A. Organization of the Appendix

Appendix B describes the Greedy algorithm to solve Noisy MkSC and its approximation ratio.

Appendix C provides omitted proofs from Section 3.

Appendix D provides omitted proofs from Section 4.

Appendix E presents details of the sampling method for Influence Maximization with k topics.

B. Greedy Algorithm

In this part, we investigate performance guarantee of Greedy algorithm. Greedy has been proven to obtain an approximation ratio of 2 for MkSC with monotone non-noisy objective function (Ohsaka & Yoshida, 2015). We extend the authors' proof to MkSC under noise and show that Greedy is able to obtain approximation of $\frac{2+2\epsilon B}{1-\epsilon}$ when f is monotone and $\frac{(2+2\epsilon+4\epsilon B)(1+\epsilon)}{(1-\epsilon)^2}+1$ in case of non-monotonicity.

The pseudo code of Greedy is presented by Alg. 4

Algorithm 4 Greedy Algorithm

Input F, k, B

1: $\mathbf{s}^0 = \{\emptyset, \emptyset, ...\emptyset\}$

2: for $t = 1 \rightarrow B$ do

 $\begin{array}{l} e, i = argmax_{e \in V; i \in [k]} F(\mathbf{s}^{t-1} \sqcup \langle e, i \rangle) \\ \mathbf{s}^{t} = \mathbf{s}^{t-1} \sqcup \langle e, i \rangle \end{array}$

Return \mathbf{s}^B if f is monotone; $argmax_{\mathbf{s}^i;i\in\{1,\dots,B\}}F(\mathbf{s}^i)$ if f is non-monotone.

Theorem 5. Given an instance of Noisy MkSC with input V, k, B and F is an ϵ -estimation of the monotone k-submodular objective function f. If s is an output of the Greedy algorithm and o is an optimal solution, then

$$f(\mathbf{o}) \le \frac{2 + 2\epsilon B}{1 - \epsilon} f(\mathbf{s})$$
 (3)

Proof. Let e^j and i^j be a selection in iteration j of the Greedy algorithm, we construct a sequence $\{o^j\}$ as follows:

- $\bullet \ \mathbf{o}^0 = \mathbf{o}$
- With j > 0, let $S^j = supp(\mathbf{o}^{j-1}) \setminus supp(\mathbf{s}^{j-1})$. Let $o^j = e^j$ if $e^j \in S^j$, otherwise let o^j to be an arbitrary element in
 - Define $o^{j-1/2}$ as a k-set that $o^{j-1/2}(e) = o^{j-1}(e) \ \forall e \in V \setminus \{o^j\}$ and $o^{j-1/2}(o^j) = 0$.
 - Define \mathbf{o}^j as a k-set that $\mathbf{o}^j(e) = \mathbf{o}^{j-1/2}(e) \ \forall e \in V \setminus \{e^j\}$ and $\mathbf{o}^j(e^j) = i^j$
 - Define $s^{j-1/2}$ as a k-set that $s^{j-1/2}(e) = s^{j-1}(e) \ \forall e \in V \setminus \{o^j\}$ and $s^{j-1/2}(o^j) = i^j$.

It is trivial that $\mathbf{o}^B = \mathbf{s}^B$. We have:

$$f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}) \le f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j-1/2})$$
 (4)

$$\leq f(\mathbf{s}^{j-1/2}) - f(\mathbf{s}^{j-1})$$
 (5)

$$\leq \frac{1}{1-\epsilon} F(\mathbf{s}^{j-1/2}) - f(\mathbf{s}^{j-1}) \tag{6}$$

$$\leq \frac{1}{1-\epsilon}F(\mathbf{s}^j) - f(\mathbf{s}^{j-1}) \tag{7}$$

$$\leq \frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^j) - f(\mathbf{s}^{j-1}) \tag{8}$$

The inequality (4) is due to f is monotone, thus $f(\mathbf{o}^j) \ge f(\mathbf{o}^{j-1/2})$. The inequality (5) is from k-submodularity of f. The inequality (7) is due to greedy selection. Therefore:

$$f(\mathbf{o}) - f(\mathbf{s}) = \sum_{j=1}^{B} \left(f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}) \right) \le \sum_{j=1}^{B} \left(\frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^{j}) - f(\mathbf{s}^{j-1}) \right)$$
$$\le \frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}) + \sum_{j=1}^{B} \frac{2\epsilon}{1-\epsilon} f(\mathbf{s}^{j}) \le \frac{1+\epsilon+2\epsilon B}{1-\epsilon} f(\mathbf{s})$$

Thus $f(\mathbf{o}) \leq \frac{2+2\epsilon B}{1-\epsilon} f(\mathbf{s})$, which completes the proof.

Theorem 6. Given an instance of Noisy MkSC with input V, k, B and F is an ϵ -estimation of the **non-monotone** k-submodular objective function f. If s is an output of the Greedy algorithm and o is an optimal solution, then

$$f(\mathbf{o}) \le \frac{3 + \epsilon + 4\epsilon B}{1 - \epsilon} f(\mathbf{s})$$
 (9)

Proof. We use the same definition of o^j , $o^{j-1/2}$, s^j as in proof of Theorem 5.

Although f is non-monotone, f is pairwise-monotone due to k-submodularity (Ward & Živnỳ, 2016). To be specific, given a k-set x and $e \notin supp(\mathbf{x})$, we have

$$\Delta_{e,i} f(\mathbf{x}) + \Delta_{e,j} f(\mathbf{x}) \ge 0 \ \forall i, j \in [k] \ \text{and} \ i \ne j$$
 (10)

Let consider a value of $j \in [1,B]$, due to pairwise-monotonicity, there should exist $i' \in [k]$ that $f(\mathbf{s}^{j-1} \sqcup \langle e^j,i' \rangle) \geq f(\mathbf{s}^{j-1})$. Moreover, due to greedy selection, $f(\mathbf{s}^{j-1} \sqcup \langle e^j,i' \rangle) \leq \frac{1}{1-\epsilon} F(\mathbf{s}^{j-1} \sqcup \langle e^j,i' \rangle) \leq \frac{1}{1-\epsilon} F(\mathbf{s}^j) \leq \frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^j)$. Thus $\frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^j) \geq f(\mathbf{s}^{j-1})$. We consider 2 following cases:

