Streaming k£-Submodular Maximization under Noise within Size Constraint

A. Organization of the Appendix

Appendix B describes the Greedy algorithm to solve Noisy MASC and its approximation ratio.
Appendix C provides omitted proofs from Section 3.

Appendix D provides omitted proofs from Section 4.

Appendix E presents details of the sampling method for Influence Maximization with & topics.

B. Greedy Algorithm

In this part, we investigate performance guarantee of Greedy algorithm. Greedy has been proven to obtain an approximation
ratio of 2 for MkASC with monotone non-noisy objective function (Ohsaka & Yoshida, 2015). We extend the authors’
proof to MkSC under noise and show that Greedy is able to obtain approximation of % when f is monotone and
% + 1 in case of non-monotonicity.

The pseudo code of Greedy is presented by Alg. 4

Algorithm 4 Greedy Algorithm
Input F. k, B

1: s ={0,0,..0}

2: fort=1— Bdo

32 i =argmazecycp F (s U (e, i)
4 st=st"1U e, i)

Return s? if f is monotone; argmazgiicqi,... gy F(s') if f is non-monotone.

Theorem 5. Given an instance of Noisy MASC with input V. k, B and F' is an e-estimation of the monotone %-submodular
objective function f. If s is an output of the Greedy algorithm and o is an optimal solution, then

2+ 2eB

flo) < ==

f(s) 3)

Proof. Let ¢’ and i/ be a selection in iteration j of the Greedy algorithm, we construct a sequence {0’} as follows:

e With j > 0, let S7 = supp(o’~1) \ supp(s’~1). Let o/ = €’ if e/ € S7, otherwise let o’ to be an arbitrary element in
S7,
— Define 0/7/2 as a k-set that 0/ ~1/2(e) = 0/~ (e) Ve € V' \ {0/} and 07~ 1/2(07) = 0.
— Define o7 as a k-set that o/ (¢) = 0/ ~1/2(e) Ve € V \ {¢/} and 0/ (¢7) = i/
— Define s771/2 as a k-set that s7~/2(e) = s7~!(e) Ve € V' \ {0’} and s7~1/2(07) = 4.

It is trivial that o® = sZ. We have:

FO'™) = f(o?) < f(071) — f(o?T/?) @
< f(&7) = f(7 5)
< R - ) (©)
< LR~ f7) )
< TR - fs Y ®)

1—¢
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The inequality (4) is due to f is monotone, thus f(o?) > f(0/~!/2). The inequality (5) is from k-submodularity of f. The
inequality (7) is due to greedy selection. Therefore:

Jj=1 Jj=1
B
1+e€ 2e 1+ e+ 2eB
< J
N e e
Thus f(o) < 2+2<E f(s), which completes the proof. O

Theorem 6. Given an instance of Noisy MkASC with input V, k, B and F' is an e-estimation of the non-monotone k-
submodular objective function f. If s is an output of the Greedy algorithm and o is an optimal solution, then

3+ €+ 4eB

1) ©)

flo) <

Proof. We use the same definition of o/, 0/ ~1/2 7 as in proof of Theorem 5.

Although f is non-monotone, f is pairwise-monotone due to k-submodularity (Ward & Zivny, 2016). To be specific, given
a k-set x and e ¢ supp(x), we have

Acif (%) + Acf(x) > 0Vi,j € [k] and i # j (10)

Let consider a value of j € [1, B], due to pairwise-monotonicity, there should exist i’ € [k] that f(s?~! U (e?,i')) >
f(sjfl)_. Moreover, due to greedy selection, (77U (ed, i) < 2= F(s?7 (el i) < £ F(s7) < 1€ f(s7). Thus
1E€ f(s7) > f(s771). We consider 2 following cases:

e o/ = o/~ ! Inthis case f(o/ 1) — f(of) =0 < $EE f(s7) — f(s771)
e 0o’ # o/~ !. There would be 2 sub-cases:

- o/71(e?) = 0. Then let i’ € [k] be an arbitrary number and i’ # i/. Then

FOI™) = F(07) = F(017) 4 f(0T 2L 1)) = 24 (007 112) = (F(@ 2L (e, 1) 4 f(o7)  2f(07112))

1D
<O+ foTVPLE ) — 2f (0777 (12)
SHETV) (T U ) 2 (577 (13)
< LR £ P U, 1)~ 2f(57) (14)
< T F(T) - 2f(7) < 20 f(sT) — 2f(57) (15)

The inequality 12 is due to pairwise-monotonicity of f. The inequality 13 is from k-submodularity and inequality
15 is due to greedy selection.

