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Abstract

We develop an extension of the knockoff infer-
ence procedure, introduced by Barber & Candes
(2015). This new method, called aggregation of
multiple knockoffs (AKO), addresses the insta-
bility inherent to the random nature of knockoft-
based inference. Specifically, AKO improves both
the stability and power compared with the orig-
inal knockoff algorithm while still maintaining
guarantees for false discovery rate control. We
provide a new inference procedure, prove its core
properties, and demonstrate its benefits in a set of
experiments on synthetic and real datasets.

1. Introduction

In many fields, multivariate statistical models are used to
fit some outcome of interest through a combination of mea-
surements or features. For instance, one might predict the
likelihood for individuals to declare a certain type of dis-
ease based on genotyping information. Besides prediction
accuracy, the inference problem consists in defining which
measurements carry useful features for prediction. More
precisely, we aim at conditional inference (as opposed to
marginal inference), that is, analyzing which features carry
information given the other features. This inference is how-
ever very challenging in high-dimensional settings.

Among the few available solutions, knockoff-based (KO)
inference (Barber & Candes, 2015; Candes et al., 2018)
consists in introducing noisy copies of the original variables
that are independent from the outcome conditional on the
original variables, and comparing the coefficients of the
original variables to those of the knockoff variables. This
approach is particularly attractive for several reasons: i) it
is not tied to a given statistical model, but can work instead
for many different multivariate functions, whether linear
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or not; ii) it requires a good generative model for features,
but poses few conditions for the validity of inference; and
iii) it controls the false discovery rate (FDR, Benjamini &
Hochberg 1995), a more useful quantity than multiplicity-
corrected error rates.

Unfortunately, KO has a major drawback, related to the ran-
dom nature of the knockoff variables: two different draws
yield two different solutions, leading to large, uncontrolled
fluctuations in power and false discovery proportion across
experiments (see Figure 1 below). This makes the ensuing
inference irreproducible. An obvious way to fix the problem
is to rely on some type of statistical aggregation, in order
to consolidate the inference results. Such procedures have
been introduced by Gimenez & Zou (2019) and by Emery
& Keich (2019), but they have several limitations: the com-
putational complexity scales poorly with the number B of
bootstraps, while the power of the method decreases with B.
In high-dimensional settings that we target, these methods
are thus only usable with a limited number of bootstraps.

In this work, we explore a different approach, that we call
aggregation of multiple knockoffs (AKO): it rests on a re-
formulation of the original knockoff procedure that intro-
duces intermediate p-values. As it is possible to aggregate
such quantities even without assuming independence (Mein-
shausen et al., 2009), we propose to perform aggregation
at this intermediate step. We first establish the equivalence
of AKO with the original knockoff aggregation procedure
in case of one bootstrap (Proposition 1). Then we show
that the FDR is also controlled with AKO (Theorem 1). By
construction, AKO is more stable than (vanilla) knockoff;
we also demonstrate empirical benefits in several examples,
using simulated data, but also genetic and brain imaging
data. Note that the added knockoff generation and inference
steps are embarrassingly parallel, making this procedure no
more costly than the original KO inference.

Notation. Let [p] denote the set {1,2,...

. A .
set given set A, |A| = card(A); matrices are denoted

in bold uppercase letter, while vectors in bold lowercase
letter and scalars normal character. An exception for this
is the vector of knockoff statistic W, in which we follow
the notation from the original paper of Barber & Candes
(2015).

,p}; for a given
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2. Background

Problem Setting. Let X € R"™*? be a design matrix corre-
sponding to n observations of p potential explanatory vari-
ables x1,Xs,...,X, € RP, with its target vector y € R".
To simplify the exposition, we focus on sparse linear models,
as Barber & Candes (2015) and Candes et al. (2018):

y =XB" +oe (D

where 3* € RP is the true parameter vector, ¢ € R* the
unknown noise magnitude, € € R" some Gaussian noise
vector. Yet, it should be noted that the algorithm does not
require linearity or sparsity. Our main interest is in finding
an estimate S of the true support set S = {j € [p] : 5} #
0}, or the set of important features that have an effect on
the response. As a consequence, the complementary of the
support S, which is denoted ¢ = {j € [p] : B = 0},
corresponds to null hypotheses. Identifying the relevant
features amounts to simultaneously testing

H{;:ﬁ;‘:o Versus H{;:ﬁ;‘;«éo, Vi=1,...,p.