- $\mathbf{o}^j = \mathbf{o}^{j-1}$. In this case $f(\mathbf{o}^{j-1}) f(\mathbf{o}^j) = 0 \le \frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^j) f(\mathbf{s}^{j-1})$
- $\mathbf{o}^j \neq \mathbf{o}^{j-1}$. There would be 2 sub-cases:
 - $\mathbf{o}^{j-1}(e^j) = 0$. Then let $i' \in [k]$ be an arbitrary number and $i' \neq i^j$. Then

$$f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}) = f(\mathbf{o}^{j-1}) + f(\mathbf{o}^{j-1/2} \sqcup \langle e^{j}, i' \rangle) - 2f(\mathbf{o}^{j-1/2}) - \left(f(\mathbf{o}^{j-1/2} \sqcup \langle e^{j}, i' \rangle) + f(\mathbf{o}^{j}) - 2f(\mathbf{o}^{j-1/2}) \right)$$
(11)

$$\leq f(\mathbf{o}^{j-1}) + f(\mathbf{o}^{j-1/2} \sqcup \langle e^j, i' \rangle) - 2f(\mathbf{o}^{j-1/2}) \tag{12}$$

$$\leq f(\mathbf{s}^{j-1/2}) + f(\mathbf{s}^{j-1} \sqcup \langle e^j, i' \rangle) - 2f(\mathbf{s}^{j-1}) \tag{13}$$

$$\leq \frac{1}{1-\epsilon}F(\mathbf{s}^{j-1/2}) + \frac{1}{1-\epsilon}F(\mathbf{s}^{j-1} \sqcup \langle e^j, i' \rangle) - 2f(\mathbf{s}^{j-1}) \tag{14}$$

$$\leq \frac{2}{1-\epsilon}F(\mathbf{s}^j) - 2f(\mathbf{s}^{j-1}) \leq 2\frac{1+\epsilon}{1-\epsilon}f(\mathbf{s}^j) - 2f(\mathbf{s}^{j-1}) \tag{15}$$

The inequality 12 is due to pairwise-monotonicity of f. The inequality 13 is from k-submodularity and inequality 15 is due to greedy selection.

- $\mathbf{o}^{j-1}(e^j) \neq i^j$. Then:

$$\begin{split} f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}) &= 2f(\mathbf{o}^{j-1}) - 2f(\mathbf{o}^{j-1/2}) - \left(f(\mathbf{o}^{j-1}) + f(\mathbf{o}^{j}) - 2f(\mathbf{o}^{j-1/2}) \right) \\ &\leq 2f(\mathbf{o}^{j-1}) - 2f(\mathbf{o}^{j-1/2}) \leq 2f(\mathbf{s}^{j-1/2}) - 2f(\mathbf{s}^{j-1}) \leq \frac{2}{1-\epsilon} F(\mathbf{s}^{j-1/2}) - 2f(\mathbf{s}^{j-1}) \\ &\leq \frac{2}{1-\epsilon} F(\mathbf{s}^{j}) - 2f(\mathbf{s}^{j-1}) \leq 2\frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^{j}) - 2f(\mathbf{s}^{j-1}) \end{split}$$

Both cases imply that $f(\mathbf{o}^{j-1}) - f(\mathbf{o}^j) \le 2\frac{1+\epsilon}{1-\epsilon}f(\mathbf{s}^j) - 2f(\mathbf{s}^{j-1})$. Therefore:

$$f(\mathbf{o}) - f(\mathbf{s}) = \sum_{j=1}^{B} \left(f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}) \right) \le 2 \sum_{j=1}^{B} \left(\frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^{j}) - f(\mathbf{s}^{j-1}) \right)$$
$$\le 2 \times \left(\frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^{B}) + \sum_{j=1}^{B} \frac{2\epsilon}{1-\epsilon} f(\mathbf{s}^{j}) \right) \le \frac{2+2\epsilon+4\epsilon B}{1-\epsilon} \frac{1+\epsilon}{1-\epsilon} f(\mathbf{s})$$

Thus, $f(\mathbf{o}) \leq \left(\frac{(2+2\epsilon+4\epsilon B)(1+\epsilon)}{(1-\epsilon)^2}+1\right)f(\mathbf{s})$, which completes the proof.

C. DSTREAM Algorithm

In this part, we present in detail omitted proofs of DSTREAM's approximation ratio. There would be 2 separate sub-parts: one is for when f is **monotone** - which we describe omitted proofs of claims in Proposition 1; the other is for when f is **non-monotone** - which we would fully prove the Theorem 2.

C.1. Approximation ratio of DSTREAM when f is monotone

Proof of Claim 1. Denote $\langle e^j, i^j \rangle$ as j-th addition of Alg. 1, i.e $\mathbf{s}^j = \mathbf{s}^{j-1} \sqcup \langle e^j, i^j \rangle$. Define:

$$\mathbf{o}^{j-1/2} = (\mathbf{o} \sqcup \mathbf{s}^j) \sqcup \mathbf{s}^{j-1}$$

Furthermore, define $s^{j-1/2}$ as:

- If $e^j \in supp(\mathbf{o})$, let $i' = \mathbf{o}(e^j)$. Then $\mathbf{s}^{j-1/2} = \mathbf{s}^{j-1} \sqcup \langle e^j, i' \rangle$
- Otherwise, $\mathbf{s}^{j-1/2} = \mathbf{s}^{j-1}$

We have:

$$f(\mathbf{o}^{j-1}) - f(\mathbf{o}^j) \le f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j-1/2})$$
 (16)

$$\leq f(\mathbf{s}^{j-1/2}) - f(\mathbf{s}^{j-1})$$
 (17)

$$\leq \frac{1}{1-\epsilon} F(\mathbf{s}^{j-1/2}) - f(\mathbf{s}^{j-1})$$
 (18)

$$\leq \frac{1}{1-\epsilon}F(\mathbf{s}^j) - f(\mathbf{s}^{j-1}) \tag{19}$$

$$\leq \frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^j) - f(\mathbf{s}^{j-1}) \tag{20}$$

The Inequality 16 is due to monotonicity of f; the inequality 17 is due to its k-submodularity and the inequality 19 is from selection of Alg. 1 that guarantees $i^j = argmax_{i \in [k]} F(\mathbf{s}^{j-1} \sqcup \langle e^j, i \rangle)$. Therefore:

$$f(\mathbf{o}) - f(\mathbf{o}^t) = \sum_{j=1}^t \left(f(\mathbf{o}^{j-1}) - f(\mathbf{o}^j) \right) \le \sum_{j=1}^t \left(\frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^j) - f(\mathbf{s}^{j-1}) \right)$$
$$= \frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}) + \sum_{j=1}^{t-1} \left(\frac{1+\epsilon}{1-\epsilon} - 1 \right) f(\mathbf{s}^i) \le \frac{1+\epsilon + 2B\epsilon}{1-\epsilon} f(\mathbf{s})$$

which completes the proof.

