
Involutive MCMC

A. Involutive MCMC
A.1. Proof of Proposition 1 (FPE condition)

For the target distribution p(x) and the deterministic proposal q(x′ |x) = δ(x′− f(x)), we consider the following transition
kernel

t(x′ |x) = δ(x′ − f(x))min

{
1,
p(x′)

p(x)

∣∣∣∣∂f∂x
∣∣∣∣}+ δ(x′ − x)

∫
dx′′ δ(x′′ − f(x))

(
1−min

{
1,
p(x′′)

p(x)

∣∣∣∣∂f(x)∂x

∣∣∣∣}).
(33)

Then we want to check the fixed-point equation∫
dx t(x′ |x)p(x) = p(x′). (34)

Substitution of t(x′ |x) gives∫
dx δ(x′ − f(x))min

{
p(x), p(x′)

∣∣∣∣∂f∂x
∣∣∣∣}+ p(x′)−min

{
p(x′), p(f(x′))

∣∣∣∣ ∂f∂x′
∣∣∣∣} = p(x′) (35)

Assuming that f(x) has the inverse f−1(x), we change variables x = f−1(x̃) and rewrite the previous equation as∫
dx̃ δ(x′ − x̃)min

{
p(f−1(x̃)), p(x′)

∣∣∣∣∂f∂x
∣∣∣∣
x=f−1(x̃)

}∣∣∣∣∂f−1∂x̃

∣∣∣∣−min

{
p(x′), p(f(x′))

∣∣∣∣ ∂f∂x′
∣∣∣∣} = 0. (36)

Using the chain rule, we have

1 =

∣∣∣∣∂f(f−1(x))∂x

∣∣∣∣ = ∣∣∣∣∂f∂y
∣∣∣∣
y=f−1(x)

∣∣∣∣∂f−1∂x

∣∣∣∣. (37)

Thus, we obtain the following condition to satisfy the fixed-point equation

min

{
p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣, p(x)} = min

{
p(x), p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣}. (38)

The same applies for the joint space

min

{
p(f−1(x, v))

∣∣∣∣∂f−1(x, v)∂[x, v]

∣∣∣∣, p(x, v)} = min

{
p(x, v), p(f(x, v))

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}. (39)

Moreover, there is no need to care about the distribution of v′ in the fixed point equation∫
dxdvdv′ t(x′, v′ |x, v)p(x, v) = p(x′). (40)

Thus, we obtain more general condition∫
dvmin

{
p(f−1(x, v))

∣∣∣∣∂f−1(x, v)∂[x, v]

∣∣∣∣, p(x, v)} =

∫
dvmin

{
p(x, v), p(f(x, v))

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}. (41)

Also, note that the condition can be easily rewritten for different acceptance function, e.g., for the Barker’s test (Barker,
1965). That is,

t(x′ |x) = δ(x′ − f(x))
[
1 +

p(x)

p(x′)

∣∣∣∣∂f∂x
∣∣∣∣−1]−1 + δ(x′ − x)

(
1−

[
1 +

p(x)

p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣−1]−1). (42)

Substituting this kernel into the fixed point equation
∫
dxt(x′ |x)p(x) = p(x′), and performing a similar algebra, we have[

1

p(x)
+

1

p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣−1]−1 =

[
1

p(x)
+

1

p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣−1]−1 (43)

Thus, for the Barker’s test, the fixed point equation can be reduced to

p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣ = p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣ (44)
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A.2. Proof of Proposition 2 (Detailed balance)

We analyse this property of Involutive MCMC by deriving the reverse operator r(x, v |x′, v′), which is defined as

t(x′, v′ |x, v)p(x, v) = r(x, v |x′, v′)p(x′, v′). (45)

By the definition, we have

r(x, v |x′, v′) =t(x′, v′ |x, v) p(x, v)
p(x′, v′)

(46)

r(x, v |x′, v′) =δ([x′, v′]− f(x, v))min

{
p(x, v)

p(x′, v′)
,

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}+ (47)

+ δ([x′, v′]− [x, v])

(
p(x, v)

p(x′, v′)
−min

{
p(x, v)

p(x′, v′)
,
p(f(x, v))

p(x′, v′)

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}) (48)

The detailed balance is satisfied in the joint space if
∫
A
r(x, v |x′, v′)dxdv =

∫
A
t(x, v |x′, v′)dxdv, where A is any

non-zero measure volume in the joint space. Remind that

t(x, v |x′, v′) =δ([x, v]− f(x′, v′))min

{
1,

p(x, v)

p(x′, v′)

∣∣∣∣∂f(x′, v′)∂[x′, v′]

∣∣∣∣}+ (49)

+ δ([x, v]− [x′, v′])

(
1−min

{
1,
p(f(x′, v′))

p(x′, v′)

∣∣∣∣∂f(x′, v′)∂[x′, v′]

∣∣∣∣}). (50)

For the involutive map f , it is clear that the integrals
∫
A
r(x, v |x′, v′)dxdv and

∫
A
t(x, v |x′, v′)dxdv are non-zero around

the points [x, v] = [x′, v′] and [x, v] = f(x′, v′). Thus, integrating over A1 that is around [x, v] = [x′, v′], we have∫
A1

r(x, v |x′, v′)dxdv = 1−min

{
1,
p(f(x′, v′))

p(x′, v′)

∣∣∣∣∂f(x′, v′)∂[x′, v′]

∣∣∣∣} =

∫
A1

t(x, v |x′, v′)dxdv. (51)

Then, integrating over A2 that is around [x, v] = f(x′, v′), we have∫
A2

r(x, v |x′, v′)dxdv =

∫
f(A2)

dxdv δ([x′, v′]− [x, v]) ·min

{
p(f−1(x, v))

p(x′, v′)
,

∣∣∣∣∂f(y)∂y

∣∣∣∣
y=f−1(x,v)

}∣∣∣∣∂f−1(x, v)∂[x, v]

∣∣∣∣ =
(52)

=

∫
f(A2)

dxdv δ([x′, v′]− [x, v]) ·min

{
p(f−1(x, v))

p(x′, v′)

∣∣∣∣∂f−1(x, v)∂[x, v]

∣∣∣∣, 1} (53)

Since f is an involutive map, then f−1 = f , and [x′, v′] lies in f(A2), where A2 is an area around [x, v] = f(x′, v′). Thus,
we have ∫

A2

t(x, v |x′, v′)dxdv =min

{
1,
p(f(x′, v′))

p(x′, v′)

∣∣∣∣∂f(x′, v′)∂[x′, v′]

∣∣∣∣} =

∫
A2

r(x, v |x′, v′)dxdv (54)

Hence, t(x′, v′ |x, v) satisfies the detailed balance in the joint space. Moreover, that yields the detailed balance on the
support of p(x). Indeed, reducing to the samples from p(x), we have the transition kernel

t̂(x |x′) =
∫
t(x, v |x′, v′)p(v′ |x′)dv′dv. (55)

By definition, the reverse transition kernel is

r̂(x′ |x) = t̂(x |x′)p(x
′)

p(x)
=
p(x′)

p(x)

∫
t(x, v |x′, v′)p(v′ |x′)dv′dv. (56)

Since t(x, v |x′, v′) satisfies the detailed balance, we have

r̂(x′ |x) =p(x
′)

p(x)

∫
t(x′, v′ |x, v)p(v′ |x′) p(x, v)

p(x′, v′)
dv′dv =

∫
t(x′, v′ |x, v)p(v |x)dv′dv = t̂(x′ |x) (57)

Hence, t̂(x |x′) also satisfies the detailed balance.
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A.3. (Murray & Elliott, 2012; Neal, 2012)

Here we formulate the algorithm from the papers (Murray & Elliott, 2012; Neal, 2012). We consider one-dimensional target
density p(x) and some transition kernel q(x′ |x) that satisfy the fixed point equation with the target density. For any kernel
q(x′ |x) we can define the reverse transition kernel r(x |x′) in terms of so-called generalized detailed balance:

r(x |x′)p(x′) = q(x′ |x)p(x). (58)

Note that the reverse kernel is a correct distribution w.r.t. x, and also satisfy the fixed point equation:∫
dx r(x |x′) = 1

p(x′)

∫
dx q(x′ |x)p(x) = 1,

∫
dx′ r(x |x′)p(x′) =

∫
dx′ q(x′ |x)p(x) = p(x). (59)

Consider the joint distribution p(x, u) = p(x)p(u), where p(u) = Uniform[0, 1]. For now, assume that at each iteration u is
sampled independently from the uniform distribution and the transition kernel is the deterministic function f(x, v) = [x′, v′]
defined as:

x′ = F−1q(· | x)(u), u′ = Fr(· | x′)(x), (60)

where Fp is a CDF of a distribution with the density p. To check the measure-preserving condition (1), we need to derive the
determinant of the Jacobian of the f . Using the chain rule, we have

∂u′

∂u
=
∂u′

∂x′
∂x′

∂u
,

∂u′

∂x
= r(x |x′) + ∂u′

∂x′
∂x′

∂x
. (61)

Then the Jacobian is

|J | =
∣∣∣∣∂x′∂x

∂u′

∂u
− ∂x′

∂u

∂u′

∂x

∣∣∣∣ = ∂x′

∂u

∣∣∣∣∂x′∂x

∂u′

∂x′
− ∂u′

∂x

∣∣∣∣ = r(x |x′)
q(x′ |x)

. (62)

Now, it is easy to check the measure preserving condition (3) using the definition of the reverse transition kernel.

p(f(x, u))

∣∣∣∣∂f(x, u)∂[x, u]

∣∣∣∣ = p(x′)p(u′)
r(x |x′)
q(x′ |x)

= p(x) = p(x, u). (63)

In the paper (Murray & Elliott, 2012), the authors propose to use some dependent random stream dt to update the auxiliary
variable u as ut = (ut−1+dt) mod 1, instead of sampling from the uniform. In some cases, it is even possibly to eliminate
all the stochasticity by letting dt be some constant irrational number: dt = c.