Specifically, we want to bound the proportion of false pos-
itives among selected variables, that is, control the false
discovery rate (FDR, Benjamini & Hochberg 1995) under
certain predefined level a:

15N S|

FDR = E —
S|V 1

]Sae(o,l).

Knockoff Inference. Introduced originally by Barber &
Candes (2015), the knockoff filter is a variable selection
method for multivariate models with theoretical control of
FDR. Candegs et al. (2018) expanded the method to work in
the case of (mildly) high-dimensional data, with the assump-
tion that x = (21,...,2p) ~ Px such that Px is known.
The first step of this procedure involves sampling extra null
variables that have a correlation structure similar to that of
the original variables, with the following formal definition.

Definition 1 (Model-X knockoffs, Candes et al. 2018). The
model-X knockoffs for the family of random variables x =
(x1,...,xp) are a new family of random variables X =
(Z1,...,&p) constructed to satisfy the two properties:

1. For any subset K C {1,...,p}, (X,X)suap(k)
(x,X), where the vector (X, X)gap(x) denotes the swap

. - : d
of entries x; and Z; for all j € K, and = denotes
equality in distribution.

2.xLly|x.

A test statistic is then calculated to measure the strength of
the original variables versus their knockoff counterpart. We
call this the knockoff statistic W = {W;}}_,, that must
fulfill two important properties.

Definition 2 (Knockoff statistic, Candes et al. 2018). A
knockoff statistic W = {W;} jc|,) is a measure of feature
importance that satisfies the two following properties:

1. It depends only on X, X and y

2. Swapping the original variable column x; and its
knockoff column x; switches the sign of W;:

(X% [ W(XXy) i e st
3% K = SR s

Following previous works on the analysis of the knockoff
properties (Arias-Castro & Chen, 2017; Rabinovich et al.,
2020), we make the following assumption about the knock-
off statistic. This is necessary for our analysis of knockoff
aggregation scheme later on.

Assumption 1 (Null distribution of knockoff statistic). The
knockoff statistic defined in Definition 2 are such that
{W;}jese, are independent and follow the same distribu-
tion Py.

Remark 1. As a consequence of Candes et al. (2018,
Lemma 2) regarding the signs of the null W; as i.i.d. coin
flips, if Assumption 1 holds true, then Py is symmetric
around zero.

One such example of knockoff statistic is the Lasso-
coefficient difference (LCD). The LCD statistic is computed
by first making the concatenation of original variable and
knockoff variables [X, X] € R™*2P, then solving the Lasso
problem (Tibshirani, 1996):

~

1 ~ 2
(3 = argmin {2 Hy — [X7X]6H2 + A ||,6|1} 2)

BeR2p

with A € R the regularization parameter, and finally to take:

vielpl,  W;=I[8i—I1Bj+sl- 3)
This quantity measures how strong the coefficient magnitude
of each original covariate is against its knockoff, hence
the name Lasso-coefficient difference. Clearly, the LCD
statistic satisfies the two properties stated in Definition 2.

Finally, a threshold for controlling the FDR under given
level a € (0,1) is calculated:

1+#{j:Wj<—t}
B W, >tV 1 go‘}’ @

T+:min{t>0:

and the set of selected variables is S = {j € [p] : W; >
T+}.
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Instability in Inference Results. Knockoff inference is a
flexible method for multivariate inference in the sense that it
can use different loss functions (least squares, logistic, etc.),
and use different variable importance statistics. However,
a major drawback of the method comes from the random
nature of the knockoff variables X obtained by sampling:
different draws yield different solutions (see Figure 1 in Sec-
tion 5.1). This is a major issue in practical settings, where
knockoft-based inference is used to prove the conditional
association between features and outcome.

3. Aggregation of Multiple Knockoffs
3.1. Algorithm Description

One of the key factors that lead to the extension of the
original (vanilla) knockoff filter stems from the observation
that knockoff inference can be formulated based on the
following quantity.

Definition 3 (Intermediate p-value). Let W = {W;} ;¢
be a knockoff statistic according to Definition 2. For j =

1,...,p, the intermediate p-value T; is defined as:
1+ #{k: W, < -W;} .
if W;>0
™ = P o 5)
1 if W;<0.

We first compute B draws of knockoff variables, and then
knockoff statistics. Using Eq. (5), we derive the correspond-

ing empirical p-values Wj(-b), forall j € [p] and b € [B].
Then, we aggregate them for each variable j in parallel, us-
ing the quantile aggregation procedure introduced by Mein-

shausen et al. (2009):

(O
7; = min {1, h i b e (B} } (6)

v

where ¢, (-) is the y-quantile function. In the experiments,
we fix v = 0.3 and B = 25. The selection of these default
values is explained more thoroughly in Section 5.1.