Proof of Claim 2. As $\mathbf{s} \sqsubseteq \mathbf{o}^t$, denote $\{\langle u_1, j_1 \rangle, ... \langle u_r, j_r \rangle\}$ as a set of elements and their placement in \mathbf{o}^t that are not in \mathbf{s} . For each $\langle u_i, j_i \rangle$, denote \mathbf{s}_i as \mathbf{s} when Alg. 1 encounters u_i . As u_i was not added into \mathbf{s} , $\frac{F(\mathbf{s}_i \sqcup \langle u_i, j_i \rangle)}{1-\epsilon} \leq (|\mathbf{s}_i|+1) \frac{o}{M}$. While $\frac{F(\mathbf{s}_i)}{1-\epsilon} \geq |\mathbf{s}_i| \frac{o}{M}$, we have:

$$\frac{F(\mathbf{s}_i \sqcup \langle u_i, j_i \rangle)}{1 - \epsilon} - \frac{F(\mathbf{s}_i)}{1 + \epsilon} \le \frac{o}{M} + \frac{2\epsilon F(\mathbf{s}_i)}{1 - \epsilon^2}$$

Denote $\mathbf{u}_i = \mathbf{s} \sqcup \{\langle u_1, j_1 \rangle, ... \langle u_i, j_i \rangle\}$. We have

$$f(\mathbf{o}^{t}) - f(\mathbf{s}) = \sum_{i=1}^{B-t} \left(f(\mathbf{u}_{i}) - f(\mathbf{u}_{i-1}) \right) \leq \sum_{i=1}^{B-t} \left(f(\mathbf{s}_{i} \sqcup \langle u_{i}, j_{i} \rangle) - f(\mathbf{s}_{i}) \right)$$

$$\leq \sum_{i=1}^{B-t} \left(\frac{1}{1-\epsilon} F(\mathbf{s}_{i} \sqcup \langle u_{i}, j_{i} \rangle) - \frac{1}{1+\epsilon} F(\mathbf{s}^{i}) \right) \leq \sum_{i=1}^{B-t} \left(\frac{o}{M} + \frac{2\epsilon}{1-\epsilon^{2}} F(\mathbf{s}_{i}) \right) \leq \frac{1}{M} f(\mathbf{o}) + \frac{2\epsilon B}{1-\epsilon} f(\mathbf{s})$$

which complete the proof.

C.2. Approximation of DSTREAM when f is non-monotone

Proof of Theorem 2 We still use definition of \mathbf{o}^j , $\mathbf{o}^{j-1/2}$, e^j , i^j , \mathbf{s}^j , $\mathbf{s}^{j-1/2}$ as in the monotone proof. Also, for simplicity, we first prove the approximation ratio of Alg. 1 (assume $f(\mathbf{o})$ is known).

If t = B, $f(\mathbf{s}) \ge \frac{1}{1+\epsilon} \max_{i \in \{1,...,B\}} F(\mathbf{s}^i) \ge \frac{1}{1+\epsilon} F(\mathbf{s}^B) \ge \frac{1-\epsilon}{1+\epsilon} B \frac{o}{M} \ge \frac{1-\epsilon}{1+\epsilon} \frac{1}{(1+\gamma)M} f(\mathbf{o})$. The rest of the proof will focus on case t < B.

Due to pairwise-monotonicity of a k-submodular function, for any $j \in \{1,...,t\}$, there exists no pair $i_1 \neq i_2 \in [k]$ that $\Delta_{e^j,i_1}f(\mathbf{s}^{j-1}) < 0$ and $\Delta_{e^j,i_2}f(\mathbf{s}^{j-1}) < 0$. Therefore $\max_{i \in [k]}f(\mathbf{s}^{j-1} \sqcup \langle e^j,i \rangle) \geq f(\mathbf{s}^{j-1})$. Thus

$$f(\mathbf{s}^{j}) \ge \frac{F(\mathbf{s}^{j})}{1+\epsilon} = \frac{\max_{i \in [k]} F(\mathbf{s}^{j-1} \sqcup \langle e^{j}, i \rangle)}{1+\epsilon} \ge \frac{1-\epsilon}{1+\epsilon} \max_{i \in [k]} f(\mathbf{s}^{j-1} \sqcup \langle e^{j}, i \rangle) \ge \frac{1-\epsilon}{1+\epsilon} f(\mathbf{s}^{j-1})$$
(21)

Let's consider relation between o^{j-1} and o^j , there are 2 cases:

• $|supp(\mathbf{o}^{j-1})| < |supp(\mathbf{o}^j)|$, which means $e^j \notin supp(\mathbf{o})$. We randomly pick $i' \in [k]$ and $i' \neq i^j$, we have

$$\begin{split} f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}) &= f(\mathbf{o}^{j-1} \sqcup \langle e^{j}, i' \rangle) - f(\mathbf{o}^{j-1}) - \left(f(\mathbf{o}^{j}) + f(\mathbf{o}^{j-1} \sqcup \langle e^{j}, i' \rangle) - 2f(\mathbf{o}^{j-1}) \right) \\ &\leq f(\mathbf{o}^{j-1} \sqcup \langle e^{j}, i' \rangle) - f(\mathbf{o}^{j-1}) \leq f(\mathbf{s}^{j-1} \sqcup \langle e^{j}, i' \rangle) - f(\mathbf{s}^{j-1}) \\ &\leq \frac{1}{1 - \epsilon} F(\mathbf{s}^{j-1} \sqcup \langle e^{j}, i' \rangle) - f(\mathbf{s}^{j-1}) \leq \frac{1}{1 - \epsilon} F(\mathbf{s}^{j}) - f(\mathbf{s}^{j-1}) \\ &\leq \frac{1 + \epsilon}{1 - \epsilon} f(\mathbf{s}^{j}) - f(\mathbf{s}^{j-1}) \end{split}$$

• $|supp(\mathbf{o}^{j-1})| = |supp(\mathbf{o}^{j})|$, which means $e^{j} \in supp(\mathbf{o})$. We have 2 sub-cases

-
$$\mathbf{o}^{j-1}(e^j)=i^j$$
. Then $f(\mathbf{o}^{j-1})-f(\mathbf{o}^j)=0\leq \frac{1+\epsilon}{1-\epsilon}f(\mathbf{s}^j)-f(\mathbf{s}^{j-1})$

- $\mathbf{o}^{j-1}(e^j) \neq i^j$, we have

$$\begin{split} f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}) &= 2f(\mathbf{o}^{j-1}) - 2f(\mathbf{o}^{j-1/2}) - \left(f(\mathbf{o}^{j-1}) + f(\mathbf{o}^{j}) - 2(\mathbf{o}^{j-1/2})\right) \\ &\leq 2f(\mathbf{o}^{j-1}) - 2f(\mathbf{o}^{j-1/2}) \leq 2f(\mathbf{s}^{j-1/2}) - 2f(\mathbf{s}^{j-1}) \leq 2\frac{1+\epsilon}{1-\epsilon}f(\mathbf{s}^{j}) - 2f(\mathbf{s}^{j-1}) \end{split}$$

