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Abstract

One of the most effective algorithms for differentially private learning and optimization is
objective perturbation. This technique augments a given optimization problem (e.g. deriving
from an ERM problem) with a random linear term, and then exactly solves it. However, to
date, analyses of this approach crucially rely on the convexity and smoothness of the objective
function, limiting its generality. We give two algorithms that extend this approach substantially.
The first algorithm requires nothing except boundedness of the loss function, and operates over
a discrete domain. Its privacy and accuracy guarantees hold even without assuming convexity.
This gives an oracle-efficient optimization algorithm over arbitrary discrete domains that is
comparable in its generality to the exponential mechanism. The second algorithm operates over
a continuous domain and requires only that the loss function be bounded and Lipschitz in its
continuous parameter. Its privacy analysis does not require convexity. Its accuracy analysis does
require convexity, but does not require second order conditions like smoothness. Even without
convexity, this algorithm can be generically used as an oracle-efficient optimization algorithm,
with accuracy evaluated empirically. We complement our theoretical results with an empirical
evaluation of the non-convex case, in which we use an integer program solver as our optimization
oracle. We find that for the problem of learning linear classifiers, directly optimizing for 0/1
loss using our approach can out-perform the more standard approach of privately optimizing a
convex-surrogate loss function on the Adult dataset.
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1 Introduction
Consider the general problem of optimizing a function L : Ln ×W 7→ R defined with respect to
a dataset D ∈ Ln and a parameter w ∈ W: arg minw L(D, w). This general class of problems is
ubiquitous, and includes combinatorial optimization problems, empirical risk minimization problems,
and synthetic data generation problems amongst others. We say that such a function L is 1-sensitive
in the dataset D if changing one datapoint in D can change the value of L(D, w) by at most 1, for any
parameter value w. Suppose that we want to solve an optimization problem like this subject to the
constraint of differential privacy. The exponential mechanism provides a powerful, general-purpose,
and often error-optimal method to solve this problem [MT07]. It requires no assumptions on the
function other than that it is 1-sensitive (this is a minimal assumption for privacy: more generally,
its guarantees are parameterized by the sensitivity of the function). It has indeed been used to solve
private learning [KLN+11], combinatorial optimization [GLM+10], and synthetic data generation
problems [BLR13] subject to differential privacy, often optimally. Unfortunately, the exponential
mechanism is generally infeasible to run: its implementation (and the implementation of related
mechanisms, like “Report-Noisy-Max” [DR14]) requires the ability to enumerate the parameter
range W, making it infeasible in most learning settings. When L(D, w) is continuous, convex,
and satisfies second order conditions like strong convexity or smoothness, the situation is better:
there are a number of algorithms available, including simple output perturbation [CMS11] and
objective perturbation [CMS11, KST12, INS+19]. This partly mirrors the situation in non-private
data analysis, in which convex optimization problems can be solved quickly and efficiently, and most
non-convex problems are NP-hard in the worst case.

In the non-private case, however, the worst-case complexity of optimization problems does not
tell the whole story. For many non-convex optimization problems, such as integer programming,
there are fast heuristics that not only reliably succeed in optimizing functions deriving from real
inputs, but can also certify their own success. In such settings, can we leverage these heuristics
to obtain practical private optimization algorithms? In this paper, we give two novel analyses of
objective perturbation algorithms that extend their applicability to 1-sensitive non-convex problems
(and more generally, bounded sensitivity functions). We also get new results for convex problems,
without the need for second order conditions like smoothness or strong convexity. Our first algorithm
operates over a discrete parameter spaceW , and requires no further assumptions beyond 1-sensitivity
for either its privacy or accuracy analysis — i.e. it is comparable in generality to the exponential
mechanism. The second algorithm operates over a continuous parameter space W, and requires
only that L(D, w) be Lipschitz-continuous in its second argument. Its privacy analysis does not
require convexity. Its accuracy analysis does — but does not require any 2nd order conditions. We
implement our first algorithm to directly optimize classification error over a discrete set of linear
functions on the Adult dataset, and find that it substantially outperforms private logistic regression.

1.1 Related work

Objective perturbation was first introduced by [CMS11], and analyzed for the special case of strongly
convex functions. Its analysis was subsequently improved and generalized [KST12, INS+19] to apply
to smooth convex functions, and to tolerate a small degree of error in the optimization procedure.
Our paper is the first to give an analysis of objective perturbation without the assumption of
convexity, and the first to give an accuracy analysis without making second order assumptions on
the objective function even in the convex case. [CMS11] also introduced the related technique of
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output perturbation which perturbs the exact optimizer of a strongly convex function.
The work most closely related to our first algorithm is [NRW19], who also give a similar “oracle

efficient” algorithm for non-convex differentially private optimization: i.e. reductions from non-
private optimization to private optimization. Their algorithm (“Report Separator Perturbed Noisy
Max”, or RSPM) relies on an implicit perturbation of the optimization objective by augmenting
the dataset D with a random collection of examples drawn from a separator set. The algorithms
which we introduce in this paper are substantially more general: because they directly perturb the
objective, they do not rely on the existence of a small separator set for the class of functions in
question. They also can yield improved accuracy bounds in cases where both techniques apply:
see Sections 3.1 and 5. [NRW19] also give a generic method to transform an algorithm (like ours)
whose privacy analysis depends on the success of the optimization oracle, to an algorithm whose
privacy analysis does not depend on this, whenever the optimization heuristic can certify its success
(integer program solvers have this property). Their method applies to the algorithms we develop in
this paper. Our second algorithm crucially uses an `1 stability result recently proven by [SN19] in
the context of online learning.

2 Preliminaries
We first define a dataset, a loss function with respect to a dataset, and the two types of optimization
oracles we will call upon. We then define differential privacy, and state basic properties.

A dataset D ⊂ Ln is defined as a (multi)set of G-Lipschitz loss functions l. (Note that frequently,
the dataset will explicitly contain “data points”, and the loss functions will be implicitly defined).
For w in a parameter space W ⊂ Rd, the loss on dataset D is defined to be

L
(
D, w

)
=
∑
l∈D

l(w)

We will define two types of perturbed loss functions, and the corresponding oracles which are assumed
to be able to optimize each type. These will be used in our discrete objective perturbation algorithm
in Section 3 and our sampling based objective perturbation algorithm in Section 4 respectively.