Finally, with a sequence of aggregated p-values 71, ..., Tp,
we use Benjamini-Hochberg step-up procedure (BH, Ben-
jamini & Hochberg 1995) to control the FDR.

Definition 4 (BH step-up, Benjamini & Hochberg 1995).
Given a list of p-values 7, ..., T, and predefined FDR
control level a € (0, 1), the Benjamini-Hochberg step-up
procedure comprises three steps:

1. Order p-values such that: T S T2) < ... < T(p)

2. Find:

~ k
kBH:max{k:ﬁ(k)ga} . (7)
p

3. Select S ={j € [p] : 7(j) < T}

This procedure controls the FDR, but only under indepen-
dence or positive-dependence between p-values (Benjamini
& Yekutieli, 2001). As a matter of fact, for a strong guar-
antee of FDR control, one can consider instead a threshold
yielding a theoretical control of FDR under arbitrary depen-
dence, such as the one of Benjamini & Yekutieli (2001).
We call BY step-up the resulting procedure. Yet we use
BH step-up procedure in the experiments of Section 5, as
we observe empirically that the aggregated p-values 7; de-
fined in Equation (5) does not deviate significantly from
independence (details in supplementary material).

Definition 5 (BY step-up, Benjamini & Yekutieli 2001).
Given an ordered list of p-values as in step 1 of BH step-up
(1) < T(2) < -+ < @(p) and predefined level a € (0, 1),
the Benjamini-Yekutieli step-up procedure first finds:

EBy:max{kE [p] : Ty < 141,8(;7)04}7 (8)

with B(p) = (3F_, 1/i)~1, and then selects
S={jelp: 74 <Tau)-

Blanchard & Roquain (2009) later on introduced a general
function form for 3(p) to make BY step-up more flexible.
However, because we always have 3(p) < 1, this procedure
leads to a smaller threshold than BH step-up, thus being
more conservative.

Algorithm 1 AKO — Aggregation of multiple knockoffs

Input: X € R"*P, y € R", B — number of bootstraps ;
a € (0,1) — target FDR level

Output: S4xo — Set of selected variables index

for b =1to B do
X(®) « SAMPLING_KNOCKOFF(X)
W) « KNOCKOFF_STATISTIC(X, X(®) y)
w®)  + CONVERT_STATISTIC(W(®)) // Using
Eq. (5)
end for

for j =1top do
Tj < QUANTILE_AGGREGATION ({w](-b)}{?:l) //

Using Eq. (6)
end for

~

ko
Using either Eq.

FDR_THRESHOLD(a, (71, T2, ..., 7)) //
(7) or Eg. (8)

Return: Saxo  {j € [p]: 7; <77}

The AKO procedure is summarized in Algorithm 1. We
show in the next section that with the introduction of the
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aggregation step, the procedure offers a guarantee on FDR
control under mild hypotheses. Additionally, the numerical
experiments of Section 5 illustrate that aggregation of multi-
ple knockoffs indeed improves the stability of the knockoff
filter, while bringing significant statistical power gains.

3.2. Related Work

To our knowledge, up until now there have been few at-
tempts to stabilize knockoff inference. Earlier work of Su
et al. (2015) rests on the same idea of generating multiple
knockoff bootstrap as ours, but relies on the linear combina-
tion of the so-called one-bit p-values (introduced as a means
to prove the FDR control in original knockoff work of Bar-
ber & Candes 2015). As such, the method is less flexible
since it requires a specific type of knockoff statistic to work.
Furthermore, it is unclear how this method would perform
in high-dimensional settings, as it was only demonstrated
in the case of n > p. More recently, the work of Holden &
Helton (2018) incorporates directly multiple bootstraps of
knockoff statistics for FDR thresholding without the need of
p-value conversion. Despite its simplicity and convenience
as a way of aggregating knockoffs, our simulation study in
Section 5.1 demonstrates that this method somehow fails to
control FDR in several settings.