- o/~ 1(el) # 7. Then:

F(0771) = f(0)) = 2 (1) = 2f(0)7/2) — (f(07™1) + f(o?) — 2f(0!~1/?))

< 2f(07) ~ 2f(0) V) < 2f(5) V) 2 (s < o F(S )~ 2f(s )

F(s7) = 2f(s7) < 25 f(7) — 2f(5)7)

<
—1—c¢
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Both cases imply that f(o~!) — f(o7) < 21£€ f(s7) — 2f(s’~1). Therefore:

B B
o)== 32 (16" - o) <23 (32556 — 1677)
j=1 j=1
B
<2x (67 + Y i) < “fe_*feBifjf(s)
j=1
Thus, f(o) < (% + 1) f(s), which completes the proof. O

C. DSTREAM Algorithm

In this part, we present in detail omitted proofs of DSTREAM’s approximation ratio. There would be 2 separate sub-parts:
one is for when f is monotone - which we describe omitted proofs of claims in Proposition 1; the other is for when f is
non-monotone - which we would fully prove the Theorem 2.

C.1. Approximation ratio of DSTREAM when f is monotone
Proof of Claim 1. Denote (e’,i7) as j-th addition of Alg. 1, i.e s’ = s/~1 LI (e/, 7). Define:

o V2 = (ous) !
Furthermore, define s7~1/2 as:

e If e/ € supp(o), leti’ = o(e’). Thens?~1/2 = s1=1 11 (&7, ')

e Otherwise, s/~ 1/2 = gi—1

We have:
F@™) = f(o?) < f(o? ™) = f(0?71/?) (16)
S (COR G B (Cy (17)
LG B (18)
< ) [ (19
< TERE) - s 20)

The Inequality 16 is due to monotonicity of f; the inequality 17 is due to its k-submodularity and the inequality 19 is from
selection of Alg. 1 that guarantees i/ = argmaz;cp F (s’ U (e7,4)). Therefore:

t

o) — (o) = 3" (07 - Flo") < Z(ifﬁ ) - f)

j=1 j=1
t—1
1+e 1+¢€ ) 1+e+2B¢
— — ? < -
1—6 7,—1(1_6 ) (s") < 1—e¢ 1(s)

which completes the proof.

Proof of Claim 2. As s C of, denote {(u1, j1),...(ur, j-)} as a set of elements and their placement in o’ that are not in s.

For each (u;, j;), denote s; as s when Alg. 1 encounters u;. As u; was not added into s, w < (|si] +1)47. While

F(s ) > |si| %, we have:
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F(si Uui, i) F(si) < 9 2e¢F(s;)
1—e€ 1+4e = M 1-¢€

Denote u; = s U {(u1, j1), ...(u;, j;) }. We have

flo 2( - flu) < ]_BZ( )~ (s1))
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which complete the proof.

C.2. Approximation of DSTREAM when f is non-monotone

Proof of Theorem 2 We still use definition of o/,07~1/2, e7 i/ s/, s7=1/2 as in the monotone proof. Also, for simplicity,
we first prove the approximation ratio of Alg. 1 (assume f(o) is known).

Ift =B, f(s) > r; maxseq,.,py F(s') = 72 F(s”%) = 15:B7; = 155 rroyar f(0)- The rest of the proof will focus
oncaset < B.