Given a vector η ∈ Rd, we define the perturbed loss to be:

L̄(D, w, η) =
L(D, w)−

〈
η, w

〉
n

where n = |D| is the size of the dataset D. This is simply the loss function augmented with a linear
term.

Let π be the normalization function formally defined in Section 3, which informally maps a
d-dimensional vector with l2 norm at most D to a unit vector in Rd+1. Given a vector η ∈ Rd+1 We
define the perturbed normalized loss to be:

L̄π(D, w, η) =
L(D, w)−

〈
η, π

(
w
)〉

n

Definition 2.1 (Approximate Linear Optimization Oracle). Given as input a dataset D ∈ Ln and a
d-dimensional vector η, an α-approximate linear optimization oracle Oα returns w∗ = Oα(D, η) ∈ W
such that

L̄(D, w∗, η) ≤ inf
w∈W

L̄(D, w, η) + α
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When α = 0 we say O is a linear optimization oracle.

Definition 2.2 (Approximate Normalized Linear Optimization Oracle). Given as input a dataset
D ∈ Ln and a (d+ 1)-dimensional vector η, an α-approximate normalized linear optimization oracle
Oα,π returns w∗ = Oα,π(D, η) ∈ W such that

L̄π(D, w∗, η) ≤ inf
w∈W

L̄π(D, w, η) + α

When α = 0 we say Oπ is a normalized linear optimization oracle. We remark that while
it seems less natural to assume an oracle for the normalized perturbed loss which involves the
non-linearity π(w), in the supplement we show how we can linearize this term by introducing an
auxiliary variable and introducing a convex constraint. This is ultimately how we implement this
oracle in our experiments.

Definition 2.3. A randomized algorithmM : Ln →W is an (α, β)-minimizer for W if for every
dataset D ∈ Ln, with probability 1− β, it outputsM(D) = w such that:

1
n
L(D, w) ≤ inf

w∗∈W

1
n
L(D, w∗) + α

Certain optimization routines will have guarantees only for discrete parameter spaces:

Definition 2.4 (Discrete parameter spaces). A τ -separated discrete parameter space Wτ ⊆ Rd is a
discrete set such that for any pair of distinct vectors w1, w2 ∈ Wτ we have ‖w1 − w2‖2 ≥ τ .

Finally we define differential privacy.
We call two data sets D,D′ ∈ Ln neighbors (written as D ∼ D′) if D can be derived from D′ by

replacing a single loss function li ∈ D′ with some other element of L.

Definition 2.5 (Differential Privacy [DMNS06, DKM+06]). Fix ε, δ ≥ 0. A randomized algorithm
A : L∗ → O is (ε, δ)-differentially private (DP) if for every pair of neighboring data sets D ∼ D′ ∈ L∗,
and for every event Ω ⊆ O:

Pr[A(D) ∈ Ω] ≤ exp(ε) Pr[A(D′) ∈ Ω] + δ.

The Laplace distribution centered at 0 with scale b is the distribution with probability density
function Lap(z|b) = 1

2be
− |z|

b . We also make use of the exponential distribution which has density
function Exp(z|b) = 1

be
− z
b if z ≥ 0 and Exp(z|b) = 0 otherwise.

3 Objective perturbation over a discrete decision space
In this section we give an objective perturbation algorithm that is (ε, δ)-differentially private for
any non-convex Lipschitz objective over a discrete decision space Wτ . We assume that each l ∈ L is
G-Lipschitz over Wτ w.r.t. `2 norm: that is for any w,w′ ∈ Wτ , |l(w)− l(w′)| ≤ G‖w −w′‖2. Note
that if l takes values in [0, 1], then we know l is also 1/τ -Lipschitz due to the τ -separation in Wτ .

The Normalization Trick. The key technical innovation in this section of the paper is the
modification of the standard objective perturbation algorithm by introducing a normalization step:
rather than minimizing the perturbed loss, we minimize the perturbed normalized loss. Let D be a

3



bound on the maximum `2 norm of any vector in Wτ . We will make use of a normalization onto the
unit sphere in one higher dimension. The normalization function π : Rd → Rd+1 is defined as:

π
(
w
)

=
(
w1, . . . , wd, D

√
1− ‖w‖22/D2

) 1
D

Note that ‖π
(
w
)
‖2 = 1 for all w ∈ Wτ , and also that for any w,w′ ∈ Wτ ,

‖π
(
w
)
− π

(
w′
)
‖22 ≥

1
D2 ‖w − w

′‖22, (1)

since ‖π
(
w
)
− π

(
w′
)
‖22 = 1

D2 (‖w − w′‖22 +D2(
√

1− ‖w‖22/D2 −
√

1− ‖w′‖22/D2)2) ≥ 1
D2 ‖w − w′‖22.

This shows that normalizing into the (d+ 1)-dimensional sphere can’t force points too much closer
together than they start. The intuition behind the privacy proof is that the linear perturbation
term provides stability; specifically we will argue that for any value of the noise η than induces
a particular minimizer ŵ on a dataset D, there is a nearby value η′ that would induce ŵ on any
adjacent dataset D′. The argument proceeds by contradiction: suppose that there existed some
v 6= ŵ that was the minimizer on D′. Then since D and D′ only differ in one data point, the
difference between the normalized losses of v and ŵ on D′ can be broken into three terms: the
difference between their scores on D and the original perturbation term η, the difference between
their scores on the two data points that differ between D,D′, and the inner product between their
normalized difference π(ŵ)− π(v) with η′ − η. The first term is positive by virtue of ŵ being the
minimizer on the original dataset D. The second term can be lower bounded using Lipschitzness
of L. The third term is lower bounded using the fact that η′ − η is chosen to maximize the inner
product

〈
η′ − η, π(ŵ)− π(v)

〉
by making the change in noise η′ − η move in the direction of π(ŵ)

We can only guarantee this has a greater inner product with ŵ than v if ‖π(ŵ)‖2 = ‖π(v)‖2 , which
is the rationale behind the normalization trick. Then the whole expression can be shown to be lower
bounded by 0, contradicting the fact that v is the unique minimizer of the normalized loss on D′.
Algorithm 1: Objective Perturbation over Discrete Space OPDisc
Input: D = {li}ni=1, oracle Oπ over Wτ , privacy parameters ε, δ
σ ← 7GD2

√
ln 1/δ

τε ;
Draw random vector η ∼ N

(
0, σ2)d+1 and use the projected oracle to solve:

ŵ = Oπ(D, η) ∈ arg min
w∈Wτ

L̄π(D, η, w)

Output: ŵ
We now prove that OPDisc is differentially private, illustrating the importance of the normaliza-

tion trick. We then state an accuracy bound, which follows from a simple tail bound on the random
linear perturbation term.

