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Abstract

One of the most effective algorithms for differ-
entially private learning and optimization is ob-
Jjective perturbation. This technique augments a
given optimization problem (e.g. deriving from
an ERM problem) with a random linear term, and
then exactly solves it. However prior analyses of
this approach crucially rely on the convexity and
smoothness of the objective function. We give two
algorithms that extend this approach substantially.
The first algorithm requires nothing except bound-
edness of the loss function, and operates over a
discrete domain. We achieve this by introducing a
novel “normalization” step into the objective per-
turbation algorithm, which provides enough sta-
bility to satisfy differential privacy even without
convexity. The second algorithm operates over
a continuous domain and its privacy analysis re-
quires only that the loss function be bounded and
Lipschitz in its continuous parameter. We com-
plement our theoretical results with an empirical
evaluation of the non-convex case, in which we
use an integer program solver as our optimization
oracle. We find that for the problem of learning
linear classifiers, directly optimizing for 0/1 loss
using our approach can out-perform the more stan-
dard approach of privately optimizing a convex-
surrogate loss function on the Adult dataset.

1. Introduction

Consider the general problem of optimizing a function
L : L™ x W — R defined with respect to a dataset D € L"

“Equal contribution 'Wharton Statistics Department, University
of Pennsylvania, Philadelphia, Pennsylvania, USA *Department
of Computer and Information Sciences, University of Pennsyl-
vania, Philadelphia, Pennsylvania, USA *Department of Com-
puter Science and Engineering, University of Minnesota, Min-
neapolis, Minnesota, USA. Correspondence to: Seth Neel <seth-
neel93@gmail.com >, Aaron Roth <aaroth@cis.upenn.edu>,
Giuseppe Vietri <vietr002@umn.edu>, Zhiwei Steven Wu
<zstevenwu@cmu.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

and a parameter w € W: arg min,, L(D, w). This general
class of problems includes classical empirical risk minimiza-
tion, amongst others, and is a basic problem in learning and
optimization. We say that such a function L is 1-sensitive in
the dataset D if changing one datapoint in D can change the
value of L(D, w) by at most 1, for any parameter value w.
Suppose that we want to solve an optimization problem like
this subject to the constraint of differential privacy. The ex-
ponential mechanism provides a powerful, general-purpose,
and often error-optimal method to solve this problem (Mc-
Sherry & Talwar, 2007). It requires no assumptions on the
function other than that it is 1-sensitive (this is a minimal
assumption for privacy: more generally, its guarantees are
parameterized by the sensitivity of the function). Unfortu-
nately, the exponential mechanism is generally infeasible to
run: its implementation (and the implementation of related
mechanisms, like “Report-Noisy-Max” (Dwork & Roth,
2014)) requires the ability to enumerate the parameter range
W, making it infeasible in most learning settings, despite
its use in proving general information theoretic bounds in
private PAC learning (Kasiviswanathan et al., 2011). When
L(D, w) is continuous, convex, and satisfies second order
conditions like strong convexity or smoothness, the situation
is better: there are a number of algorithms available, includ-
ing simple output perturbation (Chaudhuri et al., 2011) and
objective perturbation (Chaudhuri et al., 2011; Kifer et al.,
2012; Iyengar et al., 2019). This partly mirrors the situation
in non-private data analysis, in which convex optimization
problems can be solved quickly and efficiently, and most
non-convex problems are NP-hard in the worst case.