In a different direction, Gimenez & Zou (2019) and Emery
& Keich (2019) have introduced simultaneous knockoff pro-
cedure, with the idea of sampling several knockoff copies
at the same time instead of doing the process in parallel as
in our work. This, however, induces a prohibitive compu-
tational cost when the number of bootstraps increases, as
opposed to the AKO algorithm that can use parallel com-
puting to sample multiple bootstraps at the same time. In
theory, on top of the fact that sampling knockoffs has cubic
complexity on runtime with regards to number of variables p
(requires covariance matrix inversion), simultaneous knock-
off runtime is of O(B3p3), while for AKO, runtime is only
of O(Bp?) and O(p?) with parallel computing. Moreover,
the FDR threshold of simultaneous knockoff is calculated
in such a way that it loses statistical power as the number of
bootstraps increases, when the sampling scheme of vanilla
knockoff by Barber & Candes (2015) is used. We have
set up additional experiments in supplementary material to
illustrate this phenomenon. In addition, the threshold intro-
duced by Emery & Keich (2019) is only proven to have a
theoretical control of FDR in the case where n > p.

4. Theoretical Results

‘We now state our theoretical results about the AKO proce-
dure.

4.1. Equivalence of Aggregated Knockoff with Single
Bootstrap (B = 1,~ = 1) and Vanilla Knockoff

First, when B = 1 and v = 1, we show that AKO+BH is
equivalent to vanilla knockoff.

Proposition 1 (Proof in supplementary material). Assume
thatforall 7' =1,...,p,
PW; =Wy, W;#0, Wy #0)=0

that is, non-zero LCD statistics are distinct with proba-
bility 1. Then, single bootstrap version of aggregation of
multiple knockoffs (B = 1), using v = 1 and BH step-up
procedure in Definition 4 for calculating FDR threshold, is
equivalent to the original knockoff inference by Barber &
Candes (2015).

Remark 2. Although Proposition 1 relies on the assumption
of distinction between non-zero Wjs forall j = 1,...,p,
the following lemma establishes that this assumption holds
true with probability one for the LCD statistic up to further
assumptions.

Lemma 1 (Proof in supplementary material). Define the
equi-correlation set as:

h={iew:x (y-XB) =2}

with B, A defined in Eq. (2). Then we have:

P (W; = Wy, Wy # 0, Wy # 0, xank(X5,) = | 7]} =0

9)
forall j,j" € [p| : j # j'. In other words, assuming X 7. 'is
full rank, then the event that LCD statistic defined in Eq ( 3)
is distinct for all non-zero value happens almost surely.

4.2. Validity of Intermediate P-values

Second, the fact that the 7; are called “intermediate p-values”
is justified by the following lemma.

Lemma 2. If Assumption 1 holds true, and if |S°| > 2
then, for all j € S¢, the intermediate p-value 7 ; defined by
Eq. (5) satisfies:

vee[0,1] Pm<t) < =2

2Py
s

V22 -2

where k = —— < 3.24.

722 — 32

Proof. The result holds when ¢ > 1 since kp > p > |S¢
and a probability is always smaller than 1. Let us now focus
on the case where ¢ € [0,1), and define m = |S¢| —1 > 1
by assumption. Let Fy denote the c.d.f. of Py, the common
distribution of the null statistics {W4}, s., which exists
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by Assumption 1. Let j € S¢ be fixed. By definition of 7,
when W; > 0 we have:

o 14+ #{k € [p] : Wi, < —=W,}
;=
p
1+ #{keS W < W)
p
n #{k € ST\ {j}: Wi < -W;}
p
(since W; > 0 > —Wj)
~ 1
> DR (-W)) + - (10)
p p

[ Nt Suf .
where Vu € R, F,(u) EY #{k € S\ {j}: Wk <wu} s

m
the empirical cdf of {W} } e\ ¢;1. Therefore, for every ¢ €
[0,1),

P(m; < 1)
=P(r; <tand W; > 0) +P(7; < tand W; < 0)

=0 since ;=1 when W; <0
1D
= E[P(ﬂ‘j < t | Wj)]le>0]

~ 1
<[P (LR + 5 <t W) twyna] by (10
. 1
gp(mFm(—WJH <t> . (12)
p p

Notice that W) has a symmetric distribution around 0,
as shown by Remark 1, that is, —W; and W; have
the same distribution. ~Since W; and {Wi}rese\ (5}
are independent with the same distribution Py by As-
sumption 1, they have the same joint distribution as
Fy N U), Fy Y (Uy),. .., Ey N (Uy) where U Uy, ..., Uy,
are independent random variables with uniform distribu-
tion over [0, 1], and F; ! denotes the generalized inverse of
Fpy. Therefore, Eq. (12) can be rewritten as

m

P(m; <t) <P <pfm (Fo () + }) < t) (13)

E 1

k=1

where Vv € R, F,(v)