Theorem 1. Algorithm 1 is (ε, δ)-differentially private.

Proof. For any realized noise vector η, we write ŵ = Oπ(D, η) as the output. Now consider the set
of mappings G : Wτ × Rd+1 → Rd+1. If we can show:

• ∃g ∈ G s.t. ŵ = Oπ(D′, g(ŵ, η)) (Lemma 4)
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• Pr
[
η
]
≈ Pr

[
g(ŵ, η)

]
(Lemma 3)

• W.p.1, arg minw∈Wτ
L̄(D, w, η) is unique, (Lemma 2)

then the probability of outputting any particular w on input D is close to the corresponding
probability, on input D′ as desired. Lemma 3 follows from simple properties of the Gaussian
distribution, and Lemma 2 from discreteness of Wτ , which are established in the Appendix. We
focus on proving Lemma 4, which is the central part of the proof.

Lemma 2. Fix any τ -separated vector space Wτ . For every dataset D there is a subset B ⊂ Rd+1

such that Pr
[
η ∈ B

]
= 0 and for any η ∈ Rd+1 \B:

∃ a unique minimizer ŵ ∈ arg min
w∈Wτ

L
(
D, w

)
−
〈
η, π

(
w
)〉

Denote the set of of noise vectors that induce output w on dataset D by E
(
D, w

)
= {η :

Oπ(D, η) = w}. Define our mapping g ∈ G by:

g(ŵ, η) def= gŵ(η) = η + 2
τ
GD2π

(
ŵ
)

Note that the vector η′ − η = gŵ(η) − η is parallel to π(ŵ) . Lemma 3 shows that with high
probability over the draw of η, Pr

[
η
]
≈ Pr

[
gŵ(η)

]
.

Lemma 3. Let η ∼ N (0, σ2)d+1, σ ← 7G2D2
√

log(1/δ)
τε , and w ∈ Wτ . Then there exists a set

C ⊂ Rd+1 such that Pr
[
η ∈ Cc

]
≥ 1 − δ, and for all r ∈ Cc if p denotes the probability density

function of η:
p(r)

p(gw(r)) ≤ e
ε

Lemma 4. Fix any ŵ and any pair of neighboring datasets D,D′. Let η ∈ E
(
D, ŵ

)
be such that ŵ

is the unique minimizer ŵ ∈ infw L(D, w)−
〈
η, π

(
w
)〉
. Then gŵ(η) ∈ E

(
D′, ŵ

)
. Hence:

I{η ∈ E
(
D, ŵ

)
} ≤ I{gŵ(η) ∈ E

(
D′, ŵ

)
}

Proof. Let c = 4
τGD

2. Suppose that v 6= ŵ is the output on neighboring dataset D′ when the noise
vector is gŵ(η). We will derive a contradiction. Since v is the unique minimizer on D′:(

L
(
D′, v

)
−
〈
gŵ(η), π

(
v
)〉)
−
(
L
(
D′, ŵ

)
−
〈
gŵ(η), π

(
ŵ
)〉)

< 0

Let i be the index where D and D′ are different, such that li ∈ D and l′i ∈ D′. Then L
(
D′, w

)
=

L
(
D, w

)
− li(w) + l

′
i(w). Now, write the loss function in terms of D and rearranging terms:[(

L
(
D, v

)
−
〈
η, π

(
v
)〉)
−
(
L
(
D, ŵ

)
−
〈
η, π

(
ŵ
)〉)]

+
(
li(ŵ)− li(v)

)
−
(
l
′
i(ŵ)− l′i(v)

)
+
〈
cπ
(
ŵ
)
, π
(
ŵ
)〉
−
〈
cπ
(
ŵ
)
, π
(
v
)〉
< 0

Since ŵ is a unique minimizer for D and η then term in the square bracket is positive. Hence:(
li(ŵ)− li(v)

)
−
(
l
′
i(ŵ)− l′i(v)

)
+
〈
cπ
(
ŵ
)
, π
(
ŵ
)
− π

(
v
)〉
< 0
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Since li, l′i are G-Lipschitz functions
(
li(ŵ)− li(v)

)
−
(
l
′
i(ŵ)− l′i(v)

)
≥ −2G‖ŵ− v‖2. Now comes

the importance of the normalization trick: because ||π(v)||2 = ||π(ŵ)||2 = 1,
〈
cπ
(
ŵ
)
, π
(
ŵ
)
−π

(
v
)〉

=
c
2‖π

(
ŵ
)
− π

(
v
)
‖22, by expanding ‖π

(
ŵ
)
− π

(
v
)
‖22. Note that without the normalization, this last

term could be negative, breaking the contradiction argument. Substituting this becomes:

−2G‖ŵ − v‖2 + c

2‖π
(
ŵ
)
− π

(
v
)
‖22 < 0

For the next step we use inequality (1). We also apply the assumption that for two vectors ŵ 6= v
the following inequality holds ‖ŵ − v‖2 ≥ τ .

c

2D2 ‖ŵ − v‖
2
2 < 2G‖ŵ − v‖2 (Inequality (1))

c

2D2 ‖ŵ − v‖2 < 2G (Divide both sides by ‖ŵ − v‖2)

c‖ŵ − v‖2 < 4GD2

cτ < 4GD2 (By assumption ‖ŵ − v‖2 ≥ τ)

c <
4GD2

τ
(Divide both sides by τ)

This contradicts c = 4GD2

τ .