Due to pairwise-monotonicity of a k-submodular function, for any j € {1, ...,t}, there exists no pair iy # iz € [k] that
Agiq f(s771) <0and A, ;, f(s'71) < 0. Therefore max; ey f(s’~' U (e/,7)) > f(s?~'). Thus

X F(Sj) maXiG[k] F‘(Sj_1 [ <€j,i>) 1—¢ i1 P 1—ce¢
JY) > = > m J L (e >
f(s)_1+€ 1+4+e€ _1+eie?k)]{f(s <e,z>)_1+€

f(s7™h 21

Let’s consider relation between o/ ~! and o7, there are 2 cases:

e [supp(o?~1)| < [supp(o7)],

JO 1) = £(07) = J(0/ 7 e, 1) = £(0 ) = (F(0) + f(0 1 L (el, 1) — 24 (07)
< FOT L)~ fo7) < f(8T U 1)~ (5

(0). We randomly pick i’ € [k] and i’ # i/, we have

< P ) - 1) < TR ) - fY
e AR ICa

o |supp(o’~1)| = |supp(o?)|, e’ € supp(o). We have 2 sub-cases

- o/7(el) = iJ. Then f(0/~1) — f(o7) = 0 < £ f(s7) — f(s77)
- o/~ 1(e) # i7, we have

(071 = f(0F) = 2f(0 1) — 2£(0)1/2) — (f(0'™1) + f(o?) — 2(0)1/2))
<2707 )~ 2f(07 1) < 2f(+7 M) —2f(s7 ) < 97 T F() — 2767

Therefore, in overall f(0/~1) — f(07) < 27%

f(0) = 10 = 3 (Flo7) = (o) < Y 2(T (%) — 157 22
=2l v 2 3 ) < P i) < CROEE P ) 09
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Also, similar to monotone case, as s’ C o, denote {{u1, 1), ...(tr, 5,-) } as a set of elements and their placement in of that
are not in s*. For each (u;, j;), denote s; as s* when Alg. 1 encounters u;. Denote u; = s* U {{u1, 1), ...(u;, j;) }. We have

B—t B—t
flo) = £(s) = Y (flu) = Fu ™) < 37 (flsi L (uinii)) — f(s:) 4
i=1 i=1
— F(s; U(us,ji))  Fo(sq o 2¢ ;
siﬂ( T g; T aleE) (25)
1 2eB 1 2eB
< 22 F(0) + Ty F(s) < 1-1(0) + T 1(5) 6)
Combining Equ. 23 and 26, we have
4eB B 4 B+ & ’B

The approximation ratio of DSTREAM when discarding assumption of known f(0) is trivially follows as in the proof of the
monotone case.

D. RSTREAM Algorithm

In this part, we present in detail omitted proofs of RSTREAM’s approximation ratio. There would be 2 separate sub-parts:
one is for when f is monotone - which we describe omitted proofs of claims in Theorem 3; the other is for when f is
non-monotone - which we would fully prove the Theorem 4.

Note that in proofs related to RSTREAM, we abuse the notation and simply write ¢ and s’ to indicate ¢; - and s§._€, in Alg. 3

when o is estimated by M (1 + )/ that satisfies f(0) > oB > {_(f) ;and € = e.

Similar to DSTREAM’s proof, denote (¢?, i) as j-th addition of Alg. 3,i.e s/ = s/~! LI (e/,i/). Define:
o 12 = (ous)Usi!
Furthermore, define s7~1/2 as:

e If ¢ € supp(o), let i’ be an index of a set containing e’ in 0. Then s7~1/2 = s7=1 11 (e7,4)

e Otherwise, s7~1/2 = gi—1

D.1. Approximation ratio of RSTREAM when f is monotone

Proof of Lemma 1 We have:

F(s)=F(s®) =Y (F(si) _ F(sY ) -y (F _1= EF(si*1)> - 12; BZ F(s)

>(1—e)§:i—2e§f() U=970) _yepps)
- —~ M - (1+y)M

(1+7)(1+€+2€B)Iﬂf-( ) > f(

€ -

Therefore, o)

Proof of Claim 3 Let’s consider Alg. 3 before adding e/ into s7~'. Denote d; = 1= F/(s’~! L (¢7,i)) — - F(s'™"). We
consider the following cases:
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o [supp(o?~1)| = [supp(o?)], (0). Letp = o/~ (e).
Let I C [k] be a set of values of i that d; > 7, T' = [I].
We define o/ as a k-set that o/ (¢) = o/ (¢) Ve € V' \ {e/} and 0! (¢/) = 4. Define o/ ~/2 as a k-set that 0 ~'/2(¢) =
o/(e) Ve e V\ {e’} and o/~ 1/%(e?) = 0.
Lets! = s/~ LU (e7, 7). We have two following sub-cases:
- dy > . thenif T'=1,0/"! = o/ and f(o/~') — f(0/) = 0 < (1 — 3) (FE=E[f(s7)] — :=£ f(s'~1)). Thus,
we assume 1’ > 1, in which we have