1
m Fo (Uk)<v

Notice that for every u € R,

1 — 1 &
EZﬂngu X EZ (Uk 1(u)
k=1 k=1

= Fon(Fy ' (w)

1>

since Fy Lis non-decreasing. Therefore, Eq. (13) shows

that

P(r; <1) <P (mGu(U) <tp—1)

1 ~
:/ P (mG(u) <tp—1)du.  (14)
0

Now, we notice that for every u € (0, 1), mG., (u) follows a
binomial distribution with parameters (m, u). So, a standard
application of Bernstein’s inequality (Boucheron et al., 2013,
Eq. 2.10) shows that forevery 0 < z < u < 1,

(mG (u) < mx) < exp <m>

2
—3mz (2 -1
= xp (M(j1)> ’

Note that for every A € (0,1/7), we have

1—-A w—1
> >1, >\
Yoz Tw—1
1—-X
h Zr——r,
ence Yu 1:1—7)\

P (mém(u) < m:v) < exp {—Sm)\as (g — 1)} .

x
As a consequence, VA € (0,1/7),

1 ~
/0 P (me(u) < mx) du

1-X\ !
< = 7)\x—|— /im exp[—3mA(u — )] du
1—-7X
<12y o (—=3mAv)d
\1_7>\£ LIexp mAv)dv
1—-7X
1— A 1 6A
<
\17)\x+3m)\eXp< 3m)\177)\ )
1-A 1
ST T 3w

Taking z = (tp — 1)/m, we obtain from Eq. (14) that
YA € (0,1/7)

1-Xitp—1 1

P(r; < t) <

1—-7X2 m 3mA
1=\ tp 1 1-x\1
_1—7)\m+<3>\_1—7)\>m' (15)

Choosing A = (5 — v/22)/3 € (0,1/7), we have 55 =

L=2 hence the result with

_1-h V222 < 3.24.
1-72  7v/22-32
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Remark 3. If the definition of m; is replaced by

c+#{k: W, < -W;} |
W; >0
P N (16)
1 if W; <0

1>

Tj,c

for some ¢ > 0, the above proof also applies and yields an

upper bound of the form
Vt>0, P(mje <t) < (o)t

for some constant k(c) > 0. It is then possible to make

k(c) as close to 1 as desired, by choosing c large enough.
Lemma 2 corresponds to the case ¢ = 1.

Note that we also prove in supplementary material that if
p — +oo with |S] < p, then for every j > 1 such that
B; = 0, m; is an asymptotically valid p-value, that is,

vt € [0,1], limsupP(m; <t) <t. (17)

p——+o0

Yet, proving our main result (Theorem 1) requires a non-
asymptotic bound such that the one of Lemma 2.

4.3. FDR control for AKO

Finally, the following theorem provides a non-asymptotic
guarantee about the FDR of AKO with BY step-up.

Theorem 1. If Assumption I holds true and |S°| > 2, then
forany B > 1 and o € (0,1), the output §AK0+BY of
aggregation of multiple knockoff (Algorithm 1), with the BY
step-up procedure, has a FDR controlled as follows:

E |Sako+By N S

1Saxotpy|V1

where k < 3.24 is defined in Lemma 2.

Sketch of the proof. The proof of Meinshausen et al. (2009,
Theorem 3.3), which itself relies partly on Benjamini &
Yekutieli (2001), can directly be adapted to upper bound
the FDR of Sarxo+py in terms of quantities of the form
P(w;b) < t) for j € §¢ and several t > 0. Combined with
Lemma 2, this yields the result. A full proof is provided in
supplementary material. O

Note that Theorem 1 loses a factor x compared to the nom-
inal FDR level . This can be solved by changing « into
a/k in the definition of S4xo+py. Nevertheless, in our
experiments, we do not use this correction and find that the
FDR is still controlled at level a.

5. Experiments

Compared Methods. We make benchmarks of our pro-
posed method aggregation of multiple knockoffs (AKO)
with B = 25,7 = 0.3 and vanilla knockoff (KO), along
with other recent methods for controlling FDR in high-
dimensional settings, mentioned in Section 3.2: simultane-
ous knockoff, an alternative aggregation scheme for knockoff
inference introduced by Gimenez & Zou (2019) (KO-GZ),
along with its variant of Emery & Keich (2019) (KO-EK);
the knockoff statistics aggregation by Holden & Helton
(2018) (KO-HH); and debiased Lasso (DL-BH) (Javanmard
& Javadi, 2019).