Putting the Lemmas together:

Pr
[
Oπ(D, η) ∈ S

]
= Pr

[
η ∈

⋃
ŵ

E
(
D, ŵ

)]
=
∫
Rd+1

p(η)I{η ∈
⋃
ŵ

E
(
D, ŵ

)
}dη

=
∫

(Rd+1\B)\C
p(η)I{η ∈

⋃
ŵ

E
(
D, ŵ

)
}dη +

∫
C
p(η)I{η ∈

⋃
ŵ

E
(
D, ŵ

)
}dη (2)

≤
∫

(Rd+1\C)\B
p(η)I{η ∈

⋃
ŵ

E
(
D, ŵ

)
}dη + δ (3)

=
∑
ŵ∈S

∫
Rd+1\(C∪B)

p(η)I{η ∈ E
(
D, ŵ

)
}dη + δ

≤
∑
ŵ∈S

∫
Rd+1\(C∪B)

p(η)I{gŵ(η) ∈ E
(
D′, ŵ

)
}dη + δ (4)

≤
∑
ŵ∈S

∫
Rd+1\(C∪B)

eεp(gŵ(η))I{gŵ(η) ∈ E
(
D′, ŵ

)
}dη + δ (5)

=
∑
ŵ∈S

∫
Rd+1\(gŵ(C)∪gŵ(B))

eεp(η)I{η ∈ E
(
D′, ŵ

)
}
∣∣∣∣∂gŵ∂η ∣∣∣∣dη (6)

≤ eε
∑
ŵ∈S

∫
Rd+1

p(η)I{η ∈ E
(
D′, ŵ

)
}dη + δ

= eεPr
[
η ∈

⋃
ŵ

E
(
D′, ŵ

)]
= eεPr

[
Oπ(D′, η) ∈ S

]
+ δ

6



where equality (2) follows from Lemma 2. Then inequality (3) holds because C is chosen such that
Pr
[
η ∈ C

]
< δ. The inequality (4) is from lemma 4 and inequality (5) is from the bounded ration

lemma 3. Lastly, equality (6) follows because the mapping η → gŵ(η) is one-to-one. Also note that∣∣∣∣∂gŵ∂η ∣∣∣∣ = 1 This completes the proof.

We now state the accuracy guarantee, which follows from a standard Gaussian tail bound. Then
in Subsection 3.1 we compare this guarantee to the accuracy guarantee for the competing RSPM
method for learning discrete hyperplanes, in order to shed some light on the accuracy guarantee in
practice.

Theorem 5 (Utility). Algorithm 1 is an (α, β)-minimizer for W∗τ with

α = 14GD2√2(d+ 1) ln (4/β) ln (1/δ)
nτε

3.1 Comparing OPDisc and RSPM

While both OPDisc and the RSPM algorithm of [NRW19] require discrete parameter spaces, OPDisc
is substantially more general in that it only requires the loss functions be Lipschitz, whereas RSPM
assumes the loss functions are bounded in {0, 1} (and hence 1/τ Lipschitz over Wτ ) and assumes
the existence of a small separator set (defined in the supplement). Nevertheless, we might hope that
in addition to greater generality, OPDisc has comparable or superior accuracy for natural classes of
learning problems. We show this is indeed the case for the fundamental task of privately learning
discrete hyperplanes, where it is better by a linear factor in the dimension. We define the RSPM
algorithm, for which we must define the notion of a separator set, in the supplement.

Theorem 6 (RSPM Utility [NRW19]). Let W∗τ be a discrete parameter space with a separator set
of size m. The Gaussian RSPM algorithm is an oracle-efficient (α, β)-minimizer for W∗τ for:

α = O

(
m
√
m ln(2m/β) ln(1/δ)

εn

)
Let Iτ be a τ discretization of [−1, 1]d, e.g. Iτ = [−1,−1 + τ, . . . 0, τ, 2τ, . . . 1]d. Let Wτ be the

subset of vectors in this discretization that lie within the unit Euclidean ball: Wτ = Iτ ∩ S(1)d. Wτ

is τ -separated since any two distinct w,w′ differ in at least one coordinate by at least τ . Moreover
Wτ admits a separator set of size m = 2(d−1)

τ (see the Appendix of [NRW19]. Since the loss functions
li(w) = 1{w · xi ≥ 1} ∈ {0, 1} and Wτ is τ -separated, the loss functions li are 1

τ -Lipschitz. By
Theorem 6, RSPM has accuracy bound:

αRSPM = O

(
d
√
d log(d/βτ) log(1/δ)

τ
√
τεn

)

By Theorem 5 OPDisc has accuracy bound:

αOPDisc = O

(√
d log(1/β) log(1/δ)

nτ2ε

)

Thus, in this case, OPDisc has an accuracy bound that is different by a factor of roughly d
√
τ .

However, the bound of OPDisc is better only when τ is greater than 1/d2, pressing the question of
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how to set this parameter. The trade-off is that setting τ too large makes the algorithm OPDisc add
too much noise to the objective, and our accuracy guarantee degrades very fast. On the other hand,
if τ is too large, then we can miss the optimal solution to a large extent. However, for practical
scenarios, setting the value of τ to be much larger than 1

d2 gives a discretized decision space such
that the optimal answer is not too far from the optimal on the corresponding continuous decision
space. For instance, in our experiments, we set τ equals to one.

4 Objective perturbation for lipschitz functions
We now present an objective perturbation algorithm (paired with an additional output perturbation
step), which applies to arbitrary parameter spaces. The privacy guarantee holds for (possibly
non-convex) Lipschitz loss functions, while the accuracy guarantee applies only if the loss functions
are convex and bounded. Even in the convex case, this is a substantially more general statement
than was previously known for objective perturbation: we don’t require any second order conditions
like strong convexity or smoothness (or even differentiability). Our guarantees also hold with access
only to an α-approximate optimization oracle.

We present the full algorithm in Algorithm 2. It 1) uses the approximate linear oracle (in Defini-
tion 2.1) to solve polynomially many perturbed optimization objectives, each with an independent
random perturbation, and 2) perturbs the average of these solutions with Laplace noise.