A.4. Proof of Trick 2 (Mixture of involutions)

We remind that in the trick we consider the joint distribution p(x, v, a) = p(x, v)p(a |x, v), and the family of involutions
fa(x, v), i.e. fa(fa(x, v)) = [x, v]. To make the calculations more concise, we denote the tuple [x, v] as y. Then the
transition kernel for the distribution p(y, a) = p(x, v, a) is

t(y′, a′ | y, a) =δ([y′, a′]− [fa(y), a])min

{
1,
p(fa(y))p(a | fa(y))

p(y)p(a | y)

∣∣∣∣∂fa(y)∂y

∣∣∣∣}+
+ δ([y′, a′]− [y, a])

(
1−min

{
1,
p(fa(y))p(a | fa(y))

p(y)p(a | y)

∣∣∣∣∂fa(y)∂y

∣∣∣∣}). (64)

Putting this transition kernel into the fixed point equation (
∫
t(y′, a′ | y, a)p(y, a)dyda = p(y′, a′)), we have∫

dyda δ([y′, a′]− [fa(y), a])min

{
p(y, a), p(fa(y))p(a | fa(y))

∣∣∣∣∂fa(y)∂y

∣∣∣∣}+
+ p(y′, a′)−

∫
dyda δ([y′, a′]− [y, a])min

{
p(y, a), p(fa(y))p(a | fa(y))

∣∣∣∣∂fa(y)∂y

∣∣∣∣} = p(y′, a′).

(65)
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From the last equation, we immediately obtain the equation

min

{
p(f−1a′ (y

′), a′)

∣∣∣∣∂f−1a′ (y′)∂y′

∣∣∣∣, p(y′, a′)} = min

{
p(y′, a′), p(fa′(y

′), a′)

∣∣∣∣∂fa′(y′)∂y′

∣∣∣∣}, (66)

which solutions in the space of fa include all involutive functions: fa(y) = f−1a (y).

To demonstrate that we must not change the variable a let’s try to apply some smooth function g to propose a new a. Then
equation (65) becomes

∫
dyda δ([y′, a′]− [fa(y), g(a)])min

{
p(y, a), p(fa(y), g(a))

∣∣∣∣∂fa(y)∂y

∣∣∣∣∣∣∣∣∂g(a)∂a

∣∣∣∣}+
+ p(y′, a′)−

∫
dyda δ([y′, a′]− [y, a])min

{
p(y, a), p(fa(y), g(a))

∣∣∣∣∂fa(y)∂y

∣∣∣∣∣∣∣∣∂g(a)∂a

∣∣∣∣} = p(y′, a′),

(67)

which yields the much stronger condition:

∫
da δ(a′ − g(a))min

{
p(f−1a (y′), a)

∣∣∣∣∂f−1a (y′)

∂y′

∣∣∣∣, p(y′, g(a))∣∣∣∣∂g(a)∂a

∣∣∣∣} =

= min

{
p(y′, a′), p(fa′(y

′), g(a′))

∣∣∣∣∂fa′(y′)∂y′

∣∣∣∣∣∣∣∣∂g(a′)∂a′

∣∣∣∣} (68)

min

{
p(f−1g−1(a′)(y

′), g−1(a′))

∣∣∣∣∂f−1g−1(a′)(y
′)

∂y′

∣∣∣∣∣∣∣∣∂g−1(a′)∂a′

∣∣∣∣, p(y′, a′)} =

= min

{
p(y′, a′), p(fa′(y

′), g(a′))

∣∣∣∣∂fa′(y′)∂y′

∣∣∣∣∣∣∣∣∂g(a′)∂a′

∣∣∣∣}
(69)

Looking for some solutions of this equation, we see that the involutivity of g (g(a) = g−1(a)) is not enough anymore. Now,
we also need f−1g−1(a)(y) = fa(y). By the assumption, fa is an involution; hence, we must guarantee fg−1(a)(y) = fa(y).
Thus, we end up with g−1(a) = g(a) = a, what forces g to be the identity mapping. Actually, we can guarantee
f−1g−1(a)(y) = fa(y) with non-trivial g if f is not an involution. We describe the latter in Trick 3.

The detailed balance for kernel (64) follows directly from Proposition 2, as well as the detailed balance for the collapsed
kernel to the support of p(y). To bring more intuition here, one can consider the simple case of independent a: p(a | y) = p(a),
then the kernel t(y′ | y) can be considered as a linear mixture, where each kernel is reversible:

t(y′ | y) =
∫
da p(a)

[
δ(y′ − fa(y))min

{
1,
p(fa(y))

p(y)

∣∣∣∣∂fa(y)∂y

∣∣∣∣}+
+ δ(y′ − y)

(
1−min

{
1,
p(fa(y))

p(y)

∣∣∣∣∂fa(y)∂y

∣∣∣∣})]. (70)

The general case p(y, a) = p(a | y)p(y) is called state-depended mixture by (Geyer, 2003).
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B. Special cases of Involutive MCMC
B.1. Metropolis-Hastings algorithm

Algorithm 2 The Metropolis-Hastings algorithm

input density of target distribution p̂(x) ∝ p(x)
input proposal distribution q(x′ |x)

initialize x
for i = 0 . . . n do

sample proposal point x′ ∼ q(x′ |x)
P = min{1, p̂(x

′)q(x | x′)
p̂(x)q(x′ | x) }

xi =

{
x′, with probability P
x, with probability (1− P )

x← xi
end for

output {x0, . . . , xn}

To see that the MH algorithm is an instance of iMCMC, let’s define the joint distribution as p(x, v) = q(v |x)p(x) and the

deterministic map as f(x, v) =
[
0 1
1 0

] [
x
v

]
(note that it is an involution). For that case, we can write iMCMC transition

kernel as

t(x′, v′ |x, v) = δ([x′, v′]− [v, x])min

{
1,
p(x′, v′)

p(x, v)

}
+ δ([x′, v′]− [x, v])

(
1−min

{
1,
p(v, x)

p(x, v)

})
(71)

Then we substitute the last equation into the reduced transition kernel

t̂(x′ |x) =
∫

dvdv′t(x′, v′ |x, v)q(v |x) (72)

t(x′ |x, v) =
∫
dv′ t(x′, v′ |x, v) = δ(x′ − v)min

{
1,
p(x′, x)

p(x, v)

}
+ δ(x′ − x)

(
1−min

{
1,
p(v, x)

p(x, v)

})
(73)

t̂(x′ |x) =
∫
dv t(x′ |x, v)q(v |x) = q(x′ |x)min

{
1,
p(x′)q(x |x′)
p(x)q(x′ |x)

}
+ (74)

+ δ(x′ − x)
∫
dv q(v |x)

(
1−min

{
1,
p(v)q(x | v)
p(x)q(v |x)

})
= qMH(x

′ |x) (75)

The last equation is the kernel of the conventional Metropolis-Hastings algorithm with proposal q(x′ |x).

Note that the following special cases can be obtained by the same involution f(x, v) =
[
0 1
1 0

] [
x
v

]
and different auxiliary

distributions:

• the Random-Walk Metropolis (Metropolis et al., 1953) (auxiliary q(v |x) = q(x | v))

• Metropolis-adjusted Langevin dynamics (Besag, 1994; Roberts & Rosenthal, 1998).

• Any kernel q(v |x) that satisfy the detailed balance (q(v |x)p(x) = q(x | v)p(v))

• Any independent sampler p(x) (auxiliary p(v)).
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B.2. Mixture Proposal MCMC

Algorithm 3 Mixture Proposal MCMC

input density of target distribution p(x)
input mixture proposal distribution

∫
qr(x

′ | a)qf (a |x)da
initialize x
for i = 0 . . . n do

sample a ∼ qf (a |x)
sample x′ ∼ qr(x′ | a)

P = min

{
1,

p(x′)qr(x | a)qf (a | x′)
p(x)qr(x′ | a)qf (a | x)

}
xi =

{
x′, with probability P
x, with probability (1− P )

x← xi
end for

output {x0, . . . , xn}

We formulate the algorithm from the paper (Habib & Barber, 2018) in Algorithm 3. To demonstrate that the iMCMC
formalism includes this algorithm, we take the joint distribution of target variable x and auxiliary variables a, v as
p(x, a, v) = p(x)qr(v | a)qf (a |x). The deterministic involution is f(x, a, v) = [v, a, x]. Then the transition kernel in the
joint space is

t(x′, a′, v′ |x, a, v) = δ([x′, a′, v′]− [v, a, x])min

{
1,
p(x′)qr(v

′ | a′)qf (a′ |x′)
p(x)qr(v | a)qf (a |x)

}
+ (76)

+ δ([x′, a′, v′]− [x, a, v])

(
1−min

{
1,
p(v)qr(x | a)qf (a | v)
p(x)qr(v | a)qf (a |x)

})
. (77)

This transitional kernel is equivalent to the Algorithm 3. Indeed, the probability to accept the proposed state v is the same as
the acceptance probability in Algorithm 3 and the state v goes from the same proposal

∫
da qr(v | a)q(a |x).