Therefore, in overall $f(\mathbf{o}^{j-1}) - f(\mathbf{o}^j) \le 2\frac{1+\epsilon}{1-\epsilon}f(\mathbf{s}^j) - 2f(\mathbf{s}^{j-1})$. We have

$$f(\mathbf{o}) - f(\mathbf{o}^t) = \sum_{j=1}^t \left(f(\mathbf{o}^{j-1}) - f(\mathbf{o}^j) \right) \le \sum_{j=1}^t 2 \left(\frac{1+\epsilon}{1-\epsilon} f(\mathbf{s}^j) - f(\mathbf{s}^{j-1}) \right)$$
(22)

$$=2\frac{1+\epsilon}{1-\epsilon}f(\mathbf{s}^t)+2\sum_{i=1}^{t-1}\frac{2\epsilon}{1-\epsilon}f(\mathbf{s}^i)\leq \frac{2+2\epsilon+4\epsilon B}{1-\epsilon}\max_{i\leq t}f(\mathbf{s}^i)\leq \frac{(1+\epsilon)(2+2\epsilon+4\epsilon B)}{(1-\epsilon)^2}f(\mathbf{s})$$
(23)

Also, similar to monotone case, as $\mathbf{s}^t \sqsubseteq \mathbf{o}^t$, denote $\{\langle u_1, j_1 \rangle, ... \langle u_r, j_r \rangle\}$ as a set of elements and their placement in \mathbf{o}^t that are not in \mathbf{s}^t . For each $\langle u_i, j_i \rangle$, denote \mathbf{s}_i as \mathbf{s}^t when Alg. 1 encounters u_i . Denote $\mathbf{u}_i = \mathbf{s}^t \sqcup \{\langle u_1, j_1 \rangle, ... \langle u_i, j_i \rangle\}$. We have

$$f(\mathbf{o}^t) - f(\mathbf{s}^t) = \sum_{i=1}^{B-t} \left(f(\mathbf{u}^i) - f(\mathbf{u}^{i-1}) \right) \le \sum_{i=1}^{B-t} \left(f(\mathbf{s}_i \sqcup \langle u_i, j_i \rangle) - f(\mathbf{s}_i) \right)$$
(24)

$$\leq \sum_{i=1}^{B-t} \left(\frac{F(\mathbf{s}_i \sqcup \langle u_i, j_i \rangle)}{1 - \epsilon} - \frac{F(\mathbf{s}_i)}{1 + \epsilon} \right) \leq \sum_{i=1}^{B-t} \left(\frac{o}{M} + \frac{2\epsilon}{1 - \epsilon^2} F(\mathbf{s}^i) \right)$$
 (25)

$$\leq \frac{1}{M}f(\mathbf{o}) + \frac{2\epsilon B}{1 - \epsilon^2}F(\mathbf{s}) \leq \frac{1}{M}f(\mathbf{o}) + \frac{2\epsilon B}{1 - \epsilon}f(\mathbf{s})$$
 (26)

Combining Equ. 23 and 26, we have

$$(1 - \frac{1}{M})f(\mathbf{o}) \le \left(\frac{(1 + \epsilon)(2 + 2\epsilon + 4\epsilon B)}{(1 - \epsilon)^2} + \frac{2\epsilon B}{1 - \epsilon} + \frac{1 + \epsilon}{1 - \epsilon}\right)f(\mathbf{s}) = \frac{3 + 4\epsilon + 6\epsilon B + \epsilon^2 + 2\epsilon^2 B}{(1 - \epsilon)^2}f(\mathbf{s})$$

The approximation ratio of DSTREAM when discarding assumption of known $f(\mathbf{o})$ is trivially follows as in the proof of the monotone case.

D. RSTREAM Algorithm

In this part, we present in detail omitted proofs of RSTREAM's approximation ratio. There would be 2 separate sub-parts: one is for when f is **monotone** - which we describe omitted proofs of claims in Theorem 3; the other is for when f is **non-monotone** - which we would fully prove the Theorem 4.

Note that in proofs related to RSTREAM, we abuse the notation and simply write t and \mathbf{s}^i to indicate $t_{j,\epsilon'}$ and $\mathbf{s}^i_{j,\epsilon'}$ in Alg. 3 when o is estimated by $M(1+\gamma)^j$ that satisfies $f(\mathbf{o}) \geq oB \geq \frac{f(\mathbf{o})}{1+\gamma}$; and $\epsilon' = \epsilon$.

Similar to DSTREAM's proof, denote $\langle e^j, i^j \rangle$ as j-th addition of Alg. 3, i.e $\mathbf{s}^j = \mathbf{s}^{j-1} \sqcup \langle e^j, i^j \rangle$. Define:

$$\mathbf{o}^{j-1/2} = (\mathbf{o} \sqcup \mathbf{s}^j) \sqcup \mathbf{s}^{j-1}$$

Furthermore, define $s^{j-1/2}$ as:

- If $e^j \in supp(\mathbf{o})$, let i' be an index of a set containing e^j in \mathbf{o} . Then $\mathbf{s}^{j-1/2} = \mathbf{s}^{j-1} \sqcup \langle e^j, i' \rangle$
- Otherwise, $s^{j-1/2} = s^{j-1}$

D.1. Approximation ratio of RSTREAM when f is monotone

Proof of Lemma 1 We have:

$$F(\mathbf{s}) = F(\mathbf{s}^B) = \sum_{i=1}^B \left(F(\mathbf{s}^i) - F(\mathbf{s}^{i-1}) \right) = \sum_{i=1}^B \left(F(\mathbf{s}^i) - \frac{1-\epsilon}{1+\epsilon} F(\mathbf{s}^{i-1}) \right) - \frac{2\epsilon}{1+\epsilon} \sum_{i=1}^{B-1} F(\mathbf{s}^i)$$

$$\geq (1-\epsilon) \sum_{i=1}^B \frac{o}{M} - 2\epsilon \sum_{i=1}^{B-1} f(\mathbf{s}^i) \geq \frac{(1-\epsilon)f(\mathbf{o})}{(1+\gamma)M} - 2\epsilon Bf(\mathbf{s})$$

Therefore, $\frac{(1+\gamma)(1+\epsilon+2\epsilon B)M}{1-\epsilon}f(\mathbf{s}) \geq f(\mathbf{o})$

Proof of Claim 3 Let's consider Alg. 3 before adding e^j into \mathbf{s}^{j-1} . Denote $d_i = \frac{1}{1-\epsilon}F(\mathbf{s}^{j-1} \sqcup \langle e^j, i \rangle) - \frac{1}{1+\epsilon}F(\mathbf{s}^{j-1})$. We consider the following cases:

• $|supp(\mathbf{o}^{j-1})| = |supp(\mathbf{o}^{j})|$, which means $e^{j} \in supp(\mathbf{o})$. Let $p = \mathbf{o}^{j-1}(e^{j})$. Let $I \subseteq [k]$ be a set of values of i that $d_{i} > \frac{o}{M}$, T = |I|.