5.1. Synthetic Data

Simulation Setup. Our first experiment is a simulation sce-
nario where a design matrix X (n = 500, p = 1000) with
its continuous response vector y are created following a
linear model assumption. The matrix is sampled from a mul-
tivariate normal distribution of zero mean and covariance
matrix X € RP*P, We generate 3 as a symmetric Toeplitz
matrix that has the structure:

PO pl pp—l
5 pl pp 2
ppfl pp72 pO

where the p € (0, 1) parameter controls the correlation
structure of the design matrix. This means that neighboring
variables are strongly correlated to each other, and the cor-
relation decreases with the distance between indices. The
true regression coefficient 3* vector is picked with a spar-
sity parameter that controls the proportion of non-zero ele-
ments with amplitude 1. The noise € is generated to follow
N(p,I,,) with its magnitude o = || X3*||, /(SNR [€]|,)
controlled by the SNR parameter. The response vector y
is then sampled according to Eq. (1). In short, the three
main parameters controlling this simulation are correlation
p, sparsity degree k and signal-to-noise ratio SNR.

Aggregation Helps Stabilizing Vanilla Knockoff. To
demonstrate the improvement in stability of the aggregated
knockoffs, we first do multiple runs of AKO and KO with
a = 0.05 under one simulation of X and y. In order to
guarantee a fair comparison, we compare 100 runs of AKO,
each with B = 25 bootstraps, with the corresponding 2500
runs of KO. We then plot the histogram of FDP and power
in Figure 1. For the original knockoff, the false discovery
proportion varies widely and has a small proportion of FDP
above 0.2 = 4. Besides, a fair amount of KO runs returns
null power.



Aggregation of Multiple Knockoffs

On the other hand, AKO not only improves the stability
in the result for FDP —the FDR being controlled at the
nominal level & = 0.05— but it also improves statistical
power: in particular, it avoids catastrophic behavior (zero
power) encountered with KO.

500 5001
250 2501
0- 0-
0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0
FDP Power
20+
50+
101
25+

0— T T T T T 00— T t t t T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FDP Power

Figure I. Histogram of FDP and power for 2500 runs of KO
(blue, top row) vs. 100 runs of AKO with B = 25 (teal, bot-
tom row) under the same simulation. Simulation parameter:
SNR = 3.0,p = 0.5, sparsity = 0.06. FDR is controlled at
level a = 0.05.

Inference Results on Different Simulation Settings. To
observe how each algorithm performs under various sce-
narii, we vary each of the three simulation parameters while
keeping the others unchanged at default value. The result
is shown in Figure 2. Compared with KO, AKO improves
statistical power while still controlling the FDR. Noticeably,
in the case of very high correlation between nearby vari-
ables (p > 0.7), KO suffers from a drop in average power.
The loss also occurs, but is less severe for AKO. Moreover,
compared with simultaneous knockoff (KO-GZ), AKO gets
better control for FDR and a higher average power in the
extreme correlation (high p) case. Knockoff statistics aggre-
gation (KO-HH), contrarily, is spurious: it detects numer-
ous truly significant variables with high average statistical
power, but at a cost of failure in FDR control, especially
when the correlation parameter p gets bigger than 0.6. De-
biased Lasso (DL-BH) and KO-EK control FDR well in all
scenarii, but are the two most conservative procedures.

Choice of B and ~ for AKO. Figure 3 shows an exper-
iment when varying v and B. FDR and power are aver-
aged across 30 simulations of fixed parameters: SNR=3.0,
p = 0.7, sparsity=0.06. Notably, it seems that there is no
further gain in statistical power when B > 25. Similarly,
the power is essentially equal for v values greater than 0.1
when B > 25. Based on the results of this experiment we
set the default value of B = 25,y = 0.3.

0.3 5 1.0
— KO KO-HH | =
o 0.2 AKO KO-EK g
= KO-GZ DL-BH v 0.5
[T [e)]
0.1 — ®
|
0.0 1 : ' v ' & 0.0
A0 90 20,0 0
SNR
0.3 5 1.0
g
0.21 <%
o S~
[a) © 0.51
*- 0.1 AN &
’——/ g
0.0 Lm —F———N <00+ — 0 0
0%020X0P0%0M 0%0? 0020%020%010%0°
Rho Rho
0.3 o 1.0
2
o 0.2 a
[a) gO.S-
“ 01 === — ©
0.0 t——ii— ’ ; < 0.0, . ; - .
o oY 3 ot 2P o oY 3° o (°
Sparsity Sparsity

Figure 2. FDR (left) and average power (right) of several meth-
ods for 100 runs with varying simulation parameters. For
each varying parameter, we keep the other ones at default value:
SNR = 3.0, p = 0.5, sparsity = 0.06. FDR is controlled at level
o = 0.1. The benchmarked methods are: aggregation of multiple
knockoffs (AKO — ours); vanilla knockoff (KO); simultanecous
knockoff by Gimenez & Zou 2019 (KO-GZ) and by Emery &
Keich 2019 (KO-EK); knockoff statistics aggregation (KO-HH);
debiased-Lasso (DL-BH).