To make the equivalence more apparent we derive formula (17) from (Habib & Barber, 2018) by integrating the transition
kernel t(x′, a′, v′ |x, a, v) over the corresponding coordinates. That is

t̂(x′, a′ |x) =
∫
dadv′dv t(x′, a′, v′ |x, a, v)p(a, v |x) = (78)

= qr(x
′ | a′)qf (a′ |x)min

{
1,
p(x′)qr(x | a′)qf (a′ |x′)
p(x)qr(x′ | a′)qf (a′ |x)

}
+ (79)

+ δ(x′ − x)qf (a′ |x)
(
1−

∫
dv qr(v | a′)min

{
1,
p(v)qr(x | a′)qf (a′ | v)
p(x)qr(v | a′)qf (a′ |x)

})
. (80)

Note that if we further marginalize the kernel t̂(x′, a′ |x) over a′ we obtain the kernel

t̂(x′ |x) =
∫
da′ qr(x

′ | a′)qf (a′ |x)min

{
1,
p(x′)qr(x | a′)qf (a′ |x′)
p(x)qr(x′ | a′)qf (a′ |x)

}
+ (81)

+ δ(x′ − x)
(
1−

∫
dvda′ qr(v | a′)qf (a′ |x)min

{
1,
p(v)qr(x | a′)qf (a′ | v)
p(x)qr(v | a′)qf (a′ |x)

})
, (82)

which is not equivalent to the Metropolis-Hastings kernel with the proposal

q̃(v |x) =
∫
da qr(v | a)q(a |x). (83)
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B.3. Multiple-Try Metropolis

Algorithm 4 Multiple-Try Metropolis

input target density p(x), proposal q(y |x), nonnegative symmetric function λ(x, y) = λ(y, x)
input denote weight function w(x, y) = p(x)q(y |x)λ(x, y)

initialize x
for i = 0 . . . n do

sample y1, . . . , yk ∼ q(yj |x)
evaluate weights wj = p(yj)q(x | yj)λ(yj , x), j = 1, . . . , k
set y = yj with probability wj/(

∑
j wj)

sample x∗1, . . . , x
∗
k−1 ∼ q(xj | y)

set x∗k = x

P = min

{
1, w(y1,x)+...+w(yk,x)

w(x∗1 ,y)+...+w(x∗k,y)

}
xi =

{
y, with probability P
x, with probability (1− P )

x← xi
end for

output samples {x0, . . . , xn}

We begin the proof with the recall of the Multiple-Try Metropolis (MTM) algorithm (Algorithm 4). To write MTM as
Involutive MCMC, we consider the joint distribution and the family of involutions as follows.

p(x, y1, . . . , yk, x
∗
1, . . . , x

∗
k−1, j) = p(x)

k∏
i=1

q(yi |x)p(j | y1, . . . , yk, x)
k−1∏
i=1

q(x∗i | yj), (84)

p(j | y1, . . . , yk, x) =
w(yj , x)∑
j w(yj , x)

, w(x, y) = p(x)q(y |x)λ(x, y), j = 1, . . . , k (85)

fj(x, y1, . . . , yk, x
∗
1, . . . , x

∗
k−1, j) = [yj , x

∗
1, . . . , x

∗
j−1, x, x

∗
j , . . . , x

∗
k−1, y1, . . . , yj , yj−1, . . . , yk, j] (86)

That is, based on the value of the auxiliary variable j ∈ {1, . . . , k}, we first swap yj and x, and then we swap the rest
(k − 1) y’s with all of the x∗. Note that for the fixed j that is an involution. To check that iMCMC provides the equivalent
chain, we evaluate the probability to accept yj as the next sample. That is

P = min

{
1,
p(yj)q(x | yj)

∏k−1
i=1 q(x

∗
i | yj)p(j |x∗1, . . . , x∗j−1, x, x∗j , . . . , x∗k−1, yj)

∏k
i=1,i6=j q(yi |x)

p(x)
∏k
i=1 q(yi |x)p(j | y1, . . . , yk, x)

∏k−1
i=1 q(x

∗
i | yj)

}
= (87)

= min

{
1,
p(yj)q(x | yj)p(j |x∗1, . . . , x∗j−1, x, x∗j , . . . , x∗k−1, yj)

p(x)q(yj |x)p(j | y1, . . . , yk, x)

}
= (88)

= min

{
1,

p(yj)q(x | yj)w(x, yj)(
∑k
i=1 w(yi, x))

p(x)q(yj |x)w(yj , x)(
∑k−1
i=1 w(x

∗
i , yj) + w(x, yj))

}
= (89)

= min

{
1,

p(yj)q(x | yj)p(x)q(yj |x)λ(x, yj)(
∑k
i=1 w(yi, x))

p(x)q(yj |x)p(yj)q(x | yj)λ(yj , x)(
∑k−1
i=1 w(x

∗
i , yj) + w(x, yj))

}
= (90)

= min

{
1,

w(y1, x) + . . .+ w(yk, x)

w(x∗1, y) + . . .+ w(x∗k−1, y) + w(x, y)

}
. (91)

Note that the distribution of y’s and j is the same as in Algorithm 4, hence, the probability to generate proposal yj is the
same, as well as the probability to accept this proposal.
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B.4. Sample-Adaptive MCMC

Algorithm 5 Sample-Adaptive MCMC

input target density p(x), integer N , aggregation function g(x1, . . . , xN ), proposal q
(
xN+1

∣∣∣∣g(x1, . . . , xN )

)
samples = ∅
initialize set S = {x1, . . . , xN}
for i = 0 . . . n do

sample xN+1 ∼ q
(
xN+1

∣∣∣∣g(S))
define S−i = (S with xi replaced with xN+1), S−(N+1) = S

evaluate λi = q

(
xi

∣∣∣∣g(S−i))/p(xi), i = 1, . . . , N + 1

set j = i with probability λi/(
∑N+1
i=1 λi)

S ← S−j
samples = samples ∪ S

end for
output samples

We begin the proof with the recall of the Sample-Adaptive MCMC (SA-MCMC) algorithm (Algorithm 5). In Algorithm 5,
the output of function g does not depend on the order of arguments, i.e. g(x) = g(π(x)), where π is an arbitrary permutation
of arguments.

To write SA-MCMC as Involutive MCMC, we consider the joint distribution and the family of involutions as follows.

p(x1, . . . , xN+1, j) =

N∏
i=1

p(xi)q(xN+1 | g(x1, . . . , xN ))p(j |x1, . . . , xN+1), (92)

p(j |x1, . . . , xN+1) =
λj

(
∑N+1
j=1 λj)

, λj = q(xj | g(S−j))/p(xj), j = 1, . . . , N + 1 (93)

fj(x1, . . . , xN+1, j) = f(x1, . . . , xj−1, xN+1, xj+1, . . . , xN , xj , j) (94)

Here S−j is the current set of samples S = {x1, . . . , xN}, where xj is replaced with xN+1, and S−(N+1) = S. The
involution family operates as follows. Based on the value of the auxiliary variable j ∈ {1, . . . , N + 1}, we swap xj and
xN+1 and leave the rest of arguments untouched. For the fixed j, such function is an involution. One more important
thing to note is that now our target distribution is the product

∏N
i=1 p(xi). To demonstrate that SA-MCMC is equivalent to

Involutive MCMC with aforementioned distribution and involutions, we evaluate the probability to accept the point proposed
by fj .

P = min

{
1,
p(xN+1)

∏N
i=1,i6=j p(xi)q(xj | g(S−j))p(j |S−j , xj)∏N

i=1 p(xi)q(xN+1 | g(S))p(j |S, xN+1)

}
= min

{
1,
p(xN+1)q(xj | g(S−j))p(j |S−j , xj)
p(xj)q(xN+1 | g(S))p(j |S, xN+1)

}
(95)

Now we define S′ = S−j and S′−i ← (S′ with i-th element replaced by xj). If we neglect the order of elements, then
S′−i = S−i for i 6= j, S′−j = S and S′−(N+1) = S−j . Using the fact that the order of arguments in the aggregation function
g(·) does not matter, we obtain

p(j |S−j , xj) =
q(xN+1 | g(S))

p(xN+1)

(
q(xN+1 | g(S))/p(xN+1) +

∑N
i=1,i6=j q(xi | g(S−i))/p(xi) + q(xj | g(S−j))/p(xj)

) (96)

=
q(xN+1 | g(S))

p(xN+1)

(∑N+1
i=1 q(xi | g(S−i))/p(xi)

) (97)
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Putting this equation into (95), we obtain

P = min

{
1,

q(xj | g(S−j))

p(xj)p(j |S, xN+1)

(∑N+1
i=1 q(xi | g(S−i))/p(xi)

)} = 1. (98)

Thus, generating the auxiliary variable j we accept the point fj(x1, . . . , xN+1, j) with probability 1. Since the distribution
of j and the corresponding point fj(x1, . . . , xN+1, j) are the same as in Algorithm 5, we have obtained the equivalent
scheme in terms of Involutive MCMC.

B.4.1. GENERALIZATION OF SAMPLE-ADAPTIVE MCMC

From the equations above it is easy to discard the permutation-invariance property of g(. . .). Then we just denote S to be an
ordered array S = [x1, . . . , xN ] instead of a set, and accept the proposed swap with probability

Pj = min

{
1,
p(xN+1)q(xj |S−j)p(j |S−j , xj)
p(xj)q(xN+1 |S)p(j |S, xN+1)

}
. (99)

Then the pseudo-code of the algorithm slightly changes (see Algorithm 6).