We define \mathbf{o}_i^j as a k-set that $\mathbf{o}_i^j(e) = \mathbf{o}^j(e) \ \forall e \in V \setminus \{e^j\}$ and $\mathbf{o}_i^j(e^j) = i$. Define $\mathbf{o}^{j-1/2}$ as a k-set that $\mathbf{o}^{j-1/2}(e) = \mathbf{o}^j(e) \ \forall e \in V \setminus \{e^j\}$ and $\mathbf{o}^{j-1/2}(e^j) = 0$.

Let $\mathbf{s}_{i}^{j} = \mathbf{s}^{j-1} \sqcup \langle e^{j}, i \rangle$. We have two following sub-cases:

- $d_p \ge \frac{o}{M}$, then if T = 1, $\mathbf{o}^{j-1} = \mathbf{o}^j$ and $f(\mathbf{o}^{j-1}) - f(\mathbf{o}^j) = 0 \le \left(1 - \frac{1}{k}\right) \left(\frac{1+\epsilon}{1-\epsilon} \mathrm{E}[f(\mathbf{s}^j)] - \frac{1-\epsilon}{1+\epsilon} f(\mathbf{s}^{j-1})\right)$. Thus, we assume T > 1, in which we have

$$f(\mathbf{o}^{j-1}) - \mathbb{E}[f(\mathbf{o}^j)] = \frac{1}{D} \sum_{i \in I \setminus \{p\}} \left(f(\mathbf{o}^{j-1}) - f(\mathbf{o}_i^j) \right) d_i^{T-1} \le \frac{1}{D} \sum_{i \in I \setminus \{p\}} \left(f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j-1/2}) \right) d_i^{T-1}$$
(27)

$$\leq \frac{1}{D} \sum_{i \in I \setminus \{p\}} \left(f(\mathbf{s}_p^j) - f(\mathbf{s}^{j-1}) \right) d_i^{T-1} \leq \frac{1}{D} \sum_{i \in I \setminus \{p\}} d_p d_i^{T-1} \tag{28}$$

$$\leq \frac{1}{D} \left(1 - \frac{1}{T} \right) \sum_{i \in I} d_i^T \tag{29}$$

$$= \frac{1}{D} \left(1 - \frac{1}{T} \right) \sum_{i \in I} \left(\frac{1}{1 - \epsilon} F(\mathbf{s}_i^j) - \frac{1}{1 + \epsilon} F(\mathbf{s}^{j-1}) \right) d_i^{T-1} \tag{30}$$

$$\leq \frac{1}{D} \left(1 - \frac{1}{T} \right) \sum_{i \in I} \left(\frac{1 + \epsilon}{1 - \epsilon} f(\mathbf{s}_i^j) - \frac{1 - \epsilon}{1 + \epsilon} f(\mathbf{s}^{j-1}) \right) d_i^{T-1} \tag{31}$$

$$\leq \left(1 - \frac{1}{k}\right) \left(\frac{1 + \epsilon}{1 - \epsilon} \mathbb{E}[f(\mathbf{s}^j)] - \frac{1 - \epsilon}{1 + \epsilon} f(\mathbf{s}^{j-1})\right) \tag{32}$$

Inequality 29 comes from AM-GM inequality, defined as:

Theorem 7. (Hirschhorn, 2007) Given n non-negative numbers $x_1, ... x_n$

$$x_1 + \dots + x_n \ge n \sqrt[n]{x_1 \times \dots \times x_n}$$

Thus, directly apply the theorem given us $d_p d_i^{T-1} \leq \frac{1}{T} (d_p^T + (T-1)d_i^T)$.

- $d_p < \frac{o}{M}$, which also means $d_p \le \frac{o}{M} \le \mathrm{E}[d_{ij}] \le \frac{1+\epsilon}{1-\epsilon} E[f(\mathbf{s}^j)] - \frac{1-\epsilon}{1+\epsilon} f(\mathbf{s}^{j-1})$. So:

$$f(\mathbf{o}^{j-1}) - \mathbf{E}[f(\mathbf{o}^{j})] \le f(\mathbf{s}_{p}^{j}) - f(\mathbf{s}^{j-1})] \le d_{p} \le \left(1 - \frac{1}{k}\right) \mathbf{E}[d_{ij}] + \frac{1}{k} \frac{o}{M}$$
$$\le \left(1 - \frac{1}{k}\right) \left(\frac{1 + \epsilon}{1 - \epsilon} \mathbf{E}[f(\mathbf{s}^{j})] - \frac{1 - \epsilon}{1 + \epsilon} f(\mathbf{s}^{j-1})\right) + \frac{1}{k} \frac{o}{M}$$

• $|supp(\mathbf{o}^{j-1})| < |supp(\mathbf{o}^{j})|$, then $e^{j} \notin supp(\mathbf{o})$. Due to monotonicity of f.

$$f(\mathbf{o}^{j-1}) - \mathbb{E}[f(\mathbf{o}^j)] \le 0 \le \left(1 - \frac{1}{k}\right) \left(\frac{1 + \epsilon}{1 - \epsilon} \mathbb{E}[f(\mathbf{s}^j)] - \frac{1 - \epsilon}{1 + \epsilon} f(\mathbf{s}^{j-1})\right)$$

Therefore, in overall $f(\mathbf{o}^{j-1}) - \mathbb{E}[f(\mathbf{o}^j)] \leq \left(1 - \frac{1}{k}\right) \left(\frac{1+\epsilon}{1-\epsilon} E[f(\mathbf{s}^j)] - \frac{1-\epsilon}{1+\epsilon} f(\mathbf{s}^{j-1})\right) + \frac{o}{kM}$

Proof of Claim 4 We have

$$f(\mathbf{o}) - \mathbf{E}[f(\mathbf{o}^t)] = \sum_{j=1}^t \mathbf{E}\Big[f(\mathbf{o}^{j-1}) - f(\mathbf{o}^j)\Big] \le \sum_{j=1}^t \Big(\Big(1 - \frac{1}{k}\Big)\Big(\frac{1 + \epsilon}{1 - \epsilon}\mathbf{E}[f(\mathbf{s}^j)] - \frac{1 - \epsilon}{1 + \epsilon}\mathbf{E}[f(\mathbf{s}^{j-1})]\Big) + \frac{o}{kM}\Big)$$

$$\le \Big(1 - \frac{1}{k}\Big)\Big(\frac{1 + \epsilon}{1 - \epsilon}\mathbf{E}[f(\mathbf{s})] + \sum_{j=1}^{t-1} \frac{4\epsilon}{1 - \epsilon^2}\mathbf{E}[f(\mathbf{s}^j)]\Big) + \frac{oB}{kM}$$

$$\le \Big(1 - \frac{1}{k}\Big)\frac{(1 + \epsilon)^2 + 4B\epsilon}{1 - \epsilon^2}\mathbf{E}[f(\mathbf{s})] + \frac{1}{kM}f(\mathbf{o})$$

which completes the proof.