In the non-private case, however, the worst-case complexity
of optimization problems does not tell the whole story. For
many non-convex optimization problems, such as integer
programming, there are fast heuristics that not only reliably
succeed in optimizing functions deriving from real inputs,
but can also certify their own success. In such settings, can
we leverage these heuristics to obtain practical private opti-
mization algorithms? In this paper, we give two novel anal-
yses of objective perturbation algorithms that extend their
applicability to 1-sensitive non-convex problems (and more
generally, bounded sensitivity functions). We also get new
results for convex problems, without the need for second
order conditions like smoothness or strong convexity. Our
first algorithm operates over a discrete parameter space WV,
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and requires no further assumptions beyond 1-sensitivity for
either its privacy or accuracy analysis — i.e. it is compara-
ble in generality to the exponential mechanism. The second
algorithm operates over a continuous parameter space WV,
and requires only that L(D, w) be Lipschitz-continuous in
its second argument. Its privacy analysis does not require
convexity. Its accuracy analysis does — but does not require
any 2nd order conditions. We implement our first algorithm
to directly optimize classification error over a discrete set
of linear functions on the Adult dataset, and find that it
substantially outperforms private logistic regression.

1.1. Related work

Objective perturbation was first introduced by Chaudhuri
etal. (2011), and analyzed for the special case of strongly
convex functions. Its analysis was subsequently improved
and generalized (Kifer et al., 2012; Iyengar et al., 2019) to
apply to smooth convex functions, and to tolerate a small
degree of error in the optimization procedure. We intro-
duce a variant of objective perturbation that crucially uses a
novel normalization step. Our paper is the first to give an
analysis of a variant of objective perturbation without the
assumption of convexity, and the first to give an accuracy
analysis without making second order assumptions on the
objective function even in the convex case. Chaudhuri et al.
(2011) also introduced the related technique of output per-
turbation which perturbs the exact optimizer of a strongly
convex function. The work most closely related to our first
algorithm is Neel et al. (2018), who also give a similar “ora-
cle efficient” algorithm for non-convex differentially private
optimization: i.e. reductions from non-private optimization
to private optimization. Their algorithm (“Report Separa-
tor Perturbed Noisy Max”, or RSPM) relies on an implicit
perturbation of the optimization objective by augmenting
the dataset D with a random collection of examples drawn
from a separator set. This is a non-standard piece of combi-
natorial structure, and so Neel et al. (2018)’s approach only
works in limited settings (we do not know of any settings in
which it applies beyond the handful specifically identified
in Neel et al. (2018)). The algorithms which we introduce
in this paper are substantially more general: because they
directly perturb the objective, they do not rely on the exis-
tence of a small separator set for the class of functions in
question. One of the contributions of our paper is the first
experimental analysis of RSPM, in section 5. Neel et al.
(2018) also give a generic method to transform an algorithm
(like ours) whose privacy analysis depends on the success
of the optimization oracle, to an algorithm whose privacy
analysis does not depend on this, whenever the optimization
heuristic can certify its success (integer program solvers
have this property). Their method applies to the algorithms
we develop in this paper. Our second algorithm crucially
uses an ¢; stability result for the “Follow-the-perturbed-

leader” (FTPL) method in Suggala & Netrapalli (2019) in
the context of online learning. Recently, Vietri et al. (2020)
use the same FTPL method in the context of private syn-
thetic data release, but they do not rely on the stability of
FTPL to achieve privacy. Similar to our work, they follow
the approach of designinig oracle-efficient algorithms that
use heuristics like integer program solvers to solve private
problems that are hard in the worst case, which was first
proposed by Gaboardi et al. (2014).

2. Preliminaries

We first define a dataset, a loss function with respect to a
dataset, and the two types of optimization oracles we will
call upon. We then define differential privacy, and state
basic properties.

A dataset D C L" is defined as a (multi)set of G-Lipschitz
loss functions [. (Note that frequently, the dataset will ex-
plicitly contain “data points”, and the loss functions will be
implicitly defined). For w in a parameter space W C R,
the loss on dataset D is defined to be

L(D,w) =) I(w)

leD

We will define two types of perturbed loss functions, and the
corresponding oracles which are assumed to be able to opti-
mize each type. These will be used in our discrete objective
perturbation algorithm in Section 3 and our sampling based
objective perturbation algorithm in Section 4 respectively.