5.2. GWAS on Flowering Phenotype of Arabidopsis
thaliana

To test AKO on real datasets, we first perform a genome-
wide association study (GWAS) on genomic data. The
aim is to detect association of each of 174 candidate genes
with a phenotype FT_GH that describes flowering time of
Arabidopsis thaliana, first done by Atwell et al. (2010).
Preprocessing is done similarly to Azencott et al. (2013):
166 data samples of 9938 binary SNPs located within a
+20—kilobase window of 174 candidate genes that have
been selected in previous publications as most likely to be
involved in flowering time traits. Furthermore, we apply
the same dimension reduction by hierarchical clustering as
Slim et al. (2019) to make the final design matrix of size
n = 166 samples x p = 1560 features. We list the detected
genes from each method in Table 1.

The three methods that rely on sampling knockoff variables
detect AT2G21070. This gene, which is responsible for the
mutant FIONAL, is listed by Kim et al. (2008) to be vital
for regulating period length in the Arabidopsis circadian
clock. FIONAL also appears to be involved in photoperiod-
dependent flowering and in daylength-dependent seedling
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Figure 3. FDR and average power for 30 simulations of fixed
parameters: SNR=3.0, p = 0.7, sparsity=0.06. There is virtu-
ally no gain in statistical power when B > 25 and when v > 0.1.

Table 1. List of detected genes associated with phenotype
FT_GH. Empty line (—) signifies no detection. Detected genes
are listed in well-known studies dated up to 20 years ago.

METHOD DETECTED GENES

AKO AT2G21070, AT4G02780, AT5G47640
KO AT2G21070

KO-GZ AT2G21070

DL-BH —

growth. In particular, the time for opening of the first flower
for FIONA 1 mutants are shorter than the ones without under
both long and short-day conditions. In addition to FIONA1
mutant, AKO also detects AT4G02780 and AT5G47640. It
can be found in studies dating back to the 90s (Silverstone
et al., 1998) that AT4G02780 encodes a mutation for late
flowering. Meanwhile, AT5G47640 mutant delay flowering
in long-day but not in short-day experiments (Cai et al.,
2007).

5.3. Functional Magnetic Resonance Imaging (fMRI)
analysis on Human Connectome Project Dataset

Human Connectome Project (HCP90O) is a collection of
neuroimaging and behavioral data on 900 healthy young
adults, aged 22-35. Participants were asked to perform dif-
ferent tasks inside an MRI scanner while blood oxygenation
level dependent (BOLD) signals of the brain were recorded.
The analysis investigates what brain regions are predictive of

the subtle variations of cognitive activity across participants,
conditional to other brain regions. Similar to genomics data,
the setting is high-dimensional with n = 1556 samples ac-
quired and 156437 brain voxels. A voxel clustering step
that reduces data dimension to p = 1000 clusters is done to
make the problem tractable.

When decoding brain signals on HCP subjects performing a
foot motion experiment (Figure 4, left), AKO recovers an
anatomically correct anti-symmetric solution, in the motor
cortex and the cerebellum, together with a region in a sec-
ondary sensory cortex. KO only detects a subset of those.
Moreover, across seven such tasks, the results obtained in-
dependently from DL-BH are much more similar to AKO
than to KO, as measured with Jaccard index of the resulting
maps (Figure 4, right). The maps for the seven tasks are rep-
resented in supplementary material. Note that the sign of the
effect for significant regions is readily obtained from the re-
gression coefficients, with a voting step for bootstrap-based
procedures.

Jaccard Jaccard

index index
KO -DL AKO-DL

Figure 4. Detection of significant brain regions for HCP data
(900 subjects). (left) Selected regions in a left or right foot move-
ment task. : brain areas with positive sign activation. Blue:
brain areas with negative sign activation. Here the AKO solution
recovers an anatomically correct pattern, part of which is missed by
KO. (right) Jaccard index measuring the Jaccard similarity between
the KO/AKO solutions on the one hand, and the DL solution on
the other hand, over 7 tasks: AKO is significantly more consistent
with the DL-BH solution than KO.