Proof of Claim 5 Denote $\{\langle u_1, j_1 \rangle, ... \langle u_r, j_r \rangle\}$ as a set of elements and their placements in \mathbf{o}^t that are not in \mathbf{s} . For each $\langle u_i, j_i \rangle$, denote \mathbf{s}_i as \mathbf{s} when Alg. 3 encounters u_i . As u_i was not added into \mathbf{s}_i , $\frac{1}{1-\epsilon}F(\mathbf{s}_i \sqcup \langle u_i, j_i \rangle) - \frac{1}{1+\epsilon}F(\mathbf{s}_i) < \frac{o}{M}$. Let $\mathbf{u}_i = \mathbf{s} \sqcup \{\langle u_1, j_1 \rangle, ... \langle u_i, j_i \rangle\}$. We have

$$E[f(\mathbf{o}^{t})] - E[f(\mathbf{s})] = \sum_{i=1}^{B-t} E\Big[f(\mathbf{u}_{i}) - f(\mathbf{u}_{i-1})\Big] \le \sum_{i=1}^{B-t} E\Big[f(\mathbf{s}_{i} \sqcup \langle u_{i}, j_{i} \rangle) - f(\mathbf{s}^{i})\Big]$$

$$\le \sum_{i=1}^{B-t} E\Big[\frac{1}{1-\epsilon}F(\mathbf{s}_{i} \sqcup \langle u_{i}, j_{i} \rangle) - \frac{1}{1+\epsilon}F(\mathbf{s}_{i})\Big] \le \sum_{i=1}^{B-t} \frac{o}{M} \le \frac{1}{M}f(\mathbf{o})$$

which completes the proof.

D.2. Approximation ratio of RSTREAM when f is non-monotone

Proof of Theorem 4 Similar to monotone case, the key of our proof is to show that:

$$\max(\alpha(M), \beta(M)) \mathbb{E}[f(\mathbf{s}^t)] \ge f(\mathbf{o})$$
(33)

If t = B, we have:

$$f(\mathbf{s}) \ge \frac{F(\mathbf{s})}{1+\epsilon} \ge \frac{F(\mathbf{s}^B)}{1+\epsilon} = \frac{1}{1+\epsilon} \sum_{i=1}^{B} \left(F(\mathbf{s}^i) - F(\mathbf{s}^{i-1}) \right)$$
(34)

$$= \frac{1}{1+\epsilon} \sum_{i=1}^{B} \left(F(\mathbf{s}^i) - \frac{1-\epsilon}{1+\epsilon} F(\mathbf{s}^{i-1}) \right) - \frac{2\epsilon}{(1+\epsilon)^2} \sum_{i=1}^{B-1} F(\mathbf{s}^i)$$
 (35)

$$\geq \frac{1-\epsilon}{1+\epsilon} \sum_{i=1}^{B} \frac{o}{M} - \frac{2\epsilon B}{(1+\epsilon)^2} F(\mathbf{s}) \geq \frac{(1-\epsilon)f(\mathbf{o})}{(1+\epsilon)(1+\gamma)M} - \frac{2\epsilon B}{1+\epsilon} f(\mathbf{s})$$
 (36)

Therefore, with t=B, $\frac{(1+\epsilon+2\epsilon B)(1+\gamma)M}{1-\epsilon}f(\mathbf{s})\geq f(\mathbf{o})$. The rest of the proof would focus on when t< B. We re-use notations $\mathbf{o}_i^j, \mathbf{s}_i^j$ as in the monotone proof and still compare \mathbf{o}^{j-1} and \mathbf{o}^j , we have two following cases.

- $|supp(\mathbf{o}^{j-1})| < |supp(\mathbf{o}^{j})|$, which means $e^{j} \notin supp(\mathbf{o})$. We consider 2 sub-cases:
 - $\text{ If } T < k \text{, which means there exists } i' \in [k] \text{ such that } \frac{F(\mathbf{s}_{i'}^{j})}{1-\epsilon} \frac{F(\mathbf{s}^{j-1})}{1+\epsilon} < \frac{o}{M} \leq \frac{\mathbf{E}[F(\mathbf{s}^{j})]}{1-\epsilon} \frac{F(\mathbf{s}^{j-1})}{1+\epsilon}. \text{ Then } \mathbf{e}(\mathbf{s}^{j}) = \mathbf{E}[F(\mathbf{s}^{j})] \frac{F(\mathbf{s}^{j-1})}{1+\epsilon} = \mathbf{E}[F(\mathbf{s}^{j-1})] \mathbf{E}[F(\mathbf{s}^{j-1})] \frac{F(\mathbf{s}^{j-1})}{1+\epsilon} = \mathbf{E}[F(\mathbf{s}^{j-1})] \frac{F(\mathbf{s}^{j-1})}{1+\epsilon} = \mathbf{E}$

$$\begin{split} f(\mathbf{o}^{j-1}) - \mathbf{E}[f(\mathbf{o}^{j})] &= f(\mathbf{o}^{j}_{i'}) - f(\mathbf{o}^{j-1}) - \left(\mathbf{E}[f(\mathbf{o}^{j})] + f(\mathbf{o}^{j}_{i'}) - 2f(\mathbf{o}^{j-1}) \right) \\ &\leq f(\mathbf{o}^{j}_{i'}) - f(\mathbf{o}^{j-1}) \leq f(\mathbf{s}^{j}_{i'}) - f(\mathbf{s}^{j-1}) \leq \frac{F(\mathbf{s}^{j}_{i'})}{1 - \epsilon} - \frac{F(\mathbf{s}^{j-1})}{1 + \epsilon} \\ &\leq \frac{\mathbf{E}[F(\mathbf{s}^{j})]}{1 - \epsilon} - \frac{F(\mathbf{s}^{j-1})}{1 + \epsilon} \leq \frac{1 + \epsilon}{1 - \epsilon} \mathbf{E}[f(\mathbf{s}^{j})] - \frac{1 - \epsilon}{1 + \epsilon} f(\mathbf{s}^{j-1}) \end{split}$$