Algorithm 6 Generalized Sample-Adaptive MCMC

input target density p(x), integer N , proposal q
(
xN+1

∣∣∣∣x1, . . . , xN)
samples = ∅
initialize array S = [x1, . . . , xN ]
for i = 0 . . . n do

sample xN+1 ∼ q
(
xN+1

∣∣∣∣S)
define S−i = S( with xi replaced by xN+1), S−(N+1) = S

evaluate λi = q

(
xi

∣∣∣∣S−i)/p(xi), i = 1, . . . , N + 1

set j = i with probability λi/(
∑N+1
i=1 λi)

evaluate acceptance probability P = min

{
1,

p(xN+1)q(xj |S−j)p(j |S−j ,xj)
p(xj)q(xN+1 |S)p(j |S,xN+1)

}
S ←

{
S−j , with probability P
S, with probability (1− P )

samples = samples ∪ S
end for

output samples
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B.5. Reversible-Jump MCMC

B.5.1. REVERSIBLE-JUMP MCMC FROM (GREEN & HASTIE, 2009)

Algorithm 7 Reversible-Jump MCMC from (Green & Hastie, 2009)

input target density p(x(k), k), auxiliary distributions q(u |m) and q′(u |m), move functions hm(x, u)
initialize state = [x(k), k]
for i = 0 . . . n do

unpack [x(k), k]← state
sample move type m ∼ p(m |x(k), k)
sample auxiliary u ∼ q(u |m)
move type m defines k′

evaluate [x(k
′), u′] = hm(x(k), u)

evaluate P = min

{
1, p(x

(k′),k′)p(m | x(k′),k′)q′(u′ |m)
p(x(k),k)p(m | x(k),k)q(u |m)

∣∣∣∣ ∂hm

∂[x(k),u]

∣∣∣∣}
accept state←

{
[x(k

′), k′], with probability P
[x(k), k], with probability (1− P )

statei ← state
end for

output samples {state0, . . . , staten}

Reversible-Jump MCMC (Green, 1995) has multiple formulations, which vary significantly both in notation used and in the
sampling procedure. Here we choose to stay close to (Green & Hastie, 2009) for illustrative purposes (see pseudo-code
in Algorithm 7). Note that the move type m index both models k and k′, as well as the smooth map hm. Indeed, for a
proper scheme, auxiliary distributions q′(u |m) and q(u |m) are defined such that the dimension of [x(k), u] matches the
dimension of [x(k

′), u′] and the dimension for the input of hm.

To describe Algorithm 7 in terms of iMCMC, we consider the joint distribution:

p(x, k,m, u) = p(x(k), k)p(m |x(k), k)p(u |m, k), (100)

where we define p(u |m, k) such that for the move type m that goes from k to k′ we have p(u |m, k) = q(u |m) and
p(u |m, k′) = q′(u |m). We can do it because m defines both models k and k′. The family of involutions is then defined as
follows.

fm(x(k), u, k) = [hm(x(k), u), k′] = [x(k
′), u′, k′], fm(x(k

′), u′, k′) = [h−1m (x(k
′), u′), k] = [x(k), u, k] (101)

Here index m choose such involution that map model index k to k′ and vice versa. As well as in (Green & Hastie, 2009),
mapping from k′ to k we apply the inverse h−1m . For a concrete example of move types and functions hm, we refer the
reader to Section 3 of (Green & Hastie, 2009). The acceptance probability then is in total agreement with Algorithm 7:

P = min

{
1,
p(x(k

′), k′)p(m |x(k′), k′)q′(u′ |m)

p(x(k), k)p(m |x(k), k)q(u |m)

∣∣∣∣ ∂hm
∂[x(k), u]

∣∣∣∣}. (102)

B.5.2. ANOTHER FORMULATION

In the previous section, we encapsulate the knowledge about the next proposed model in the index m. However, the
formulation becomes more transparent if we sample the index of the next proposed model explicitly. The following
algorithm can be seen as a more general version of the formulation of Reversible-Jump MCMC from (Gagnon & Doucet,
2019). That is, consider the joint distribution

p(x, k, j, u) = p(x(k), k)p(j |x(k), k)p(u(k) |x(k), k, j), (103)

where j is the index of the next model. Here we add superscripts for u to highlight that the choice of auxiliary variables relies
on the current model k. Usually this is done such that all vectors lie in the same vector space, i.e. [x(k), u(k)] ∈ Rd ∀k. The
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involution f then is

f(x(k), u(k), k, j) = [hkj(x
(k), u(k)), j, k] = [x(j), u(j), j, k], hjk(x

(j), u(j)) = h−1kj (x
(j), u(j)) = [x(k), u(k)]. (104)

Here the involution f maps [x, u] based on the indeces of the current model k and the next model j. Note that mapping from
k to j via hkj we are obliged to perform the inverse map hjk using the inverse function h−1kj . The acceptance probability is
then

P = min

{
1,
p(x(j), j)p(k |x(j), j)p(u(j) |x(j), j, k)
p(x(k), k)p(j |x(k), k)p(u(k) |x(k), k, j)

∣∣∣∣ ∂hkj
∂[x(k), u(k)]

∣∣∣∣}. (105)

See the pseudo-code in Algorithm 8. Note that unlike Algorithm 7, here we have a single smooth map from model k to
model j. This limitation can be easily removed via Trick 2 by considering the family of involutions

fm(x(k), u(k), k, j) = [hmkj(x
(k), u(k)), j, k] = [x(j), u(j), j, k], hmjk(x

(j), u(j)) = h−1mkj(x
(j), u(j)) = [x(k), u(k)],

(106)

where we can sample index m conditioned on the current state [x(k), u(k), k, j].

Finally, we discuss the usage of Tricks from Section 3 here. Trick 2 is explicitly used here when we define a family of
involutions and stochastically choose one from the family. The auxiliary direction from Trick 3 here is in the form of indices
k and j, which define the smooth map hkj and its inverse hjk = h−1kj . Trick 1 can be found here if we define the target
distribution as

p(x(k), u(k), k) = p(x(k), k)p(u(k) |x(k), k), (107)

in order to match the dimensions of all models [x(k), u(k)] ∈ Rd ∀k. As well as in Trick 1, we sample from extended
distribution p(x(k), u(k), k), and then discard all u(k).

Algorithm 8 Reversible-Jump MCMC

input target density p(x(k), k), distribution of next models p(j |x(k), k), auxiliary distributions p(u(k) |x(k), k, j)
initialize state = [x(k), k]
for i = 0 . . . n do

unpack [x(k), k]← state
sample next model j ∼ p(j |x(k), k)
sample auxiliary u(k) ∼ p(u(k) |x(k), k, j)
propose [x(j), u(j)] = hkj(x

(k), u(k))

evaluate P = min

{
1, p(x

(j),j)p(k | x(j),j)p(u(j) | x(j),j,k)
p(x(k),k)p(j | x(k),k)p(u(k) | x(k),k,j)

∣∣∣∣ ∂hkj

∂[x(k),u(k)]

∣∣∣∣}
accept state←

{
[x(j), j], with probability P
[x(k), k], with probability (1− P )

statei ← state
end for

output samples {state0, . . . , staten}
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B.6. Hybrid Monte Carlo

Algorithm 9 Hybrid Monte Carlo

input joint density p(x, v) = p(x)p(v), auxiliary distribution p(v) = N (v | 0, 1), number of Leap-Frog steps k, step size ε
initialize x
for i = 0 . . . n do

sample v ∼ N (v | 0, 1)
propose [x′, v′] = FLk(x, v)

evaluate P = min{1, p(x
′,v′)

p(x,v) }

accept x←

{
x′, with probability P
x, with probability (1− P )

xi ← x
end for

output {x0, . . . , xn}

Hybrid Monte Carlo (Duane et al., 1987) relies on the numerical integration of Hamiltonian dynamics via the Leap-Frog
operator L. For target density p(x), the Hamiltonian is defined as H(x, v) = − log p(x, v), where p(x, v) = p(x)p(v) is the
joint distribution, and p(v) = N (v | 0, 1) is the auxiliary distribution. In the case of independent v (i.e., p(x, v) = p(x)p(v)),
the Leap-Frog operator L : [x(t), v(t)]→ [x(t+ ε), v(t+ ε)] is defined as follows.

v(t+ ε/2) =v(t)− ε

2
∇x(− log p(x(t))) (108)

x(t+ ε) =x(t) + ε∇v(− log p(v(t+ ε/2))) (109)

v(t+ ε) =v(t+ ε/2)− ε

2
∇x(− log p(x(t+ ε))) (110)

Flip operator F denotes the negation of the auxiliary variable (momentum) v: F : [x, v]→ [x,−v]. These operators together
yields the involutive map FL, which is used in Algorithm 9. To demonstrate this, we demonstrate that FLFL = 1, i.e.
double application of the operator FL results in identity function.

v(t+ ε/2) =v(t)− ε

2
∇x(− log p(x(t))) (111)

x(t+ ε) =x(t) + ε∇v(− log p(v(t+ ε/2))) (112)

v(t+ ε) =v(t+ ε/2)− ε

2
∇x(− log p(x(t+ ε))) (113)

v(t+ 3/2ε) =− v(t+ ε)− ε

2
∇x(− log p(x(t+ ε))) = −v(t+ ε/2) (114)

x(t+ 2ε) =x(t+ ε) + ε∇v(− log p(v(t+ 3/2ε))) = x(t) (115)

v(t+ 2ε) =v(t+ 3/2ε)− ε

2
∇x(− log p(x(t+ 2ε))) = −v(t) (116)

Note that here we greatly rely on the symmetry p(v) = p(−v). After the last equation we negate the momentum variable
once again yielding FLFL : [x(t), v(t)]→ [x(t), v(t)]. Note that having FLFL = 1 we can easily obtain the inverse of
the Leap-Frog operator L−1 = FLF . Using the formula for the inverse Leap-Frog we have

FLkFLk = FLkFLFFLk−1 = FLk−1FLk−1 = . . . = FLFL = 1. (117)

Thus, an arbitrary number of L can be composed in the involution FLk.