§O) ~Elf(0)] = 5 C l)d?‘l S% > (feI = fl))ar @)

i€I\{p}

f(sh) = f(s7™ 1) Z dpdT ! (28)
D ntn

> (1
> (1

Sy
s

\ /\

T
el
503 S (o - e
e L
i€
< (-] (- o)

Inequality 29 comes from AM-GM inequality, defined as:
Theorem 7. (Hirschhorn, 2007) Given n non-negative numbers 1, ...T,

T+ ...+ Ty 2nYT X oo X Ty

dTl

Thus, directly apply the theorem given us d,
- dp < 17, which also means d,, < % < E[d,;] <

7(dy +(T —l)dT)
LE[f(s7)] — 3£ f(771) - So

F(017) ~EIf(0)] < f(s}) — £ )] < dy < (1 3 )Bldu] + 1
< (1- ) (FZeRlren - T ore ™) + g
o |supp(0’1)| < |supp(o?)|, then e/ ¢ supp(o). Due to monotonicity of f.
f@ ) ~Elfe)] <0< (1- 1) (Bl @) - 1o f67)
Therefore, in overall f(07~1) —E[f(07)] < (1 — 1) (FEEE[f(s)] — 558" 7)) + %7
Proof of Claim 4 We have
flo) - =jilE[ f0 ) = (o) sjzt;((l— D GBS 67 - TS + o)
< (1-3) (e + L El) + 2
< (1- YA 1 Lo
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which completes the proof.

Proof of Claim 5 Denote {(u1, j1), ...(u,, j-)} as a set of elements and their placements in of that are not in s.

For each (u;, j;), denote s; as s when Alg. 3 encounters u;. As u; was not added into s;, —— F'(s;LI{u;, j;))— ﬁF(si) <

1—e¢
Let u; = s U {{u1, j1),...(u;, ji) }. We have

B-t B-t
E/(0")] ~ ELF(8)] = D B[ () — f(wim)] < DD E[Flsi 0w i) — S(5")]
= 1 , 1 o 1
< _ E{:F(Si U (i, ji)) — mF(Si)} < Z S Mf(o)

which completes the proof.

D.2. Approximation ratio of RSTREAM when f is non-monotone

Proof of Theorem 4 Similar to monotone case, the key of our proof is to show that:
max (a(M), B(M))E[f(s")] = f(o) (33)

If t = B, we have:

S SB B . .
ﬂwzfﬁizﬁﬁgzlieﬁlﬁww—FW*n (34)
- XB:(F(si) 1’6F(si*1)) o= BfF(si) (35)
1+e4 1+e€ (I+€)? <
l—ee~ o0 2e¢B (I1—¢€)f(o) 2e¢B
21+e§ﬂ_(1+e)2F(s)Z(1+e)(1+7)M_1+ef<S) (36)

Therefore, with ¢t = B, w f(s) > f(o). The rest of the proof would focus on when ¢ < B. We re-use

notations o?, s’ as in the monotone proof and still compare o/ ~! and o’, we have two following cases.

1%
o |supp(o?~1)| < |supp(o?)|, which means e’ ¢ supp(o). We consider 2 sub-cases:

F(Sz/) _F(sTThH < E[F(s’)] _ F(s’~Y)

. . -/ o
- If T' < k, which means there exists i’ € [k] such that ——% e 7 < T e

Then

J(©7™1) = ElJ(0))] = (o) — J(0 ") — (E[f(")] + f(o}) 2/ (0" "))

< o)) ~ 10 < f(sh) - s < TE) T

I 1+e
F(s? F(si—1 P — p
< BB ) < 2 Rl - f )
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— If T = k, define a permutation 7 : [k] — [k] such that (i) # ¢ for all ¢ € [k]. Then