- If T=k, define a permutation $\pi:[k]\to[k]$ such that $\pi(i)\neq i$ for all $i\in[k]$. Then

$$\begin{split} f(\mathbf{o}^{j-1}) - \mathbf{E}[f(\mathbf{o}^{j})] &= \frac{1}{D} \sum_{i \in [k]} \left(f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}_{i}) \right) d_{i}^{T-1} \\ &= \frac{1}{D} \sum_{i \in [k]} \left(f(\mathbf{o}^{j}_{\pi(i)}) - f(\mathbf{o}^{j-1}) - \left(f(\mathbf{o}^{j}_{\pi(i)}) + f(\mathbf{o}^{j}_{i}) - 2f(\mathbf{o}^{j-1}) \right) \right) d_{i}^{T-1} \\ &\leq \frac{1}{D} \sum_{i \in [k]} \left(f(\mathbf{o}^{j}_{\pi(i)}) - f(\mathbf{o}^{j-1}) \right) d_{i}^{T-1} \leq \frac{1}{D} \sum_{i} \left(f(\mathbf{s}^{j}_{\pi(i)}) - f(\mathbf{s}^{j-1}) \right) d_{i}^{T-1} \\ &\leq \frac{1}{D} \sum_{i \in [k]} d_{\pi(i)} d_{i}^{T-1} \leq \frac{1}{D} \sum_{i \in [k]} d_{i}^{T} = \frac{1}{1-\epsilon} \mathbf{E}[F(\mathbf{s}^{j})] - \frac{1}{1+\epsilon} F(\mathbf{s}^{j-1}) \\ &\leq \frac{1+\epsilon}{1-\epsilon} \mathbf{E}[f(\mathbf{s}^{j})] - \frac{1-\epsilon}{1+\epsilon} f(\mathbf{s}^{j-1}) \end{split}$$

• $|supp(\mathbf{o}^{j-1})| = |supp(\mathbf{o}^{j})|$. We re-use notation $p, I, \mathbf{o}^{j-1/2}$ as in the monotone case and consider other two sub-cases: - If $d_p \geq \frac{o}{M}$, then

$$\begin{split} f(\mathbf{o}^{j-1}) - \mathbf{E}[f(\mathbf{o}^{j})] &= \frac{1}{D} \sum_{i \in I \setminus \{p\}} \left(f(\mathbf{o}^{j-1}) - f(\mathbf{o}^{j}_{i}) \right) d_{i}^{T-1} \\ &= \frac{1}{D} \sum_{i \in I \setminus \{p\}} \left(2f(\mathbf{o}^{j}_{p}) - 2f(\mathbf{o}^{j-1/2}) - \left(f(\mathbf{o}^{j}_{p}) + f(\mathbf{o}^{j}_{i}) - 2f(\mathbf{o}^{j-1/2}) \right) \right) d_{i}^{T-1} \\ &\leq \frac{2}{D} \sum_{i \in I \setminus \{p\}} \left(f(\mathbf{s}^{j}_{p}) - f(\mathbf{s}^{j-1}) \right) d_{i}^{T-1} \leq \frac{2}{D} \sum_{i \in I \setminus \{p\}} d_{p} d_{i}^{T-1} \leq \frac{2}{D} \left(1 - \frac{1}{T} \right) \sum_{i \in I} d_{i}^{T} \\ &\leq \left(2 - \frac{2}{k} \right) \left(\frac{1 + \epsilon}{1 - \epsilon} \mathbf{E}[f(\mathbf{s}^{j})] - \frac{1 - \epsilon}{1 + \epsilon} f(\mathbf{s}^{j-1}) \right) \end{split}$$

- If $d_p=0$, which also means $\frac{1}{1-\epsilon}F(\mathbf{s}_p^j)-\frac{1}{1+\epsilon}F(\mathbf{s}^{j-1})<\frac{o}{M}\leq \frac{1}{1-\epsilon}\mathrm{E}[F(\mathbf{s}^j)]-\frac{1}{1+\epsilon}F(\mathbf{s}^{j-1}).$ So:

$$\begin{split} f(\mathbf{o}^{j-1}) - \mathbf{E}[f(\mathbf{o}^j)] &= 2f(\mathbf{o}^j_p) - 2f(\mathbf{o}^{j-1/2}) - \left(f(\mathbf{o}^j_p) + \mathbf{E}[f(\mathbf{o}^j)] - 2f(\mathbf{o}^{j-1/2})\right) \\ &\leq 2f(\mathbf{o}^j_p) - 2f(\mathbf{o}^{j-1/2}) \leq 2f(\mathbf{s}^j_p) - 2f(\mathbf{s}^{j-1})] \\ &\leq \frac{2}{1-\epsilon}F(\mathbf{s}^j_p) - \frac{2}{1+\epsilon}F(\mathbf{s}^{j-1}) \leq \left(2 - \frac{2}{k}\right) \left(\frac{\mathbf{E}[F(\mathbf{s}^j)]}{1-\epsilon} - \frac{F(\mathbf{s}^{j-1})}{1+\epsilon}\right) + \frac{2}{k}\frac{o}{M} \\ &\leq \left(2 - \frac{2}{k}\right) \left(\frac{1+\epsilon}{1-\epsilon}\mathbf{E}[f(\mathbf{s}^j)] - \frac{1-\epsilon}{1+\epsilon}f(\mathbf{s}^{j-1})\right) + \frac{2o}{kM} \end{split}$$

Since $k \geq 2$, in overall, $f(\mathbf{o}^{j-1}) - \mathbb{E}[f(\mathbf{o}^j)] \leq \left(2 - \frac{2}{k}\right) \left(\frac{1+\epsilon}{1-\epsilon} E[f(\mathbf{s}^j)] - \frac{1-\epsilon}{1+\epsilon} f(\mathbf{s}^{j-1})\right) + \frac{2o}{kM}$. We have

$$f(\mathbf{o}) - \mathbb{E}[f(\mathbf{o}^t)] = \sum_{j=1}^t \left(\mathbb{E}[f(\mathbf{o}^{j-1})] - \mathbb{E}[f(\mathbf{o}^j)] \right) \le \sum_{j=1}^t \left(\left(2 - \frac{2}{k} \right) \left(\frac{1+\epsilon}{1-\epsilon} \mathbb{E}[f(\mathbf{s}^j)] - \frac{1-\epsilon}{1+\epsilon} f(\mathbf{s}^{j-1}) \right) + \frac{2o}{kM} \right)$$
(37)

$$= \left(2 - \frac{2}{k}\right) \left(\frac{1 + \epsilon}{1 - \epsilon} \mathbb{E}[f(\mathbf{s}^t)] + \sum_{i=1}^{t-1} \frac{4\epsilon}{1 - \epsilon^2} \mathbb{E}[f(\mathbf{s}^i)]\right) + \frac{2oB}{kM}$$
(38)

$$\leq \left(2 - \frac{2}{k}\right) \frac{(1+\epsilon)^2 + 4\epsilon B}{1 - \epsilon^2} \max_{i \leq t} \mathbb{E}[f(\mathbf{s}^i)] + \frac{2}{kM} f(\mathbf{o}) \tag{39}$$

$$\leq \left(2 - \frac{2}{k}\right) \frac{(1+\epsilon)^2 + 4\epsilon B}{(1-\epsilon)^2} \mathbf{E}[f(\mathbf{s})] + \frac{2}{kM} f(\mathbf{o}) \tag{40}$$