Using the involution FLk, the formulation of HMC in terms of iMCMC is now straightforward. Consider the joint
distribution p(x, v) = p(x)N (v | 0, 1) and the involutive function FLk, the acceptance probability according to iMCMC
(Algorithm 1) is then

P = min

{
1,
p(FLk(x, v))

p(x, v)

∣∣∣∣ ∂FLk∂[x, v]

∣∣∣∣}. (118)
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Finally, it is easy to see that FLk is volume-preserving since the transformations on the each step of L are volume-preserving,
e.g. (108) maps [x(t), v(t)]→ [x(t), v(t+ ε/2)] since it is an identity map w.r.t. x(t), and |∂v(t+ ε/2)/∂v(t)| = 1 it is
volume-preserving.

Another possible way to represent HMC in terms of iMCMC is to use Trick 3 and introduce the directional variable
p(d) = Uniform{−1,+1}. Then the involutive map is defined as

f(x, v, d) = [Td(x, v),−d], Td=+1 = L, Td=−1 = L−1. (119)

This formulation allow for a more general formulation that does not rely on the symmetry p(v) = p(−v) as HMC. Indeed,
the inverse Leap-Frog operator L−1 can be obtained just by the inversion of the time:

v(t− ε/2) =v(t) + ε

2
∇x(− log p(x(t))) (120)

x(t− ε) =x(t)− ε∇v(− log p(v(t− ε/2))) (121)

v(t− ε) =v(t− ε/2) + ε

2
∇x(− log p(x(t− ε))) (122)

B.7. RMHMC

Algorithm 10 Riemann Manifold HMC

input joint density p(x, v), auxiliary distribution p(v) = N (v | 0, G(x)), number of Leap-Frog steps k, step size ε
initialize x
for i = 0 . . . n do

sample v ∼ N (v | 0, G(x))
propose [x′, v′] = FLk(x, v)

evaluate P = min{1, p(x
′,v′)

p(x,v) }

accept x←

{
x′, with probability P
x, with probability (1− P )

xi ← x
end for

output {x0, . . . , xn}

In Riemann Manifold HMC (Girolami & Calderhead, 2011), the authors propose to take into account the “curvature” of the
space during sampling by considering the following Hamiltonian

H(x, v) = − log p(x) + 1
2 log |G(x)|+

1
2v
TG(x)−1v. (123)

As you can see from Algorithm 10, the pseudo-code for RMHMC is almost the same as for HMC (see B.6). The key
difference between them is the integration operator L. Since the Hamiltonian H(x, v) is not separable, we need to use the
implicit numerical scheme to guarantee volume-preserving and involutive properties. The integration operator L is defined
as follows.

v(t+ ε/2) = v(t)− ε

2
∇xH(x(t), v(t+ ε/2)) (124)

x(t+ ε/2) = x(t) +
ε

2
∇vH(x(t), v(t+ ε/2)) (125)

x(t+ ε) = x(t+ ε/2) +
ε

2
∇vH(x(t+ ε), v(t+ ε/2)) (126)

v(t+ ε) = v(t+ ε/2)− ε

2
∇xH(x(t+ ε), v(t+ ε/2)) (127)

The involution can be constructed as FL, where F is the negation of v: F : [x, v] → [x,−v]. To demonstrate this, we
integrate further in time from [x(t+ ε),−v(t+ ε)] obtaining FLFL = 1 (double application yields identity function). That
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is, applying step (124), we get

v(t+ 3/2ε) = −v(t+ ε)− ε

2
∇xH(x(t+ ε), v(t+ 3/2ε)) (128)

v(t+ ε) = −v(t+ 3/2ε)− ε

2
∇xH(x(t+ ε),−v(t+ 3/2ε)) =⇒ −v(t+ 3/2ε) = v(t+ ε/2) (129)

(130)

Here we use ∇xH(x, v) = ∇xH(x,−v). Further, applying step (125), we get

x(t+ 3/2ε) = x(t+ ε) +
ε

2
∇vH(x(t+ ε), v(t+ 3/2ε)) = x(t+ ε/2), (131)

where we use ∇vH(x,−v) = −∇vH(x, v). The last two steps (126) and (127) follow the same logic.

x(t+ 2ε) = x(t+ 3/2ε) +
ε

2
∇vH(x(t+ 2ε), v(t+ 3/2ε)) = x(t) (132)

v(t+ 2ε) = v(t+ 3/2ε)− ε

2
∇xH(x(t+ 2ε), v(t+ 3/2ε)) = −v(t) (133)

Further negation of −v(t) results in the initial point [x(t), v(t)]. Thus, FL is an involution (FLFL = 1) and FLk is also
an involution:

FLkFLk = FLk−1F (FLFL)Lk−1 = FLk−1FLk−1 = . . . = 1. (134)

Using the involution FLk, the formulation of RMHMC in terms of iMCMC is now straightforward. Consider the joint
distribution p(x, v) = p(x)N (v | 0, G(x)) and the involutive function FLk, the acceptance probability according to iMCMC
(Algorithm 1) is then

P = min

{
1,
p(FLk(x, v))

p(x, v)

∣∣∣∣ ∂FLk∂[x, v]

∣∣∣∣}. (135)

Finally, it is easy to see that FLk is volume-preserving. For illustrative purposes, we evaluate the Jacobian of the first two
steps (124) and (125).

∂x(t+ ε/2)

∂x(t)
= 1 +

ε

2
∇vxH(x(t), v(t+ ε/2)) +

ε

2
∇vvH(x(t), v(t+ ε/2))

∂v(t+ ε/2)

∂x(t)
(136)

∂x(t+ ε/2)

∂v(t)
=
ε

2
∇vvH(x(t), v(t+ ε/2))

∂v(t+ ε/2)

∂v(t)
(137)

∂v(t+ ε/2)

∂x(t)
= −ε

2
∇xxH(x(t), v(t+ ε/2)) (138)

∂v(t+ ε/2)

∂v(t)
= 1− ε

2
∇xvH(x(t), v(t+ ε/2))

∂v(t+ ε/2)

∂v(t)
(139)

∣∣∣∣ ∂FLk∂[x, v]

∣∣∣∣ = (1 + ε

2
∇vxH(x(t), v(t+ ε/2))

)
∂v(t+ ε/2)

∂v(t)
= 1 (140)
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B.8. NeuTra

Algorithm 11 NeuTra

input target density px(x), auxiliary density p(v) = N (v | 0, 1), flow T (x)
initialize z
for i = 0 . . . n do

sample v ∼ p(v) = N (v | 0, 1)
propose [z′, v′] = FLk(z, v), where the target density for Leap-Frog is pz(z, v) = px(T (z))|∂T∂z |p(v)

evaluate P = min

{
1, pz(z

′,v′)
pz(z,v)

}
accept x←

{
z′, with probability P
z, with probability (1− P )

xi ← T (z)
end for

output samples {x0, . . . , xn}

In the recent paper (Hoffman et al., 2019), the authors learn an invertible transformation T−1 : X → Z to map the target
random variable x ∈ X with the density px(x) into another random variable z ∈ Z, which has more simple geometry of
density levels. Further, they run HMC in Z with the target density pz(z) = px(T (z))|∂T/∂z|. Finally, one can obtain
samples in the original space X by mapping the collected samples using T : Z → X . We provide the pseudo-code in
Algorithm 11.

A straightforward application of Trick 4 allows for iMCMC formulation of NeuTra. That is, the joint distribution is just the
same as in HMC

p(x, v) = px(x)N (v | 0, 1). (141)

For the involutive map, we take

f(x, v) =

[
T
1

]
◦ F ◦ Lk ◦

[
T−1

1

] [
x
v

]
, (142)

where F is the velocity flip operator, L is the Leap-Frog, and the notation
[
T−1

1

] [
x
v

]
means element-wise application

(x, v)→ (T−1(x), v). Note that the only necessary condition for the operators L and F is the (F ◦ Lk)−1 = F ◦ Lk. Then,
by the straightforward evaluation f(f(x, v)) we can see that f is an involution. To obtain an equivalent sampler to NeuTra
we choose the joint density for L as p(z, v) = px(T (z))|∂T/∂z|p(v). Thus, we obtain the same dynamics in Z. However,
note that iMCMC assumes the acceptance test in the original space X , while NeuTra performs the acceptance test in Z.
Nevertheless, for an initial point x and the velocity v ∼ p(v), Algorithm 1 gives us the following acceptance test

P = min

{
1,
p(f(x, v))

p(x, v)

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}, f(x, v) =

[
T
1

]
◦ F ◦ Lk ◦

[
T−1

1

] [
x
v

]
(143)

Using the chain rule, we have∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣ = ∣∣∣∣∂T∂y
∣∣∣∣
y=FLkT−1(x)

∣∣∣∣∂T−1∂x

∣∣∣∣ = ∣∣∣∣∂T∂y
∣∣∣∣
y=FLkT−1(x)

∣∣∣∣∂T∂y
∣∣∣∣−1
y=T−1(x)

(144)

Denoting z = T−1(x), and [z′, v′] = FLk(z, v), we have

P = min

{
1,
px(T (z

′))p(v′)

px(T (z))p(v)

∣∣∣∣∂T∂y
∣∣∣∣
y=z′

∣∣∣∣∂T∂y
∣∣∣∣−1
y=z

}
= min

{
1,
pz(z

′, v′)

pz(z, v)

}
. (145)

Thus, we obtain the same acceptance probability, and, hence, equivalent kernel to Algorithm 11.
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B.9. A-NICE-MC

Algorithm 12 A-NICE-MC

input target density p(x, v) = p(x)N (v | 0, 1), NICE-proposal T (x, v) and T−1(x, v)
initialize x
for i = 0 . . . n do

sample v ∼ N (v | 0, 1)
sample d ∼ Uniform{−1,+1}
propose [x′, v′] = Td(x, v), where Td=+1 = T and Td=−1 = T−1

evaluate P = min

{
1, p(x

′,v′)
p(x,v)

}
accept x←

{
x′, with probability P
x, with probability (1− P )

xi ← x
end for

output samples {x0, . . . , xn}

We recall A-NICE-MC (Song et al., 2017) in Algorithm 12. The core part of the algorithm is the volume-preserving NICE
proposal T (x, v), which is learned before the sampling. Trick 3 with directional variable d allows for a straightforward
formulation of A-NICE-MC in terms of iMCMC. Consider the joint distribution

p(x, v, d) = p(x)N (v | 0, 1)p(d), p(d) = Uniform{−1,+1}, (146)

and the involution

f(x, v, d) = [Td(x, v),−d], Td=+1 = T, Td=−1 = T−1. (147)

Then it is easy to see that the acceptance probability of iMCMC (Algorithm 1) is the same as the probability P in Algorithm
12.