£ ~Elf(0)] = 5 > (s = steh)ar
- 3 (o) = 10007 = (0} 0) + 1o =271/ ) )
sgg{;} (o)~ 5@ )l < 537 (ftsky) — 19 )T
<52 bl < ’132“ df = BRG] - T FE
< TS - A

e [supp(o’~1)| = |supp(o’)|. We re-use notation p, I, 0/ ~1/2 as in the monotone case and consider other two sub-cases:
- Ifd, > ﬁ, then

fo ) — Bl = 55 3 (F0h) = fo)))dl !
ieI\{p}
_ ! 3 <2f(03)—2f(03_1/2) (f(0)) + f(o]) —2f (o ”2>))dT '

2- %) (5Bl - 157 )

< e - pre < (2o ) (BRE) - EEy 20
< (2- 1) (TSRl 6) - r ™) + o

Since k > 2, in overall, f(o’~!) — E[f(0’)] < (2 - %) (}feE[f(sﬂ)] - %;Ef(sj71)> + 2. We have

£(0) ~ Elf(0")] = Y (ELf(07) ~ Elf(0)]) < 3 (2~ 2) (Bl )] - - f ) + p) - @D
= (2~ D) (FESBEN + Y Bl ) + 220 G8)
€ 2 € .
< (2 2 LA () + 22 50) (39)
€ 2 €
< (2= ) T PRl o)+ 1 £00) (40)

Also, similar to monotone case, as s* C of, denote {(u1, j1), ...(u, j-) } as a set of elements and their placement in of that
are not in s’. For each (u;, j;), denote s; as s* when Alg. 1 encounters u;. Denote u; = st U {(u1, j1), ...(us, ji) }. We have
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B-t

oo}

—t

BLf(o) - Elf()] = 3_ (Bl () = 1)) < > (BLF(s: U (wsr i) = £(52)]) (1)
Combining Equ. 40 and 42, we have
o) < g A R B

The approximation ratio of RSTREAM when discarding assumption of known f (o) trivially follows as in the proof of the
monotone case.

E. Sampling Method for Influence Maximization with % topics

In this part, we would present the sampling method that helps obtaining F'(s) satisfying (1 — €)I(s) < F'(s) < (1 + €)I(s)
with high probability. We adopt a concept of Reverse Influence Sampling (RIS) (Borgs et al., 2014) to the problem as
follows:

Given a social network G = (V, E) and w}, , is a weight of edge (u,v) on topic 7, a random Reverse Reachable (RR)
sample R = {Ry,..., Ry} is generated from G by: (1) selecting a random node v € V; (2) generating sample graph
{91, 92, ---gx } from G, where g; is generated from weights {w?, , } for all (u,v) € E; 3) return R = { Ry, ... Ry} where R;
is a set of nodes that can reach v in g;. A k-sets = {S,...S; } would activate the random sample R iff there exists i € [k]
that S; N R; # (. For simplicity, denote s > R as an indicator variable whether s activates R. Using a similar proof as
Observation 3.2 (Borgs et al., 2014), we have I(s) = |V| - Prg[s> R].

To estimate [(s), we generates multiple samples R, ...R,, and let F'(s) = % S s> R;. We apply Chernoff Bound ? to
bound the number of samples, which guarantee F'(s) is an e-estimate of I(s) with high probability. The Chernoff Bound
theorem is stated as follows.

Theorem 8. (Chernoff bound) Suppose X, ...X,, are independent random variables taking values in {0, 1}. Let X denote
their sum and let © = E[X]. Then for € € [0, 1] we have

e2u

PT(X < (1*6)/1,) <e 2

‘2“

Pr(X > (1—1-6),u) <e 3

Therefore, the number of samples that helps us obtaining e-estimate of I(s) is stated in the following lemma.

3|V
e?|s

|| In 1_1 7+ RR samples, F(s) is e-estimate of I(s) with

Lemma 3. Given a seed set s, by generating at least n =
probability at least A.
Proof. A slight change in algebra in Chernoff bound helps us obtaining:

52l(s)n 2

Pr((1 = )I(s) < F(s) < (1+)I(s)) = (1 - ¢ 37T) 43)

3|V| In -1
els] 7T 1-vx

Since I(s) > |s|,n > guarantees F'(s) is e-estimate of I(s) with probability at least O

In experiment, we set A = 0.8 whenever the algorithms query I(-).

Zhttp://math.mit.edu/ goemans/183108 15/chernoff-notes.pdf