Given a vector ) € R?, we define the perturbed loss to be:

LD w.) = L(D,w) — <77,w>

n

where n = |D] is the size of the dataset D. This is simply
the loss function augmented with a linear term.

Let 7 be the normalization function formally defined in
Section 3, which informally maps a d-dimensional vector
with [y norm at most D to a unit vector in R4T1. Given a
vector 77 € R%*! We define the perturbed normalized loss
to be:

LD, w.) = L(D,w) —n<17, 77(w)>

Definition 2.1 (Approximate Linear Optimization Oracle).
Given as input a dataset D € L™ and a d-dimensional vector
7, an a-approximate linear optimization oracle O, returns
w* = Ou(D,n) € W such that

L(D,w*.n) < inf L(D ,
( ,w,n)_wlgw (D,w,n) +a

When o = 0 we say O is a linear optimization oracle.
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Definition 2.2 (Approximate Normalized Linear Optimiza-
tion Oracle). Given as input a dataset D € L™ and a (d+1)-
dimensional vector 7, an c-approximate normalized linear
optimization oracle O, . returns w* = Oy -(D,n) € W
such that

L.(D,w*,n) < inf L.(D,w,
(D, w n)_wlgw (D,w,n) +a

When oo = 0 we say O, is a normalized linear optimization
oracle. We remark that while it seems less natural to assume
an oracle for the normalized perturbed loss which involves
the non-linearity 7 (w), in the supplement we show how we
can linearize this term by introducing an auxiliary variable
and introducing a convex constraint. This is ultimately how
we implement this oracle in our experiments.

Definition 2.3. A randomized algorithm M : £ — W
is an («, 8)-minimizer for W if for every dataset D € L™,
with probability 1 — 3, it outputs M (D) = w such that:

1

1
—L(D,w) < inf —L(D,w")+«
n

w*ew n

Certain optimization routines will have guarantees only for
discrete parameter spaces:

Definition 2.4 (Discrete parameter spaces). A 7-separated
discrete parameter space W, C R? is a discrete set such
that for any pair of distinct vectors w1, ws € VW, we have
HU)1 — w2H2 Z T.

Finally we define differential privacy.

We call two data sets D, D’ € L™ neighbors (written as
D ~ D) if D can be derived from D’ by replacing a single
loss function I; € D’ with some other element of L.

Definition 2.5 (Differential Privacy (Dwork et al., 2006b;a)).
Fix ¢,6 > 0. A randomized algorithm A : £* — O s (¢, §)-
differentially private (DP) if for every pair of neighboring
data sets D ~ D’ € L*, and for every event 2 C O:

Pr[A(D) € Q] < exp(e) Pr[A(D’) € Q] + 6.

The Laplace distribution centered at 0 with scale b is the

distribution with probability density function Lap(z|b) =

|=] e
ﬁe‘T. We also make use of the exponential distribution

which has density function Exp(z|b) = e~ % if 2 > 0 and
Exp(z|b) = 0 otherwise.

3. Objective perturbation over a discrete
decision space

In this section we give an objective perturbation algorithm
that is (¢, ¢)-differentially private for any non-convex Lip-
schitz objective over a discrete decision space W,. We as-
sume that each [ € £ is G-Lipschitz over W, w.r.t. £3 norm:

that is for any w, w’ € W,, |l(w) — l(w")| < G||lw — w'||2.
Note that if / takes values in [0, 1], then we know [ is also
1/7-Lipschitz due to the T-separation in W;.