B.10. L2HMC

Algorithm 13 L2HMC

input target density p(x, v) = p(x)N (v | 0, 1), proposal T (x, v) and T−1(x, v)
initialize x
for i = 0 . . . n do

sample v ∼ N (v | 0, 1)
sample d ∼ Uniform{−1,+1}
propose [x′, v′] = Td(x, v), where Td=+1 = T and Td=−1 = T−1

evaluate P = min

{
1, p(x

′,v′)
p(x,v)

∣∣∣∣∂Td(x,v)
∂[x,v]

∣∣∣∣}
accept x←

{
x′, with probability P
x, with probability (1− P )

xi ← x
end for

output samples {x0, . . . , xn}

We recall L2HMC (Levy et al., 2017) in Algorithm 13. The core part of the algorithm is the proposal T (x, v), which is
learned before the sampling. The only two differences with A-NICE-MC (see B.9) is the form of proposal T (in L2HMC it
is not volume-preserving) and the way the proposals are learned. Since here we do not consider the training stage, we can
say that the only difference between A-NICE-MC and L2HMC is the Jacobian of deterministic transformation in the test.
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Trick 3 with directional variable d allows for a straightforward formulation of L2HMC in terms of iMCMC. Consider the
joint distribution

p(x, v, d) = p(x)N (v | 0, 1)p(d), p(d) = Uniform{−1,+1}, (148)

and the involution

f(x, v, d) = [Td(x, v),−d], Td=+1 = T, Td=−1 = T−1. (149)

Then it is easy to see that the acceptance probability of iMCMC (Algorithm 1) is the same as the probability P in Algorithm
13.

B.11. HMC with persistent momentum

Algorithm 14 HMC with persistent momentum

input target density p(x), auxiliary distribution p(v) = N (v | 0, 1), number of Leap-Frog steps k, hyperparameter α
initialize x, v
for i = 0 . . . n do

update v ← v
√
1− α2 + αε, ε ∼ N (ε | 0, 1)

propose [x′, v′] = FLk(x, v)

evaluate P = min{1, p(x
′,v′)

p(x,v) }

accept [x, v]←

{
[x′, v′], with probability P
[x, v], with probability (1− P )

xi ← x
v ← −v

end for
output {x0, . . . , xn}

The HMC algorithm with persistent momentum (Horowitz, 1991) is usually formulated as in Algorithm 14. The iMCMC
formulation of this algorithm can be derived in two ways. One of the ways is to apply Trick 5, we return to it further
during the discussion of the generalization of Algorithm 14. For illustrative purposes, we firstly describe a straightforward
way where we use involution FLk as a proposal, and compose it with another two iMCMC kernels. The first kernel
t1(x

′, v′, a′ |x, v, a) preserves the joint distribution p(x, v, a) = p(x)p(v)p(a | v), where p(v) = N (v | 0, 1), and p(a | v) =
N (a | v

√
1− α2, α2). Note that using the involution f1(x, v, a) = [x, a, v] that just swaps v and a we accepting the new

state [x, a, v] with probability 1. Indeed,

P1 =

{
1,
p(x)N (a | 0, 1)N (v | a

√
1− α2, α2)

p(x)N (v | 0, 1)N (a | v
√
1− α2, α2)

}
= 1. (150)

The second kernel t2(x′, v′ |x, v) is equivalent to vanilla HMC algorithm with the joint distribution p(x, v) = p(x)N (v | 0, 1)
and the involution f2(x, v) = FLk(x, v). The third kernel t3(x′, v′ |x, v) is equivalent to the flip kernel from Trick 5, i.e.
iMCMC with the joint distribution p(x, v) = p(x)N (v | 0, 1) and the involution f2(x, v) = [x,−v]. Note that the last kernel
preserves the distribution without any test since p(x, v) = p(x,−v).

The obtained composition of iMCMC kernels greatly relies on the fact that p(x,−v) = p(x, v), as well as the original
proof (Horowitz, 1991). However, using the Trick 5 we can straightforwardly obtain a generalization of this algorithm
as depicted in Algorithm 15. The key idea here is to use an additional directional variable d ∼ Uniform{−1,+1} and
involution f(x, v, d) = [Td(x, v),−d], where Td=+1(x, v) = Lk(x, v), and Td=−1(x, v) = L−k(x, v), where L−1 is the
Leap-Frog inverted in time. Then we can flip the direction d as in Trick 5 since p(d) = p(−d). In the case p(v) = p(−v),
and the choice of t1(v′ | v) as in Algorithm 14, we obtain the algorithm equivalent to Algorithm 14. Note that in Algorithm
15 we consider the case p(x, v) = p(x)p(v) only to be able to apply the explicit version of the Leap-Frog integrator, the
same logic applies for implicit integrators as used in RMHMC (Appendix B.7).
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Algorithm 15 Generalized HMC with persistent momentum

input target density p(x), auxiliary distribution p(v), number of Leap-Frog steps k
input iMCMC kernel t1(v′ | v) for updating v

initialize x, v, d
for i = 0 . . . n do

update v ∼ t1(· | v)
propose [x′, v′, d′] = [Td(x, v),−d], where Td=+1(x, v) = Lk(x, v), and Td=−1(x, v) = L−k(x, v)

evaluate P = min{1, p(x
′,v′)

p(x,v) }

accept [x, v, d]←

{
[x′, v′, d′], with probability P
[x, v, d], with probability (1− P )

flip the direction d← −d
xi ← x

end for
output {x0, . . . , xn}

B.12. Gibbs sampling

Algorithm 16 Gibbs sampling

input conditional densities p(xk | . . . , xk−1, xk+1, . . .) of the target distribution p(x1, . . . , xn)
initialize x = (x1, . . . , xn)
for i = 0 . . . N do

for k = 0 . . . d do
sample x′k ∼ p(x′k | . . . , x′k−1, xk+1, . . .)

end for
x[i]← (x′1, . . . , x

′
n)

x← x[i]
end for

output {x[0], . . . , x[N ]}

Algorithm 16 describes the Gibbs sampling. Further, we formulate it as the composition of iMCMC kernels, where each
kernel is a single step of the inner loop of Algorithm 16. That is, for the transition kernel tk(xk |xk−1) we define the joint
distribution as

p(x1, . . . , xn, vk) = p(x1, . . . , xn)p(vk | . . . , xk−1, xk+1, . . .), (151)

and the involutive map f as

f(x1, . . . , xn, vk) = [x1, . . . , xk−1, vk, xk+1, . . . , xn, xk]. (152)

It swaps xk with vk and leaves the rest of the variables untouched. The acceptance probability of such a proposal is

P = min

{
1,
p(x1, . . . xk−1, vk, xk+1, . . . , xn)p(xk | . . . , xk−1, xk+1, . . .)

p(x1, . . . , xn)p(vk | . . . , xk−1, xk+1, . . .)

}
= 1. (153)

Thus, every proposed point will be accepted and we update variables one by one as in the Gibbs sampling. The resulted
kernel is

t(xn |x0) =
∫ n−1∏

k=1

dxk
n∏
k=1

tk(x
k |xk−1). (154)

Another way to describe the Gibbs sampling is to use Trick 5. Consider the augmented distribution p(x1 . . . xn)p(k)p(d),
where p(k) = Uniform{1, . . . , n}, and p(d) = Uniform{−1,+1}. Taking the auxiliry distribution as p(v |x1 . . . xn, k) =
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p(v | . . . , xk−1, xk+1, . . .), we set the involution as

f(x1, . . . , xn, v, k, d = +1) = [x1, . . . , xk−1, v, xk+1, . . . , xn, xk, k + 1,−1], (155)
f(x1, . . . , xn, v, k, d = −1) = [x1, . . . , xk−2, v, xk, . . . , xn, xk−1, k − 1,+1], (156)

That is, moving in the positive direction we swap xk and v, increment k → k + 1 mod n and flip the directional variable
d→ −d, whereas moving in the negative direction we xk−1 and v, decrease k → k − 1 mod n and also flip the directional
variable d → −d. The acceptance probability of such iMCMC kernel is 1. Composing this kernel with the flip of the
direction as in Trick 5, we obtain a composition of kernels, which every n-th sample equals to the samples from Algorithm
16.