Before we proceed to our analysis, let us first introduce some relevant parameters. Let W have
`∞ diameter D∞, and `2 diameter D2. We assume that the loss functions li ∈ L are G-Lipschitz
with respect to `1 norm, and assume the loss functions are scaled to take values in [0, 1]. Our utility
analysis requires convexity in the loss functions, and essentially follows from the high-probability
bounds on the linear perturbation terms in the first stage and the output perturbation in the second
stage. The privacy analysis of this algorithm crucially depends on a stability lemma proven by
[SN19] in the context of online learning, and does not require convexity.1

Theorem 7 (Utility). Assuming the loss functions are convex, Algorithm 2 is an (α′, β)-minimizer
for 1

nL(w,D) with

α′ = O

(
d5/4GD∞

√
D2 log(1/β)√
εn

+ α log(1/β)
ε

)
where α is the approximation error of the oracle Oα.

Proof. For µi ∼ Lap(λε ), |µi| ∼ Exp(λε ). By Theorem 5.1 in [Jan17] which gives upper tail bounds
for the sum of independent exponential random variables, we can conclude that ||µ||1 ≤ r =
(1 + log(2/β))λε with probability 1− β/2.

Then by G-Lipschitzness with respect to the l1 norm, with probability 1− β/2:

1
n
L
(

1
m

m∑
k

wk + µ,D
)
≤ 1
n
L
(

1
m

m∑
k

wk,D
)

+Gr

1Compared to the bound in [SN19], our bound has an additional factor of 2 since our neighboring relationship in
Definition 2.5 is defined via replacement whereas in [SN19] the stability is defined in terms of adding another loss
function.
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Algorithm 2: OPSamp
Input: Approximate optimization oracle Oα, a dataset D = {li}ni=1, privacy parameters ε, δ.
γ ←−

√
ε√
n
d5/4√D2;

m←− ln (2d/δ)
2γ2 ;

for k = 1 to m do

η ←−
√

D2
√

2dε
250G2d2D2

∞(1+log(2/β))n ;

Sample a random vector σk ∼ Exp(η)d;

wk ←− Oα
(
D, σk

)
end
λ←− 4D∞γ + 250ηGd2D2

∞ + α
10G ;

µ ∼ Lap(λ/ε)d;
Output: 1

m

∑m
k=1wk + µ

We now focus on 1
nL( 1

m

∑m
k wk,D). By the convexity of the loss functions, we have:

1
n
L
(

1
m

m∑
k

wk,D
)
≤ 1
m

m∑
k

1
n
L (wk,D)

Since each 1
nL(wk,D) is bounded in [0, 1] (since each li ∈ [0, 1]) and independent, by Hoeffding’s

Inequality (see Appendix) with probability 1− β/2:∣∣∣∣∣ 1
m

m∑
k

1
n
L(wk,D)− Ew∗

[ 1
n
L(w∗,D)

]∣∣∣∣∣ ≤
√

log(4/β)
2m

So it suffices to show that Ew∗ [ 1
nL(w∗,D)]−arg minw∈W 1

nL(w,D) is small. Fix w̃ = arg minw∈W 1
nL(w,D).

Now by definition of Oα, for any w ← Oα
(∑|D|

i=1 li − σ
)
, we have

1
n
L(w,D)− 1

n
〈w, σ〉 ≤ 1

n
L(w̃,D)− 1

n
〈w̃, σ〉+ α,

hence
1
n
L(w,D)− 1

n
L(w̃,D) ≤ 1

n
〈w − w̃, σ〉+ α

〈w − w̃, σ〉 ≤ ||w − w̃||2||σ||2 ≤ D2||σ||2, hence:

Ew∗
[ 1
n
L(w∗,D)

]
− arg min

w∈W

1
n
L(w,D) ≤ 1

n
D2E [||σ||2]

Now by Jensen’s inequality, E[||σ||2] ≤
√
E[||σ||22] =

√
2d
η , where the last equality is by the variance

of the exponential distribution. Putting it all together, with probability 1− β:

1
n
L
(

1
m

m∑
k

wk + µ,D
)
− arg min

w∈W

1
n
L (w + µ,D) ≤ Gr + γ

√
log(4/β)/2 + α+ 1

n
D2

√
2d
η
,

9



Plugging in the value of r, λ and expanding we get the following long expression:

G(1 + log(2/β))λ
ε

+ γ
√

log(4/β)/2 + α+ 1
n
D2

√
2d
η

= G(1 + log(2/β))

(
4D∞γ + 250ηGd2D2

∞ + α
10G

)
ε

+ γ
√

log(4/β)/2 + α+ 1
n
D2

√
2d
η

= γ

(4GD∞(1 + log(2/β))
ε

)
+ η

(250G2d2D2
∞(1 + log(2/β))
ε

)
+ α

((1 + log(2/β))
10ε

)
+

γ
(√

log(4/β)/2
)

+ 1
η

( 1
n
D2
√

2d
)

+ α

= γA+ ηB + αC + γD + E

η
+ α (Setting placeholders A,B,C,D,E)

= γ(A+D) +
√
BE + α(C + 1) (η =

√
E

B
)

(7)

The last step of equation 7 comes from replacing in the value of η =
√

D2
√

2dε
250G2d2D2

∞(1+log(2/β))n =
√

E
B .

Replacing back the values of A,B,C,D,E results in:

= γ

(
G(1 + log(2/β))4D∞

ε
+
√

log(4/β)/2
)

+

√
250G2d2D2

∞D2
√

2d(1 + log(2/β))
εn

+

α

((1 + log(2/β))
10ε + 1

)
Finally, note that by the choice of the parameter γ, the first term has order at most that of the
second term, which gives our stated bound.

Privacy analysis Before we prove that algorithm 2 satisfies differential-private in theorem 11,
we give some useful lemmas.

Lemma 8 (Stability lemma [SN19]). For any pair of neighboring data sets D,D′. Let Oα(D, σ)
and Oα(D′, σ) be the output of an approximate oracle on datasets D and D′ respectively. Then,

Eσ
[
||Oα(D, σ)−Oα(D′, σ)||1

]
≤ 250ηGd2D2

∞ + α

10G

From now on, let Σ = {σi : i ∈ [m]} be a sequence of of m i.i.d d-dimensional noise vectors and
W(D,Σ) = 1

m

∑
iOα(D, σi) is the average output of m calls to an α-approximate oracle.