The Normalization Trick. The key technical innovation in
this section of the paper is the modification of the standard
objective perturbation algorithm by introducing a normaliza-
tion step: rather than minimizing the perturbed loss, we min-
imize the perturbed normalized loss. Let D be a bound on
the maximum ¢ norm of any vector in W,.. We will make
use of a normalization onto the unit sphere in one higher
dimension. The normalization function 7 : RY — R4+1 is
defined as:

1
() = (s, DT ol D7) 3

Note that ||7(w)||2 = 1 for all w € W;, and also that for
any w,w’ € W,

|7 (w) — 7 (w') I3 > —5llw — w3, (1)

1
e
since ||m(w) — w(W)[f3 = (v — W3 +
D*(y/1 = [lwl3/D? = /1~ [w'[3/D?)?) > pzllw -
w'||2.  This shows that normalizing into the (d + 1)-
dimensional sphere can’t force points too much closer to-
gether than they start. The intuition behind the privacy
proof is that the linear perturbation term provides stability;
specifically we will argue that for any value of the noise n
than induces a particular minimizer w on a dataset D, there
is a nearby value 7’ that would induce @ on any adjacent
dataset D’. The argument proceeds by contradiction: sup-
pose that there existed some v # 0 that was the minimizer
on D’. Then since D and D’ only differ in one data point,
the difference between the normalized losses of v and w on
D’ can be broken into three terms: the difference between
their scores on D and the original perturbation term 7, the
difference between their scores on the two data points that
differ between D, D’, and the inner product between their
normalized difference 7(w) — 7(v) with ' — . The first
term is positive by virtue of w being the minimizer on the
original dataset D. The second term can be lower bounded
using Lipschitzness of £. The third term is lower bounded
using the fact that ' — 7 is chosen to maximize the inner
product (n’ — n, m(#) — 7(v)) by making the change in
noise 77’ — 1 move in the direction of 7(w) We can only
guarantee this has a greater inner product with @ than v if
|| (@)||2 = || (v)]||2 , which is the rationale behind the nor-
malization trick. Then the whole expression can be shown
to be lower bounded by 0, contradicting the fact that v is the
unique minimizer of the normalized loss on D’.

We now prove that OPDisc is differentially private, illus-
trating the importance of the normalization trick. We then
state an accuracy bound, which follows from a simple tail
bound on the random linear perturbation term.
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Algorithm 1 Objective Perturbation over Discrete Space

OPDisc

input D = {[;}7 ,, oracle O, over W;,, privacy parame-
ters €, 0

7GD?*\/In1/§
e AL

TE

d+1
Draw random vector n ~ N(0, o%) ! and use the pro-
jected oracle to solve:

W+ Or(D,n) € argmin L, (D,n,w)
wEW,

output w

Theorem 1. Algorithm 1 is (¢, 0)-differentially private.

Proof. For any realized noise vector 7, we write w =
O, (D,n) as the output. Now consider the set of mappings
G: W, x R 5 R+ If we can show:

e Jg € Gs.t.w = O (D', g(w,n)) (Lemma 4)
e Pr[n| ~ Pr[g(w,n)] (Lemma 3)

e Wp.1,argmin, ¢y £(D,w,n) is unique, (Lemma 2)

then the probability of outputting any particular w on input
D is close to the corresponding probability, on input D’ as
desired. Lemma 3 follows from simple properties of the
Gaussian distribution, and Lemma 2 from discreteness of
W, which are established in the Appendix. We focus on
proving Lemma 4, which is the central part of the proof.

Lemma 2. Fix any T-separated vector space W,. For
every dataset D there is a subset B C R such that
Prn € B] = 0and for any n € R***\ B:

3 a unique minimizer W € arg min L(D, w) — <n, 7T(UJ)>
weW,

Denote the set of of noise vectors that induce output w on
dataset D by £(D,w) = {n: Ox(D,n) = w}. Define our
mapping g € G by:

. e 2 R
g, 1) & ga(n) =n+ ~GDn(w)

Note that the vector )’ — 1 = g (n) — 7 is parallel to ()
. Lemma 3 shows that with high probability over the draw

of n, Pr[n]| ~ Pr[ga(n)].