B.13. Look Ahead HMC

Algorithm 17 Look Ahead HMC

input target density p(x), auxiliary distribution p(v) = N (v | 0, 1), hyperparameter α
initialize x, v
for i = 0 . . . n do

update v ← v
√
1− α2 + αε, ε ∼ N (ε | 0, 1)

evaluate πk = min

{
1−

∑
j<k πj(x, v),

p(FLk(x,v))
p(x,v)

(
1−

∑
j<k πj(FL

k(x, v))

)}
accept [x, v]←

{
Lk(x, v), with probability πk(x, v)
[x,−v], with probability (1−

∑
k πk(x, v))

xi ← x
end for

output {x0, . . . , xn}

The Look Ahead HMC algorithm (Sohl-Dickstein et al., 2014) operates by proposing several points for acceptance, which
are evaluated with different number of steps in the Leap-Frog integrator (see Algorithm 17). The iMCMC formulation of
Look Ahead HMC is similar to the formulation of Horowitz’s algorithm (see Appendix B.11). The key feature of Look
Ahead HMC is that it use a mixture of involutions in the intermediate kernel.

To describe Look Ahead HMC, we use the following composition of iMCMC kernels. The first kernel
t1(x

′, v′, a′ |x, v, a) preserves the joint distribution p(x, v, a) = p(x)p(v)p(a | v), where p(v) = N (v | 0, 1), and
p(a | v) = N (a | v

√
1− α2, α2). Note that using the involution f1(x, v, a) = [x, a, v] that just swaps v and a we ac-

cepting the new state [x, a, v] with probability 1. Indeed,

P1 =

{
1,
p(x)N (a | 0, 1)N (v | a

√
1− α2, α2)

p(x)N (v | 0, 1)N (a | v
√
1− α2, α2)

}
= 1. (157)

The second kernel t2(x′, v′, k′ |x, v, k) preserves the joint distribution

p(x, v, k) = p(x, v)p(k |x, v), p(k |x, v) = 1−
∑
j<k

πj(x, v), k = 1, . . . ,K, p(0 |x, v) = 1−
K∑
k=1

πk(x, v) (158)

πk(x, v) = min

{
1−

∑
j<k

πj(x, v),
p(FLk(x, v))

p(x, v)

(
1−

∑
j<k

πj(FL
k(x, v))

)}
, (159)

where p(k |x, v) defines the index of involution that we apply on the current step. To be more precise, k defines the number
of Leap-Frog steps:

fk(x, v) = FLk(x, v). (160)
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The probability to accept FLk(x, v) is then

P = min

{
1,
p(FLk(x, v))p(k |FLk(x, v))

p(x, v)p(k |x, v)

}
p(k |x, v) = min

{
p(k |x, v), p(FL

k(x, v))

p(x, v)
p(k |FLk(x, v))

}
= (161)

= min

{
1−

∑
j<k

πj(x, v),
p(FLk(x, v))

p(x, v)

(
1−

∑
j<k

πj(FL
k(x, v))

)}
= πk(x, v) (162)

The third kernel t3(x′, v′ |x, v) simply negates the auxiliary variable v. That is without any resampling, we just apply
f3(x, v) = [x,−v]. Composing all the kernels together we obtain the chain that is equivalent to Algorithm 17.

In the formulation above the sign of v plays the role of directional variable d from Trick 5. However, the same can be done
explicitly by considering involutions

fk(x, v, d = +1) = [Lk(x, v),−d], fk(x, v, d = −1) = [FLkF (x, v),−d] (163)

in the kernel t2(x′, v′, k′ |x, v, k), where p(d) = Uniform{−1,+1}.

Further, this Look Ahead technique can be generalized to the case of arbitrary functions T by considering the following
family of involutions

fk(x, v, d = +1) = [T k(x, v),−d], fk(x, v, d = −1) = [T−k(x, v),−d]. (164)

B.14. Non-Reversible Jump

Algorithm 18 Non-Reversible Jump

input target density p(x(k), k), auxiliary distributions qk→k′(u(k)), smooth maps Tk→k′(x(k), u(k))
initialize state = [x(k), k, ν]
for i = 0 . . . n do
u ∼ Uniform[0, 1]
if u ≤ τ then

update x(k) staying in the same model k and fixing the direction ν
else

unpack [x(k), k, ν]← state
k′ = k + ν
sample auxiliary u(k) ∼ qk→k′(u(k))
propose [x(k

′), u(k
′)] = Tk→k′(x

(k), u(k))

evaluate P = min

{
1, p(x

(k′),k′)qk′→k(u
(k′))

p(x(k),k)qk→k′ (u
(k))

∣∣∣∣ ∂Tk→k′
∂[x(k),u(k)]

∣∣∣∣}
accept state←

{
[x(k

′), k′, ν], with probability P
[x(k), k,−ν], with probability (1− P )

end if
statei ← state

end for
output samples {state0, . . . , staten}

We provide the pseudo-code for Non-Reversible Jump scheme (Gagnon & Doucet, 2019) in Algorithm 18. Further, we
describe this algorithm in terms of iMCMC using Trick 5. To build the first kernel t1(· | ·), we consider the following joint
distribution

p(x(k), u(k), v(k), k, ν,m) = p(x(k), k)p(ν)p(u(k) | k, ν)p(m)p(v(k) | k), (165)

where p(ν) = Uniform{−1,+1} is analogue of direction d in Trick 3; p(m) = Bernoulli(τ, 1− τ) defines the index of in-
volution applied; p(v(k) | k) and p(u(k) | k, ν) define auxiliary variables, which we choose as p(u(k) | k, ν) = qk→k+ν(u

(k))
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and p(v(k)) = qk→k(v
(k)). With probability 1− τ (when m = 1), we apply involution

f1(x
(k), u(k), v(k), k, ν) = [Tk→(k+ν)(x

(k), u(k)), v(k), k + ν,−ν, v(k)] = [x(k+ν), u(k+ν), v(k), k + ν,−ν], (166)

Tk′→k(x
(k′), u(k

′)) = T−1k→k′(x
(k′), u(k

′)) = [x(k), u(k)]. (167)

That is, based on indices k and k + ν we choose a smooth map that we apply to x(k
′), u(k

′); we also update k → k + ν and
negate the direction ν. The acceptance probability for such a proposal is

P = min

{
1,
p(x(k+ν), k + ν)p(u(k+ν) | k + ν,−ν)

p(x(k), k)p(u(k) | k, ν)

∣∣∣∣ ∂Tk→(k+ν)

∂[x(k), u(k)]

∣∣∣∣}, (168)

which is equivalent to the acceptance probability in Algorithm 18, when we denote k′ = k + ν and p(u(k) | k, ν) =
qk→k+ν(u

(k)). With probability τ (when m = 0), we apply involution

f0(x
(k), v(k), u(k), k, ν) = [Tk→k(x

(k), v(k)), u(k), k, ν], Tk→k(x
(k), v(k)) = T−1k→k(x

(k), v(k)), (169)

which does not change neither k nor ν. Here we also apply involutive smooth map Tk→k to the vector [x(k), v(k)] instead of
[x(k), u(k)]. Without the loss of generality, we can treat the case of m = 0 to be equivalent to the corresponding update
when u ≤ τ in Algorithm 18.

As well as in Trick 5, we combine the obtained kernel t1 on the joint distribution p(x(k), u(k), v(k), k, ν,m) with the kernel
t2 on the same distribution. Applying t2 we do not resample any variables, instead we use the following involution

f(ν,m = 0) = [ν,m], f(ν,m = 1) = [−ν,m]. (170)

The rest of the variables remains the same. Based on the value of m we change only ν to obtain the persistent irreversible
movement in the case when ν was negated by the kernel t1. The combination of kernels t1 and t2 yields the sampler that is
equivalent to Non-Reversible Jump scheme (Algorithm 18).

B.15. Lifted Metropolis-Hastings

Firstly, we recall a general approach of Lifting in (Turitsyn et al., 2011) following the formulation from (Bierkens et al.,
2017). Lifting modifies the reversible kernel T on the state space X by splitting each state x ∈ X in two replicas: {x,+}
and {x,−}. Then, for each replica, the authors introduce its own transition kernel: T (+) for positive replicas and T (−) for
negative ones. These transition kernels must satisfy

T (x, y)(+)p(x) = T (y, x)(−)p(y), ∀x 6= y, (171)

where p is the target distribution. The kernels T (+) and T (−) define in-replica transitions and are obtained from the original
kernel T by splitting the support of T using some decision function η : X → R. For non-diagonal elements x 6= y these
transitions can be written as

T (+)(x, y) =

{
T (x, y), if η(y) ≥ η(x),
0, if η(y) < η(x)

and T (−)(x, y) =

{
0, if η(y) > η(x),

T (x, y), if η(y) ≤ η(x)
. (172)

Inter-replica transitions are defined as

T (−,+)(x) = max

{
0,
∑
y:y 6=x

T (+)(x, y)− T (−)(x, y)

}
, (173)

T (+,−)(x) = max

{
0,
∑
y:y 6=x

T (−)(x, y)− T (+)(x, y)

}
. (174)

Where T (+,−) define the transition probability from positive replicas to negative ones. Finally, the diagonal elements of
T (+) and T (−) are defined as follows.