Lemma 9. If m = ln (2d/δ)
2γ2 , for 0 ≤ γ ≤ 1, then, with probability 1− δ/2:

‖W(D,Σ)− Eσ[Oα(D, σ)]‖1 ≤ 2D∞γ

where the randomness is taken over the different runs of Oα.

The next lemma combines Lemma 8 and Lemma 9 to get high probability sensitivity bound for
the average output of the approximate oracle.

10



Lemma 10 (High Probability `1-sensitivity). For any pair of neighboring datasets D,D′, let
W(D,Σ), W(D′,Σ) be the sample average after m = ln (2d/δ)

γ2 calls to an α-approximate oracle.
Then, with probability 1− δ over the random draws of Σ,

||W(D,Σ)−W(D′,Σ)||1 ≤ 4D∞γ + 250ηGd2D2
∞ + α

10G (8)

Proof. By Lemma 9, If we run the approximate oracle ln 2d/δ
2γ2 times on each neighboring dataset

D,D′, then by union bound we get that with probability 1− δ:

‖W(D)− E[Oα(D, σ)]‖1 ≤ 2D∞γ and ‖W(D′)− E[Oα(D′, σ)]‖1 ≤ 2D∞γ

Adding both inequalities and applying the triangle inequality

‖W(D)− E[Oα(D, σ)]‖1 + ‖W(D′)− E[Oα(D′, σ)]‖1 ≤ 4D∞γ
‖W(D)− E[Oα(D, σ)]−W(D′) + E[Oα(D′, σ)]‖1 ≤ 4D∞γ
‖W(D)−W(D′)‖1 ≤ 4D∞γ + ‖E[Oα(D, σ)]− E[Oα(D′, σ)]‖1

(9)

Lastly, by Lemma 8,

‖W(D,Σ)−W(D′,Σ)‖1 ≤ 4D∞γ + 250ηGd2D2
∞ + α

10G

Theorem 11. Algorithm 2 is (ε, δ)-differentially private.

Proof sketch. Given a pair of neighboring data sets D,D′, we will condition on the set of noise
vectors Σ satisfy the `1-sensitivity bound (8), which occurs with probability at least 1− δ. Then
the privacy guarantee follows from the use of Laplace mechanism.

Proof. First we introduce some notation. We denote by W(D,Σ) the average of m runs of Oα
with dataset D and sequence of i.i.d noise vectors Σ = {σ1, σ2, . . . , σm}, sampled i.i.d from the
Exponential distribution. LetM(D) denote a random variable of algorithm 2’s output on dataset
D. Given any realization of the objective-perturbation noise term Σ and the output-perturbation
noise term µ, by an abuse of notation, we can write the output of algorithm 2 as:

M(D,Σ, µ) =W(D,Σ) + µ (10)

Following Lemma 8, we let λ← 4D∞γ + 250ηGd2D2
∞ + α

10G and define the event B as

B = {Σ ∈ R(m,d) : ‖W(D,Σ)−W(D′,Σ)‖1 ≤ λ}

where λ is the `1-norm sensitivity bound from Lemma 10. Then, by the same lemma, if Σ is drawn
independently from the Exponential distribution then the probability that Σ /∈ B is less than δ.

Now we are ready for the main argument. Fixing any two neighboring dataset D,D′ and any
event S, we first consider the joint probability Pr

[
M(D) ∈ S ∩B

]
, and write it as:

Pr
[
M(D) ∈ S ∩B

]
= Pr

[
M(D) ∈ S|B

]
Pr
[
B
]

(11)

11



For the next part of the proof, we let p(·) be the probability density functions of the Exponential
distribution. We will upper bound the conditional probability Pr

[
M(D) ∈ S|B

]
using the differential

privacy of the Laplace mechanism and the sensitivity of the function W(D,Σ). First, note that if
we fix Σ ∈ B, then the probability ofM conditioned on Σ is

Pr
[
M(D) ∈ S|Σ

]
= Prµ∼Lap(λ/ε)

[
W(D,Σ) + µ ∈ S

]
Furthermore, by Lemma 10, we have ‖W(D,Σ)−W(D′,Σ)‖1 ≤ λ for any Σ ∈ B. And we know
that the Laplace mechanism is ε-differentially private. Therefore we have

Prµ∼Lap(λ/ε)
[
W(D,Σ) + µ ∈ S

]
≤ exp(ε)Prµ∼Lap(λ/ε)

[
W(D′,Σ) + µ ∈ S

]
Putting the last two inequalities together we can upper bound Pr

[
M(D) ∈ S|B

]
by

Pr
[
M(D) ∈ S|B

]
=
∫

Σ∈B
p(Σ)Pr

[
M(D) ∈ S|Σ

]
dΣ

=
∫

Σ∈B
p(Σ)Prµ∼Lap(λ/ε)d

[
W(D,Σ) + µ ∈ S

]
dΣ

≤
∫

Σ∈B
p(Σ) exp(ε)Prµ∼Lap(λ/ε)d

[
W(D′,Σ) + µ ∈ S

]
dΣ

= exp (ε)Pr
[
M(D′) ∈ S|B

]
(12)

Finally,

Pr
[
M(D) ∈ S

]
= Pr

[
M(D) ∈ S ∩B

]
+ Pr

[
M(D) ∈ S ∩Bc]

= Pr
[
M(D) ∈ S ∩B

]
+
∫

Σ∈Bc
Pr
[
M(D)|Σ

]
Pr
[
Σ
]

≤ Pr
[
M(D) ∈ S ∩B

]
+ δ

= Pr
[
M(D) ∈ S|B

]
Pr
[
B
]

+ δ (eq. (11))
≤ exp(ε)Pr

[
M(D′) ∈ S|B

]
Pr
[
B
]

+ δ (eq. (12))
= exp(ε)Pr

[
M(D′) ∈ S ∩B

]
+ δ

≤ exp(ε)Pr
[
M(D′) ∈ S

]
+ δ

(13)