6. Discussion

In this work, we introduce a p-value to measure knockoff
importance and design a knockoffs bootstrapping scheme
that leverages this quantity. With this we are able to tame
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the instability inherent to the original knockoff procedure.
Analysis shows that aggregation of multiple knockoffs re-
tains theoretical guarantees for FDR control. However, i)
the original argument of Barber & Candes (2015) no longer
holds (see supplementary material); ii) a factor x on the
FDR control is lost; this calls for tighter FDR bounds in the
future, since we always observe empirically that the FDR is
controlled without the factor x. Moreover, both numerical
and realistic experiments show that performing aggregation
results in an increase in statistical power and also more con-
sistent results with respect to alternative inference methods.

The quantile aggregation procedure from Meinshausen et al.
(2009) used here is actually conservative: as one can see
in Figure 2, the control of FDR is actually stricter than
without the aggregation step. Nevertheless, as often with
aggregation-based approaches, the gain in accuracy brought
by the reduction of estimator variance ultimately brings
more power.

We would like to address here two potential concerns about
FDR control for AKO+BH. The first one is when the
{W;};jese are not independent, hence violating Assump-
tion 1. In the absence of a proof of Theorem 1 that would
hold under a general dependency, we first note that several
schemes for knockoff construction (for instance, the one of
Candes et al. 2018) imply the independence of (x; —X;)ic[p]»
as well as their pseudo inverse. These observations do not
establish the independence of ;. Yet, intuitively, the Lasso
coefficient of one variable should be much more associated
with its knockoff version than with other variables, so it
should not be much affected by these other variables, mak-
ing the Lasso-coefficient differences weakly correlated if not
independent. Moreover, in the proof of Lemma 2 and Theo-
rem 1, Assumption 1 is only used for applying Bernstein’s
inequality, and several dependent versions of Bernstein’s in-
equality have been proved (Samson, 2000; Merlevede et al.,
2009; Hang & Steinwart, 2017, among others). Similarly,
the proof of Eq. (17) only uses Assumption 1 for apply-
ing the strong law of large numbers, a result which holds
true for various kinds of dependent variables (for instance,
Abdesselam, 2018, and references therein). Therefore we
conjecture that independence in Assumption 1 can be re-
laxed into some mixing condition. Overall, given that the
unstability of KO with respect to the KO randomness is an
important drawback (see Figure 1), we consider Assumption
1 as a reasonable price price to pay for correcting it, given
that we expect to relax it in future works.

The second potential concern is that Theorem 1 is for AKO
with & computed from the BY procedure, while BH step-
up may not control the FDR when the aggregated p-values
(7;)je[p) are not independent. We find empirically that the
(%) jelp) do not exhibit spurious Spearman correlation (Fig-
ure B.2 in supplementary material) under a setting where the
W satisfy a mixing condition. This is a mild assumption

that should be satisfied, especially when each feature X
only depends on its “neighbors” (as typically observed on
neuroimaging and genomics data). It is actually likely that
the aggregation step contributes to reducing the statistical
dependencies between the (7;) ;¢[y). Eventually, it should
be noted that BH can be replaced by BY (Benjamini &
Yekutieli, 2001) in case of doubt.

To conclude on these two potential concerns, let us empha-
size that the FDR of AKO+BH with B > 1 is always below
« (up to error bars) in all the experiments we did, including
preliminary experiments not shown in this article, which
makes us confident when applying AKO+BH on real data
such as the ones of Sections 5.2-5.3.

A practical question of interest is to handle the cases where
n < p, that is, the number of features overwhelms the
number of samples. Note that in our experiments, we had to
resort to a clustering scheme of the brain data and to select
some genes. A possible extension is to couple this step with
the inference framework, in order to take into account that
for instance the clustering used is not given but estimated
from the data, hence with some level of uncertainty.

The proposed approach introduces two parameters: the num-
ber B of bootstrap replications and the v parameter for
quantile aggregation. The choice of B is simply driven by a
compromise between accuracy (the larger B, the better) and
computation power, but we consider that much of the bene-
fit of AKO is obtained for B ~ 25. Regarding -y, adaptive
solutions have been proposed (Meinshausen et al., 2009),
but we find that choosing a fixed quantile (0.3) yields a good
behavior, with little variance and a good sensitivity.
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