Also, similar to monotone case, as $\mathbf{s}^t \sqsubseteq \mathbf{o}^t$, denote $\{\langle u_1, j_1 \rangle, ... \langle u_r, j_r \rangle\}$ as a set of elements and their placement in \mathbf{o}^t that are not in \mathbf{s}^t . For each $\langle u_i, j_i \rangle$, denote \mathbf{s}_i as \mathbf{s}^t when Alg. 1 encounters u_i . Denote $\mathbf{u}_i = \mathbf{s}^t \sqcup \{\langle u_1, j_1 \rangle, ... \langle u_i, j_i \rangle\}$. We have

$$E[f(\mathbf{o}^t)] - E[f(\mathbf{s}^t)] = \sum_{i=1}^{B-t} \left(E[f(\mathbf{u}^i) - f(\mathbf{u}^{i-1})] \right) \le \sum_{i=1}^{B-t} \left(E[f(\mathbf{s}_i \sqcup \langle u_i, j_i \rangle) - f(\mathbf{s}_i)] \right)$$
(41)

$$\leq \sum_{i=1}^{B-t} \mathbb{E}\left[\frac{F(\mathbf{s}_i \sqcup \langle u_i, j_i \rangle)}{1 - \epsilon} - \frac{F(\mathbf{s}_i)}{1 + \epsilon}\right] \leq \sum_{i=1}^{B-t} \frac{o}{M} \leq \frac{1}{M} f(\mathbf{o})$$
(42)

Combining Equ. 40 and 42, we have

$$f(\mathbf{o}) \le \frac{M}{kM - k - 2} \frac{(3k - 2)(1 + \epsilon)^2 + (8k - 8)\epsilon B}{(1 - \epsilon)^2} \mathbf{E}[f(\mathbf{s})]$$

The approximation ratio of RSTREAM when discarding assumption of known $f(\mathbf{o})$ trivially follows as in the proof of the monotone case.

E. Sampling Method for Influence Maximization with k topics

In this part, we would present the sampling method that helps obtaining $F(\mathbf{s})$ satisfying $(1 - \epsilon)\mathbb{I}(\mathbf{s}) \leq F(\mathbf{s}) \leq (1 + \epsilon)\mathbb{I}(\mathbf{s})$ with high probability. We adopt a concept of Reverse Influence Sampling (RIS) (Borgs et al., 2014) to the problem as follows:

Given a social network G=(V,E) and $w_{u,v}^i$ is a weight of edge (u,v) on topic i, a random Reverse Reachable (RR) sample $\mathcal{R}=\{R_1,...,R_k\}$ is generated from G by: (1) selecting a random node $v\in V$; (2) generating sample graph $\{g_1,g_2,...g_k\}$ from G, where g_i is generated from weights $\{w_{u,v}^i\}$ for all $(u,v)\in E$; (3) return $\mathcal{R}=\{R_1,...R_k\}$ where R_i is a set of nodes that can reach v in g_i . A k-set $\mathbf{s}=\{S_1,...S_k\}$ would activate the random sample \mathcal{R} iff there exists $i\in [k]$ that $S_i\cap R_i\neq\emptyset$. For simplicity, denote $\mathbf{s}\triangleright\mathcal{R}$ as an indicator variable whether \mathbf{s} activates \mathcal{R} . Using a similar proof as **Observation 3.2** (Borgs et al., 2014), we have $\mathbb{I}(\mathbf{s})=|V|\cdot \Pr_{\mathcal{R}}[\mathbf{s}\triangleright\mathcal{R}]$.

To estimate $\mathbb{I}(\mathbf{s})$, we generates multiple samples $\mathcal{R}_1, ... \mathcal{R}_n$ and let $F(\mathbf{s}) = \frac{|V|}{n} \sum_{i=1}^n \mathbf{s} \triangleright \mathcal{R}_i$. We apply Chernoff Bound ² to bound the number of samples, which guarantee $F(\mathbf{s})$ is an ϵ -estimate of $\mathbb{I}(\mathbf{s})$ with high probability. The Chernoff Bound theorem is stated as follows.

Theorem 8. (Chernoff bound) Suppose $X_1, ... X_n$ are independent random variables taking values in $\{0,1\}$. Let X denote their sum and let $\mu = E[X]$. Then for $\epsilon \in [0,1]$ we have

$$Pr(X \le (1 - \epsilon)\mu) \le e^{-\frac{\epsilon^2 \mu}{2}}$$

 $Pr(X \ge (1 + \epsilon)\mu) \le e^{-\frac{\epsilon^2 \mu}{3}}$

Therefore, the number of samples that helps us obtaining ϵ -estimate of $\mathbb{I}(\mathbf{s})$ is stated in the following lemma.

Lemma 3. Given a seed set s, by generating at least $n = \frac{3|V|}{\epsilon^2|\mathbf{s}|} \ln \frac{1}{1-\sqrt{\lambda}}$ RR samples, $F(\mathbf{s})$ is ϵ -estimate of $\mathbb{I}(\mathbf{s})$ with probability at least λ .

Proof. A slight change in algebra in Chernoff bound helps us obtaining:

$$\Pr\left((1-\epsilon)\mathbb{I}(\mathbf{s}) \le F(\mathbf{s}) \le (1+\epsilon)\mathbb{I}(\mathbf{s})\right) \ge \left(1-e^{-\frac{\epsilon^2\mathbb{I}(\mathbf{s})n}{3|V|}}\right)^2 \tag{43}$$

Since $\mathbb{I}(\mathbf{s}) \geq |\mathbf{s}|$, $n \geq \frac{3|V|}{\epsilon^2 |\mathbf{s}|} \ln \frac{1}{1-\sqrt{\lambda}}$ guarantees $F(\mathbf{s})$ is ϵ -estimate of $\mathbb{I}(\mathbf{s})$ with probability at least λ

In experiment, we set $\lambda = 0.8$ whenever the algorithms query $\mathbb{I}(\cdot)$.

²http://math.mit.edu/ goemans/18310S15/chernoff-notes.pdf