Lemma 3. Let n ~ N(0,02)4*!, o < % Velog(l/é),
and w € W;. Then there exists a set C C R4 such that
Pr[n € CC] > 11—, and for all r € C° if p denotes the
probability density function of n:

p(r)

() =

Lemma 4. Fix any W and any pair of neighboring datasets
D,D'. Letn € S(D,ﬁ)) be such that W is the unique
minimizer @ € inf,, L(D,w) — (n,m(w)). Then g4(n) €
E(D’, 12}) Hence:

{n € £(D,d)} < Hga(n) € E(D',b)}

Proof. Letc = %GDQ. Suppose that v #  is the output on
neighboring dataset D’ when the noise vector is g (7). We

will derive a contradiction. Since v is the unique minimizer
onD’:

(L(D',v) = (ga (), (v)))
(L@ @) = {ga(m),m())) <0
Let 7 be the index where D and D’ are different, such that

l; € Dandl; € D'. Then L(D',w) = L(D,w) — l;(w) +

I;(w). Now, write the loss function in terms of D and rear-

ranging terms:

(20,0 = (7)) = (L(P.) = (n7(2)) |
(@) = 1i(v)) = (1;(@) = ()

Since w is a unique minimizer for D and 7 then term in the
square bracket is positive. Hence:
’

(L) = L(v)) = (li() = L;(v))
+<c7r(7i)),7r(121) — w(v)> <0

Since [;,1; are G-Lipschitz functions (I;(®) — I;(v)) —

K3

(l'»(uﬁ) - l;(v)) > —2G||w — vl||2. Now comes the im-

3
portance of the normalization trick: because || (v)||2 =

Ir (@)l = 1, {em(@),7(d) = 7(v)) = gl () -
7 (v)||3, by expanding ||z (@) — 7 (v)||3. Note that without
the normalization, this last term could be negative, breaking
the contradiction argument. Substituting this becomes:

2G> — olla + 5 |lm () = 7 (0) 3 < 0

For the next step we use inequality (1). We also apply
the assumption that for two vectors w # v the following
inequality holds || — vlj2 > 7.

222 [ — |2 < 2G| — o2 (Inequality (1))
2—22”@ — |2 < 2G (Divide both sides by [|& — v]|2)
c|jw — vz < 4GD?
et <4AGD?*  (By assumption [0 — v|[2 > 7)
c< 4G7_D2 (Divide both sides by 7)
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This contradicts ¢ = @. O
Putting the Lemmas together:
Pr[O0(D,n) € S] =Pr[n € UE(D,@)}
= /Rdﬂp(n)l{n e J&(D, ) }dn
-/ p(n)T{n € | J&(D, @)}
(RIFI\B)\C @
+ /C p(){n € | JE(D,w)}dn 2)
< / p(n € | JE(D,d)}dn+ 6 3)
(RIFINC)\B @
>/ P € £(D, )y + 9
wes R4+1\(CUB)
/ pO)Hga(n) € (D', @) Y +5
RI+1\(CUB)
“)
<3 i 90 (1)) Hga(n) € E(D', 0) Y
RA+1\ ( CUB)
&)
+0
-y piin € £(0' )}
wes Rd“\(gm(c)Ugw(B))
(6)

IN

e Z/M m{n € E(D',w)}dn + 6
wWES
ePrn e Ué’(D’ w)]

ePr[O-(D',n) € S|+ 0

where equality (2) follows from Lemma 2. Then inequality
(3) holds because C'is chosen such that Pr [77 € C] < 6. The
inequality (4) is from lemma 4 and inequality (5) is from
the bounded ration lemma 3. Lastly, equality (6) follows
because the mapping 77 — g.(n) is one-to-one. Also note

that ‘ 990 O

= 1 This completes the proof.

