximization: Mas-
sive data summarization on the fly. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 671–680. ACM,
2014.

Bateni, M., Esfandiari, H., and Mirrokni, V. Almost op-
timal streaming algorithms for coverage problems. In
Proceedings of the 29th ACM Symposium on Parallelism
in Algorithms and Architectures, pp. 13–23. ACM, 2017.

Bodik, P., Hong, W., Guestrin, C., Madden, S., Paskin, M.,

and Thibaux, R. Intel lab data. http://db.csail.
mit.edu/labdata/labdata.html, 2004.

Borgs, C., Brautbar, M., Chayes, J., and Lucier, B. Maximiz-
ing social influence in nearly optimal time. In Proceed-
ings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pp. 946–957. SIAM, 2014.

Crawford, V. G., Kuhnle, A., and Thai, M. T. Submodular
cost submodular cover with an approximate oracle. In
International Conference on Machine Learning, 2019.

Dinh, T. N., Shen, Y., Nguyen, D. T., and Thai, M. T. On the
approximability of positive influence dominating set in
social networks. Journal of Combinatorial Optimization,
27(3):487–503, 2014.

Gomes, R. and Krause, A. Budgeted nonparametric learning
from data streams. In ICML, volume 1, pp. 3, 2010.

Hassidim, A. and Singer, Y. Submodular optimization under
noise. In Conference on Learning Theory, pp. 1069–1122,
2017.

Hirschhorn, M. D. The am-gm inequality. Mathematical
Intelligencer, 29(4):7–7, 2007.

Horel, T. and Singer, Y. Maximization of approximately
submodular functions. In Advances in Neural Information
Processing Systems, pp. 3045–3053, 2016.

Iwata, S., Tanigawa, S.-i., and Yoshida, Y. Improved approx-
imation algorithms for k-submodular function maximiza-
tion. In Proceedings of the twenty-seventh annual ACM-
SIAM symposium on Discrete algorithms, pp. 404–413.
Society for Industrial and Applied Mathematics, 2016.

Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the
spread of influence through a social network. In Proceed-
ings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 137–146.
ACM, 2003.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast greedy algorithms in mapreduce and streaming. ACM
Transactions on Parallel Computing (TOPC), 2(3):14,
2015.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Li, X., Smith, J. D., Dinh, T. N., and Thai, M. T. Why
approximate when you can get the exact? optimal tar-
geted viral marketing at scale. In IEEE INFOCOM 2017-
IEEE Conference on Computer Communications, pp. 1–9.
IEEE, 2017.

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
http://snap.stanford.edu/data
http://snap.stanford.edu/data

Streaming k-Submodular Maximization under Noise within Size Constraint

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization techniques, pp.
234–243. Springer, 1978.

Nguyen, D. T., Zhang, H., Das, S., Thai, M. T., and Dinh,
T. N. Least cost influence in multiplex social networks:
Model representation and analysis. In 2013 IEEE 13th
International Conference on Data Mining, pp. 567–576.
IEEE, 2013.

Nguyen, H. T., Dinh, T. N., and Thai, M. T. Cost-aware
targeted viral marketing in billion-scale networks. In
IEEE INFOCOM 2016-The 35th Annual IEEE Interna-
tional Conference on Computer Communications, pp. 1–9.
IEEE, 2016a.

Nguyen, H. T., Thai, M. T., and Dinh, T. N. Stop-and-
stare: Optimal sampling algorithms for viral marketing
in billion-scale networks. In Proceedings of the 2016
International Conference on Management of Data, pp.
695–710. ACM, 2016b.

Nguyen, H. T., Dinh, T. N., and Thai, M. T. Revisiting
of ‘revisiting the stop-and-stare algorithms for influence
maximization’. In International Conference on Computa-
tional Social Networks, pp. 273–285. Springer, 2018.

Nguyen, L. N., Zhou, K., and Thai, M. T. Influence max-
imization at community level: A new challenge with
non-submodularity. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS),
pp. 327–337. IEEE, 2019.

Ohsaka, N. and Yoshida, Y. Monotone k-submodular func-
tion maximization with size constraints. In Advances
in Neural Information Processing Systems, pp. 694–702,
2015.

Oshima, H. Derandomization for k-submodular maximiza-
tion. In International Workshop on Combinatorial Algo-
rithms, pp. 88–99. Springer, 2017.

Qian, C. Distributed pareto optimization for large-scale
noisy subset selection. IEEE Transactions on Evolution-
ary Computation, 2019.

Qian, C., Yu, Y., and Zhou, Z.-H. Subset selection by
pareto optimization. In Advances in Neural Information
Processing Systems, pp. 1774–1782, 2015.

Qian, C., Shi, J.-C., Tang, K., and Zhou, Z.-H. Constrained
monotone k-submodular function maximization using
multiobjective evolutionary algorithms with theoretical
guarantee. IEEE Transactions on Evolutionary Computa-
tion, 22(4):595–608, 2017a.

Qian, C., Shi, J.-C., Yu, Y., Tang, K., and Zhou, Z.-H. Subset
selection under noise. In Advances in neural information
processing systems, pp. 3560–3570, 2017b.

Sakaue, S. On maximizing a monotone k-submodular func-
tion subject to a matroid constraint. Discrete Optimiza-
tion, 23:105–113, 2017.

Shen, Y., Dinh, T. N., Zhang, H., and Thai, M. T. Interest-
matching information propagation in multiple online so-
cial networks. In Proceedings of the 21st ACM interna-
tional conference on Information and knowledge manage-
ment, pp. 1824–1828, 2012.

Singer, Y. and Hassidim, A. Optimization for approximate
submodularity. In Advances in Neural Information Pro-
cessing Systems, pp. 396–407, 2018.

Singh, A., Guillory, A., and Bilmes, J. On bisubmodular
maximization. In Artificial Intelligence and Statistics, pp.
1055–1063, 2012.

Soma, T. No-regret algorithms for online k-submodular
maximization. In The 22nd International Conference
on Artificial Intelligence and Statistics, pp. 1205–1214,
2019.

Ward, J. and Živnỳ, S. Maximizing bisubmodular and k-
submodular functions. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms,
pp. 1468–1481. Society for Industrial and Applied Math-
ematics, 2014.

Ward, J. and Živnỳ, S. Maximizing k-submodular functions
and beyond. ACM Transactions on Algorithms (TALG),
12(4):47, 2016.

Yang, R., Xu, D., Cheng, Y., Gao, C., and Du, D.-Z. Stream-
ing submodular maximization under noises. In 2019 IEEE
39th International Conference on Distributed Computing
Systems (ICDCS), pp. 348–357. IEEE, 2019.

Zhang, H., Mishra, S., Thai, M. T., Wu, J., and Wang, Y.
Recent advances in information diffusion and influence
maximization in complex social networks. Opportunistic
Mobile Social Networks, 37(1.1):37, 2014.

Zhang, H., Zhang, H., Kuhnle, A., and Thai, M. T. Profit
maximization for multiple products in online social net-
works. In IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications,
pp. 1–9. IEEE, 2016.

Zhou, Z.-H., Yu, Y., and Qian, C. Evolutionary Learning:
Advances in Theories and Algorithms. Springer, 2019.