Therefore, Pr
[
M(D) ∈ S

]
≤ exp (ε)Pr

[
M(D′) ∈ S

]
+ δ

5 Experiments
For our experiments, we consider the problem of privately learning a the linear threshold function
to solve a binary classification task. Given a labeled data set {(xi, yi)}ni=1 where each xi ∈ Rd and
yi ∈ {−1, 1}, the classification problem is to find a hyperplane that best separates the positive
from the negative samples. A common approach is to optimize a convex surrogate loss function
that approximates the classification loss. We use this approach (private logistic regression) as our
baseline. In comparison, using our algorithm OPDisc, we instead try and directly optimize 0/1
classification error over a discrete parameter space, using an integer program solver. Although this
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can be computationally expensive, we find that it is feasible for relatively small datasets (we use a
balanced subset of the Adult dataset with roughly n = 15, 000 and d = 23 features, after one-hot
encodings of categorical features). In this setting, we find that OPDisc can substantially outperform
private logistic regression. We remark that “small data” is the regime in which applying differential
privacy is most challenging, and we view our approach as a promising way forward in this important
setting.

(a) Accuracy versus ε. (b) Distribution of run time.

Figure 1: Accuracy and runtime evaluation of OPDisc, RSPM, and Private Logistic Regression
(LR) on the Adult data set with size n = 15682 and d = 23 features. The value of δ = 1/n2 for all
methods in all runs.

Data description and pre-processing We use the Adult dataset [Lic13], a common benchmark
dataset derived from Census data. The classification task is to predict whether an individual earns
over 50K per year. The dataset has n = 48842 records and 14 features that are a mix of both
categorical and continuous attributes.The Adult dataset is unbalanced: only 7841 individuals have
the ≥ 50k (positive) label. To arrive at a balanced dataset (so that constant functions achieve
50% error), we take all positive individuals, and an equal number of negative individuals selected
at random, for a total dataset size of n = 15682. We encode categorical features with one-hot
encodings, which increases the dimensionality of the dataset. We found it difficult to run our
algorithm with more than 30 features, and so we take a subset of 7 features from the Adult dataset
that are represented by d = 23 real valued features after one-hot encoding. We chose the subset of
features to optimize the accuracy of our logistic regression baseline.

Baseline: private logistic regression (LR). We use as our baseline private logistic regression
which optimizes over the space of continuous halfspaces with the goal of minimizing the logistic loss
function, given by li(w) = log (1 + exp(−y〈w, xi〉)). We implement a differentially private stochastic
gradient descent (privateSGD) algorithm from [BST14, ACG+16], keeping track of privacy loss
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using the moment accountant method as implemented in the TensorFlow Privacy Library. The
algorithm involves three parameters: gradient clip norm, mini-batch size, and learning rate. For
each target privacy parameters (ε, δ), we run a grid search to identify the triplet of parameters that
give the highest accuracy. To lower the variance of the accuracy, we also take average over all the
iterates in the run of privateSGD.

Implementation details for OPDisc and RSPM For both OPDisc and RSPM, we encode
each record (xi, yi) ∈ D as a 0/1 loss function: li(w) = 1[yi 6= sgn(

〈
xi, w

〉
)]. For both algorithms,

we have separation parameter τ = 1 and constrains the weight vectors to have `2 norm bounded by√
d. In OPDisc, each coordinate wj can take values in the discrete set {−B,−B + 1, . . . , B − 1, B}

with B = b
√
dc, and we constrain the ‖w‖2 to be at most

√
d. In RSPM, we optimize over the set

{−1, 0, 1}d. OPDisc requires an approximate projected linear optimization oracle (Definition 2.2)
and RSPM requires a linear optimization oracle (Definition 2.1). In the appendix, we show
that the optimization problems can be cast as mixed-integer programs (MIPs), allowing us to
implement the oracles via the Gurobi MIP solver. The Gurobi solver was able to solve each
of the integer programs we passed it. The source code for OPDisc is available via GitHub
(https://github.com/giusevtr/private_objective_perturbation).

Empirical evaluation. We evaluate our algorithms by their (0/1) classification accuracy. The
fig. 1a plots the accuracy of OPDisc and our baseline (y-axis) as a function of the privacy parameter
ε (x-axis), averaged over 15 runs. We fix δ = 1/n2 for all three algorithms across all runs. The
error bars report the empirical standard deviation. We see that both OPDisc and RSPM improve
dramatically over the logistic regression baseline. This shows that in small-data settings, it is
possible to improve over the error/privacy tradeoff given by standard convex-surrogate approaches
by appealing to non-convex optimization heuristics. OPDisc also obtains consistently better error
than RSPM. The algorithm OPDisc also has a significantly lower variance in its error compared to
the other two algorithms. The fig. 1b gives a histogram of the run-time of our three methods for
our experiment. For both OPDisc and RSPM, the running time is dominated by an integer-program
solver. We see that while our method frequently completes quite quickly (often even beating our
logistic regression baseline!), it has high variance, and occasionally requires a long time to run.
However, we were always able to solve the necessary optimization problem, eventually.
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A Definitions
Definition A.1 ([GKS93, SKS16]). A set U ⊆ L is a separator set for a parameter space W if for
every pair of distinct parameters w,w′ ∈ W, there is an l ∈ U such that:

l(w) 6= l(w′)

If |U | = m, then we say that W has a separator set of size m.

Algorithm 3: Gaussian Report Separator perturbed Minimum [NRW19]
Given: A separator set U = {e1, . . . , em} for class Wτ and optimization oracle for W∗τ ;
Input: D = {li}i∈[n]
n← |D| ;

σ ← 7
√
m ln 1/δ
ε ;

Draw i.i.d random vector η ∼ N
(
0, σ2)d+1;

Construct a weighted dataset WD of size n+m as follows:

WD(D, η) = {(li, 1) : li ∈ D} ∪ {(ei, ηi) : ei ∈ U}

w ∈ arg min
w∗∈Wτ

∑
(li,pi)∈WD

pili(w)

Output: w

Definition A.2. A weighted optimization oracle for a class W is a function O : (L × R)∗ → W
that takes as input a weighted dataset WD ∈ (L × R)∗ and outputs w ∈ W such that

w ∈ arg min
w∗∈W

∑
(li,pi)∈WD

pili(w)

B Missing Proofs in Section 3
Proof of Lemma 2.