‘We now state the accuracy guarantee, which follows from
a standard Gaussian tail bound. Then in Subsection 3.1 we
compare this guarantee to the accuracy guarantee for the

competing RSPM method for learning discrete hyperplanes,

in order to shed some light on the accuracy guarantee in
practice.

dn

Theorem 5 (Utility). Algorithm 1 is an («, 3)-minimizer
Sor WZ with

14GD?\/2(d +1)In (4/8) In (1/4)

nrte

o =

3.1. Comparing OPDisc and RSPM

While both OPDisc and the RSPM algorithm of Neel et al.
(2018) require discrete parameter spaces, OPDisc is sub-
stantially more general in that it only requires the loss func-
tions be Lipschitz, whereas RSPM assumes the loss func-
tions are bounded in {0, 1} (and hence 1/7 Lipschitz over
W..) and assumes the existence of a small separator set (de-
fined in the supplement). Nevertheless, we might hope that
in addition to greater generality, OPDisc has comparable or
superior accuracy for natural classes of learning problems.
We show this is indeed the case for the fundamental task of
privately learning discrete hyperplanes, where it is better by
a linear factor in the dimension. We define the RSPM algo-
rithm, for which we must define the notion of a separator
set, in the supplement.

Theorem 6 (RSPM Utility (Neel et al., 2018)). Let W7
be a discrete parameter space with a separator set of size
m. The Gaussian RSPM algorithm is an oracle-efficient

(v, B)-minimizer for W for:

a:O(m\/mln@m/b’)ln(l/é)
deg I, =[-1,-1+

en
Let I be a 7 discretization of [—1, 1]
7,...0,7,27,... 1]d. Let W, be the subset of vectors in
this discretization that lie within the unit Euclidean ball:
W, = I, N S(1)%. W, is T-separated since any two distinct
w, w’ differ in at least one coordinate by at least 7. Moreover
W, admits a separator set of size m = Q(dT ) (see the
Appendix of Neel et al. (2018). Since the loss functions
li(w) =1 w-x; > 1} € {0,1} and W, is T-separated, the
loss functions I; are %-Lipschitz. By Theorem 6, RSPM has
accuracy bound:

)

Thus, in this case, OPDisc has an accuracy bound that is
different by a factor of roughly d\/7. However, the bound of
OPDisc is better only when 7 is greater than 1/d?, pressing
the question of how to set this parameter. The trade-off is

/TR (d/57) 1oa(1/9)
T/Ten

By Theorem 5 OPDisc has accuracy bound:

orspm = O <

V/dlog(1/8) log(1/9)

nTle

aoppisc = O (
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that setting 7 too large makes the algorithm OPDisc add
too much noise to the objective, and our accuracy guarantee
degrades very fast. On the other hand, if 7 is too large, then
we can miss the optimal solution to a large extent. However,
for practical scenarios, setting the value of 7 to be much
larger than d% gives a discretized decision space such that
the optimal answer is not too far from the optimal on the
corresponding continuous decision space. For instance, in
our experiments, we set 7 equals to one.

4. Objective perturbation for Lipschitz
functions

We now present an objective perturbation algorithm (paired
with an additional output perturbation step), which applies
to arbitrary parameter spaces. The privacy guarantee holds
for (possibly non-convex) Lipschitz loss functions, while
the accuracy guarantee applies only if the loss functions
are convex and bounded. Even in the convex case, this is
a substantially more general statement than was previously
known for objective perturbation: we don’t require any
second order conditions like strong convexity or smoothness
(or even differentiability). Our guarantees also hold with
access only to an a-approximate optimization oracle.

We present the full algorithm in Algorithm 2. It 1) uses
the approximate linear oracle (in Definition 2.1) to solve
polynomially many perturbed optimization objectives, each
with an independent random perturbation, and 2) perturbs
the average of these solutions with Laplace noise.

Before we proceed to our analysis, let us first introduce
some relevant parameters. Let JV have /., diameter D,
and /5 diameter Do. We assume that the loss functions
l; € L are G-Lipschitz with respect to ¢; norm, and assume
the loss functions are scaled to take values in [0, 1]. Our
utility analysis requires convexity in the loss functions, and
essentially follows from the high-probability bounds on the
linear perturbation terms in the first stage and the output
perturbation in the second stage.