T (+)(x, x) = 1− T (+,−)(x)−
∑
y:y 6=x

T (+)(x, y), T (−)(x, x) = 1− T (−,+)(x)−
∑
y:y 6=x

T (−)(x, y) (175)
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Note that

T (+)(x, x) = T (−)(x, x) = min

{
1−

∑
y:y 6=x

T (−)(x, y), 1−
∑
y:y 6=x

T (+)(x, y)

}
. (176)

The whole transition kernel on the extended space is defined as

T =

[
T (+) T (+,−)

T (−,+) T (−)

]
. (177)

To describe Lifting in terms of iMCMC we follow Trick 6 introducing the directional variable p(d) = Uniform{−1,+1},
which define the proposal we are currently using to sample new state. Further, we compose this kernel with the flip of d to
obtain an irreversible kernel. That is, the first kernel t1 operates on the following distribution.

p(x, v, d) = p(x)p(d)q(v |x, d), (178)

q(v |x,+1) = T (+)(x, v) ∀v 6= x, q(v |x,−1) = T (−)(x, v) ∀v 6= x, (179)

q(x |x,+1) = 1−
∑
v:v 6=x

T (+)(x, v), q(x |x,−1) = 1−
∑
v:v 6=x

T (−)(x, v) (180)

The involutive map is then

f1(x, v, d) = [v, x,−d], (181)

which is just the swap of x and v and the negation of d. Kernel t1 is then obtained by substitution of p(x, v, d) and f1(x, v, d)
into Algorithm 1. Then we compose the first kernel t1 with the kernel t2 that just negate the directional variable one more
time applying the involution f2(x, v, d) = [x, v,−d]. The composition of kernels t1 and t2 we denote as t(x′, v′, d′ |x, v, d).

To prove that the iMCMC formulation is equivalent to the original chain we consider three following cases. The first case is
the transition to the new state v 6= x staying in the same replica (same direction d).

∀x 6= v, t(v,+1 |x,+1) = q(v |x,+1)min

{
1,
p(v)q(x | v,−1)
p(x)q(v |x,+1)

}
= T (+)(x, v)min

{
1,
p(v)T (−)(v, x)

p(x)T (+)(x, v)

}
= T (+)(x, v).

(182)

Note that the directional variable remains the same because of the double negation: firstly in f1 and then in f2. The second
case is the staying in the same state x with the same direction.

t(x,+1 |x,+1) = q(x |x,+1)min

{
1,
p(x)q(x |x,−1)
p(x)q(x |x,+1)

}
(183)

= (1−
∑
v:v 6=x

T (+)(x, v))min

{
1,
p(x)(1−

∑
v:v 6=x T

(−)(x, v))

p(x)(1−
∑
v:v 6=x T

(+)(x, v))

}
= T (+)(x, x). (184)

The last case is the inter-replica transition of Lifting, which corresponds to the rejection in its iMCMC formulation.

t(x,−1 |x,+1) = 1−
∑
v

t(v,+1 |x,+1) = 1−
∑
v:v 6=x

t(v,+1 |x,+1)− t(x,+1 |x,+1) = (185)

= 1−
∑
v:v 6=x

T (+)(x, v)− T (+)(x, x) = (186)

= 1−
∑
v:v 6=x

T (+)(x, v)−min

{
1−

∑
v:v 6=x

T (−)(x, v), 1−
∑
v:v 6=x

T (+)(x, v)

}
= (187)

= max

{
0,
∑
v:v 6=x

T (−)(x, v)− T (+)(x, v)

}
= T (+,−)(x). (188)
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C. Experiments
C.1. Distributions

Here we provide analytical forms of considered target distributions. Target density for MoG2 is:

p(x) =
1

2
N (x|µ1, σ1) +

1

2
N (x|µ2, σ2) (189)

where µ1 = [2, 0], µ2 = [−2, 0], σ2
1 = σ2

2 =

[
0.5 0
0 0.5

]
.

For the Bayesian logistic regression, we define likelihood and prior as

p(y = 1 |x, θ) = 1

1 + exp(−xT θw + θb)
, p(θ) = N (θ | 0, 0.1). (190)

Then the unnormalized density of the posterior distribution for a dataset D = {(xi, yi)}i is

p(θ |D) ∝
∏
i

p(yi |xi, θ)p(θ). (191)

We sample from the posterior distribution on three datasets: German (25 covariates, 1000 data points), Heart (14 covariates,
532 data points) and Australian (15 covariates, 690 data points). We provide all the data with the code in supplementary.

C.2. Effective sample size

The effective sample size (ESS) is defined as the reciprocal of the autocorrelation time. It is designed to represent the
number of truly independent samples that would be equivalent to a correlated sample drawn using the chain. There are
several approaches to evaluation of autocorrelation time (Thompson, 2010). One of the most common approaches is the
initial sequence estimators. That is, the autocorrelation ρ of sequence {Xi}ni=1 is estimated as

ρ̂ = 1 + 2

∞∑
k=1

ρk, ρ̂k =
1

ns2

n−k∑
i=1

(Xi −Xn)(Xi+k −Xn), (192)

where Xn and s2 are the sample mean and variance of the sequence. Further, assuming the reversibility of the chain, the
consecutive pair ρi + ρi+1 is always positive (Geyer, 1992). Thus, one can obtain initial positive sequence estimator by
truncating the negative values of the sums ρ̂i + ρ̂i+1.

However, the initial positive sequence estimator fails to converge to the true autocorrelation in some cases (Thompson,
2010). Moreover, in this paper we cannot rely on the reversibility of the chain since we compare reversible chains with their
irreversible analogues. That is why we turn to the batch-means estimator of the autocorrelation time, which operates as
follows. It divides the initial sequence {Xi}ni=1 into subsequences (batches) of size m and evaluate sample means of each
batch. Then we estimate ρ as

ρ̂ = m
s2m
s2
, (193)

where s2m is the sample variance of batch means. For the choice of m we follow (Thompson, 2010), and take n1/3 batches
of the size m = n2/3. For multivariate distributions we follow the common practice of evaluating the minimal ESS across
all dimensions.

To include computation efforts into the performance evaluation, we calculate ESS per second. We run all the algorithms on a
single GPU with batch size 100 sampling 20000 samples, and discarding first 1000 for burn-in. The final formula is

ESS/s =
1

ρ

number of samples
run time

. (194)
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C.3. Irr-MALA

Following Trick 5, we modify the original algorithm by introducing the directional variable p(d) = Uniform{−1,+1}. For
the first kernel t1(x′, v′, d′ |x, v, d), the joint distribution is

p(x, v, d) = p(x)N (v |x+ dε∇x log p(x), 2ε)p(d),

and the involutive map is

f1(x, v, d) = [v, x,−d · sign(∇x log p(x)T∇v log p(v))].

Then the acceptance probability is

P = min

{
1,
p(v)N (x | v + d′ε∇v log p(v), 2ε)
p(x)N (v |x+ dε∇x log p(x), 2ε)

}
, d′ = −d · sign

(
∇x log p(x)T∇v log p(v)

)
. (195)

Note that defining the sign of the gradient ∇v log p(v) via d′, we ensure that the mean v + d′ε∇v log p(v) will be close to
the initial point x. The second kernel t2(x′, v′, d′ |x, v, d), as well as in Trick 5, is just the flip of the direction d. That is, we
do not resample any variables, instead we apply the involution f2(x, v, d) = [x, v,−d]. Combining the kernels t1 and t2,
we obtain an irreversible chain. We provide the pseudo-code in Algorithm 19.

Algorithm 19 Irr-MALA

input target density p(x), step size ε
initialize [x, d]
for i = 0 . . . n do

sample v ∼ N (v |x+ dε∇x log p(x), 2ε)

evaluate d′ = −d · sign
(
∇x log p(x)T∇v log p(v)

)
evaluate P = min

{
1, p(v)N (x | v+d′ε∇v log p(v),2ε)

p(x)N (v | x+dε∇x log p(x),2ε)

}
accept [x, d]←

{
[v, d′], with probability P
[x, d], with probability (1− P )

d← −d
xi ← x

end for
output samples {x0, . . . , xn}

C.4. Irr-NICE-MC

The irreversible analog of A-NICE-MC (Song et al., 2017) is easily obtained from the original algorithm (see B.9) by
composing it with two additional kernels. The first kernel t1(x′, v′, d′, a′ |x, v, d, a) operates by changing only the auxiliary
variable v. That is, consider the joint distribution

p(x, v, d, a) = p(x)p(v)p(d)p(a | v), p(v) = N (v | 0, 1), p(a | v) = N (a | v
√
1− α2, α2), p(d) = Uniform{−1,+1}.

(196)

And the involution f1(x, v, d, a) = [x, a, d, v] that just swap a and v. Note that the acceptance probability

P1 =

{
1,
p(x)N (a | 0, 1)N (v | a

√
1− α2, α2)

p(x)N (v | 0, 1)N (a | v
√
1− α2, α2)

}
= 1. (197)

The second kernel t2(x′, v′, d′ |x, v, d) is equivalent to the A-NICE-MC kernel with only difference that we do not resample
d at each step. The joint distribution of this kernel is

p(x, v, d) = p(x)p(v)p(d), p(v) = N (v | 0, 1), p(d) = Uniform{−1,+1}. (198)
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And the involutive map is

f2(x, v, d) = [Td(x, v),−d], Td=+1 = T, Td=−1 = T−1. (199)

The last kernel t3(x′, v′, d′ |x, v, d) operates on the same joint distribution p(x, v, d), and just negate the directional variable
d with involution f3(x, v, d) = [x, v,−d]. Combining all three kernels, we obtain irreversible modification of A-NICE-MC.
See pseudo-code in Algorithm 20.

Algorithm 20 Irr-NICE-MC

input target density p(x, v) = p(x)N (v | 0, 1), NICE-proposal T (x, v) and T−1(x, v)
initialize [x, v, d]
for i = 0 . . . n do

sample v̂ ∼ N (v̂ | v
√
1− α2, α2)

propose [x′, v′] = Td(x, v̂), where Td=+1 = T and Td=−1 = T−1

evaluate P = min

{
1, p(x

′,v′)
p(x,v)

}
accept [x, v, d]←

{
[x′, v′,−d], with probability P
[x, v̂, d], with probability (1− P )

d← −d
xi ← x

end for
output samples {x0, . . . , xn}