Algorithm 2 Objective Perturbation Sampling OPSamp
input Approximate optimization oracle O, a dataset D =
{l; }}_,, privacy parameters €, 0.
¥ %dg’/‘l\/ﬁg; m +— 22d/9) (;dg/é)
for k =1tomdo

D \/ﬁe
n<= \/2soc2d2pgi(1+1og(2/5))n

Sample a random vector o* ~ Exp(n)®.
wy, < O, (D, O'k)
end for
A < 4Dy + 250nGd? D2, + 12
pu ~ Lap(\/e)?
output L 3" w4 4

Theorem 7 (Utility). Assuming the loss functions are con-
vex, Algorithm 2 is an (!, B)-minimizer for L L(w, D) with

) O<d5/4GDOO Dglog(l/ﬁ)+a10g(1/,ﬁ’)>

o =
Ven €
where « is the approximation error of the oracle O,,.

The privacy analysis of this algorithm crucially depends on
a stability lemma proven by Suggala & Netrapalli (2019) in
the context of online learning, and does not require convex-
ity.!

Lemma 8 (Stability lemma (Suggala & Netrapalli, 2019)).
For any pair of neighboring data sets D, D'. Let O, (D, o)
and O, (D', o) be the output of an approximate oracle on
datasets D and D' respectively. Then,

E, [||0a(D,0) = 0a(D',0)|11] < 250G D% + o=
From now on, let ¥ = {o% : i € [m]} be a sequence of
of m i.i.d d-dimensional noise vectors and W(D, %) =

L3 04(D,0?) is the average output of m calls to an
«a-approximate oracle.

Lemma 9. I[f m = %, for 0 < ~ < 1, then, with
probability 1 — 6/2:

”W(D’ E) - EG[OQ(DvU)]”l < 2Dy

where the randomness is taken over the different runs of

O,.

The next lemma combines Lemma 8 and Lemma 9 to get
high probability sensitivity bound for the average output of
the approximate oracle.

Lemma 10 (High Probability ¢;-sensitivity). For any pair
of neighboring datasets D, D', let W(D, X)), W(D', %) be
the sample average after m = M calls to an a-
approximate oracle. Then, with probability 1 — § over the

random draws of %,

IW(D,)- WD, S)||: < 4DW7+25OnGd2D§O+%
(7

Theorem 11. Algorithm 2 is (¢, 0)-differentially private.

Proof sketch. Given a pair of neighboring data sets D, D/,
we will condition on the set of noise vectors X satisfy the
£1-sensitivity bound (7), which occurs with probability at
least 1 — §. Then the privacy guarantee follows from the use
of Laplace mechanism. O

!Compared to the bound in Suggala & Netrapalli (2019), our
bound has an additional factor of 2 since our neighboring rela-
tionship in Definition 2.5 is defined via replacement whereas in
Suggala & Netrapalli (2019) the stability is defined in terms of
adding another loss function.
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5. Experiments

For our experiments, we consider the problem of privately
learning a linear threshold function to solve a binary classi-
fication task. Given a labeled data set {(z;, y;)}?_, where
each z; € R? and y; € {—1,1}, the classification prob-
lem is to find a hyperplane that best separates the positive
from the negative samples. A common approach is to op-
timize a convex surrogate loss function that approximates
the classification loss. We use this approach (private logis-
tic regression) as our baseline. In comparison, using our
algorithm OPDisc, we instead try and directly optimize 0/1
classification error over a discrete parameter space, using an
integer program solver. Although this can be computation-
ally expensive, we find that it is feasible for relatively small
datasets (we use a balanced subset of the Adult dataset with
roughly n = 15,000 and d = 23 features, after one-hot
encodings of categorical features). In this setting, we find
that OPDisc can substantially outperform private logistic
regression. We remark that “small data” is the regime in
which applying differential privacy is most challenging, and
we view our approach as a promising way forward in this
important setting.

Data description and pre-processing We use the Adult
dataset (Lichman, 2013), a common benchmark dataset
derived from Census data. The classification task is to
predict whether an individual earns over 50K per year. The
dataset has n = 48842 records and 14 features that are
a mix of both categorical and continuous attributes. The
Adult dataset is unbalanced: only 7841 individuals have
the > 50k (positive) label. To arrive at a balanced dataset
(so that constant functions achieve 50% error), we take
all positive individuals, and an equal number of negative
individuals selected at random, for a total dataset size of
n = 15682. We encode categorical features with one-hot
encodings, which increases the dimensionality of the dataset.
We found it challenging to run our algorithm with more than
30 features, and so we take a subset of 7 features from the
Adult dataset that are represented by d = 23 real-valued
features after one-hot encoding. We chose the subset of
features to optimize the accuracy of our logistic regression
baseline.

Baseline: private logistic regression (LR). We use as
our baseline private logistic regression which optimizes
over the space of continuous halfspaces with the goal of
minimizing the logistic loss function, given by [;(w) =
log (1 + exp(—y(w, z;))). We implement a differentially
private stochastic gradient descent (privateSGD) algorithm
from Bassily et al. (2014); Abadi et al. (2016), keeping
track of privacy loss using the moment accountant method
as implemented in the TensorFlow Privacy Library. The
algorithm involves three parameters: gradient clip norm,
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Figure 3. Accuracy and runtime evaluation of OPDisc, RSPM,
and Private Logistic Regression (LR) on the Adult data set with
size n = 15682 and d = 23 features. The value of § = 1/n> for
all methods in all runs.

mini-batch size, and learning rate. For each target privacy
parameters (¢, ¢), we run a grid search to identify the triplet
of parameters that give the highest accuracy. To lower the
variance of the accuracy, we also take average over all the
iterates in the run of privateSGD.

Implementation details for OPDisc and RSPM For
both OPDisc and RSPM, we encode each record (z;,y;) €
D as a 0/1 loss function: I;(w) = I[y; # sgn({z;, w))].
For both algorithms, we have separation parameter 7 = 1
and constrains the weight vectors to have ¢o norm bounded
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by Vd. In OPDisc, each coordinate w; can take val-
ues in the discrete set {—B,—B + 1,..., B — 1, B} with
B = [V/d], and we constrain the ||w]|2 to be at most v/d.
In RSPM, we optimize over the set {—1,0,1}?. OPDisc
requires an approximate projected linear optimization oracle
(Definition 2.2) and RSPM requires a linear optimization
oracle (Definition 2.1). In the appendix, we show that the
optimization problems can be cast as mixed-integer pro-
grams (MIPs), allowing us to implement the oracles via the
Gurobi MIP solver. The Gurobi solver was able to solve
each of the integer programs we passed it.

Empirical evaluation. We evaluate our algorithms by
their (0/1) classification accuracy. The Figure 1(a) plots the
accuracy of OPDisc and our baseline (y-axis) as a function
of the privacy parameter € (x-axis), averaged over 15 runs.
We fix § = 1/n? for all three algorithms across all runs. The
error bars report the empirical standard deviation. We see
that both OPDisc and RSPM improve dramatically over the
logistic regression baseline. This shows that in small-data
settings, it is possible to improve over the error/privacy trade-
off given by standard convex-surrogate approaches by ap-
pealing to non-convex optimization heuristics. OPDisc also
obtains consistently better error than RSPM. The algorithm
OPDisc also has a significantly lower variance in its error
compared to the other two algorithms. The Figure 2(a) gives
a histogram of the run-time of our three methods for our ex-
periment. For both OPDisc and RSPM, the running time is
dominated by an integer-program solver. We see that while
our method frequently completes quite quickly (often even
beating our logistic regression baseline!), it has high vari-
ance, and occasionally requires a long time to run. However,
we were always able to solve the necessary optimization
problem, eventually.
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