Proof. Since Wτ is a discrete space, by a union bound it suffices to show that for any pair
w 6= w′ ∈ Wτ , Pr

[
L(D, w)− 〈η, π(w)〉 = L(D, w′)− 〈η, π(w′)〉

]
= 0. Since w 6= w′, they must differ

in at least one coordinate i. Condition on the realization of all of the coordinates of η but the ith,
η−i. Then L(D, w)− 〈η, π(w)〉 = L(D, w′)− 〈η, π(w′)〉, only if

ηi =
L(D, w′)− L(D, w) +

∑
j 6=i ηj(wj − wj)

(w′i − wi)

The expression on the righthand side is well-defined since wi 6= w′i. But then ηi ∼ N (0, σ2) even
after conditioning on η−i, and so its probability of taking any fixed value is 0. This proves the
claim.

Proof of Lemma 3.
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Proof. Fix any r ∈ Rd+1, w ∈ Wτ , and let v = gw(r)− r = 2
γGD

2π(ŵ). Note that ‖v‖2 = 2
τGD

2.
Fix an orthonormal basis of Rd+1, where the first basis vector b1 is parallel to v. Let r[1] be the
projection of r onto the direction of b1. Then by Lemma 17 in [NRW19]:

p(r) ≤ exp
( 1

2σ2

(
‖v‖22 + 2‖v‖2‖r[1]‖2

))
p(gw(r)) (14)

The ratio p(r)/p(gw(r)) is bounded by exp (ε) in the event that ‖r[1]‖2 < 2σ2ε/‖v‖2 − ‖v‖2/2.
||r[1]||2 ∼ |λ|, where λ ∼ N (0, σ2), and so using a tail bound for the χ2 random variable, ‖r[1]‖2 <
2σ2ε/‖v‖2 − ‖v‖2/2 with probability 1− δ so long as σ = c‖v‖2

√
ln (1/δ)

2ε for c ≥ 3.5. Since we have

that ‖v‖2 = 2
τGD

2, for us it suffices to set σ = 7GD2
√

ln (1/δ)
2ετ . Let Λ = σ2ε/‖v‖2−‖v‖2/2 and define

the set C = {η : ‖η[1]‖2 > Λ}. Then since Pr
[
η ∈ C

]
< δ, we are done.

Proof of Theorem 1.

Proof. Write ŵ = Oπ(D, η). We first want to show that there exists a mapping gŵ : Rd+1 → Rd+1

such that ŵ is the parameter vector output on any neighboring dataset D′ when the noise vector is
realized as gŵ(η): that is, ŵ = Oπ(D′, gŵ(η)). Let S ⊂ Wτ be a subset of discrete parameters. If we
can show that Pr

[
S
]
≈ Pr

[
gŵ(S)

]
, then the probability of outputting any particular w on input D

should be close to the corresponding probability, on input D′ as desired. Denote the set of of noise
vectors that induce output w on dataset D by E

(
D, w

)
= {η : Oπ(D, η) = w}. Define our mapping:

gŵ(η) = η + 2
τ
GD2π

(
ŵ
)
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We now use the 3 key Lemmas to finish the privacy proof. Putting it all together:

Pr
[
Oπ(D, η) ∈ S

]
= Pr

[
η ∈

⋃
ŵ

E
(
D, ŵ

)]
=
∫
Rd+1

p(η)1{η ∈
⋃
ŵ

E
(
D, ŵ

)
}dη

=
∫

(Rd+1\B)\C
p(η)1{η ∈

⋃
ŵ

E
(
D, ŵ

)
}dη +

∫
C
p(η)1{η ∈

⋃
ŵ

E
(
D, ŵ

)
}dη

≤
∫

(Rd+1\C)\B
p(η)1{η ∈

⋃
ŵ

E
(
D, ŵ

)
}dη + δ (Lemma 2, Pr

[
η ∈ C

]
< δ)

=
∑
ŵ∈S

∫
Rd+1\(C∪B)

p(η)1{η ∈ E
(
D, ŵ

)
}dη + δ

≤
∑
ŵ∈S

∫
Rd+1\(C∪B)

p(η)1{gŵ(η) ∈ E
(
D′, ŵ

)
}dη + δ (Lemma 4)

≤
∑
ŵ∈S

∫
Rd+1\(C∪B)

exp(ε)p(gŵ(η))1{gŵ(η) ∈ E
(
D′, ŵ

)
}dη + δ (bounded ratio)

=
∑
ŵ∈S

∫
Rd+1\(gŵ(C)∪gŵ(B))

exp(ε)p(η)1{η ∈ E
(
D′, ŵ

)
}
∣∣∣∣∂gŵ∂η

∣∣∣∣dη (η → gŵ(η))

≤ exp(ε)
∑
ŵ∈S

∫
Rd+1

p(η)1{η ∈ E
(
D′, ŵ

)
}dη + δ

= exp(ε)Pr
[
η ∈

⋃
ŵ

E
(
D′, ŵ

)]
= exp(ε)Pr

[
Oπ(D′, η) ∈ S

]
+ δ

This completes the proof.

C Missing Proofs in Section 4
Proof of Lemma 9

Proof. If we denote w(σ) = Oα(D, σ) as the output of an approximate oracle on dataset D induced
by a realization of the noise vector σ, then w(σ1), . . . w(σm) are m independent random variables
with −D ≤ w(σi)j ≤ D for all i and for each coordinate j ≤ d.

For any index coordinate j, let Xi = (w(σi)j + D)/2D, S = 1
m

∑m
i Xi and µS = E[S]. Since

0 ≤ Xi ≤ 1, by Chernoff bound we have

Pr
[
S > µS + γ

]
< e−2mγ2

Pr
[ 1
m

m∑
i

(w(σi)j +D)/2D > µS + γ
]
< e−2mγ2

Pr
[ 1
m

m∑
i

w(σi)j > 2DµS −D + 2Dγ
]
< e−2mγ2

Pr
[
W(D,Σ)j > Eσ[Oα(D, σ)]j + 2Dγ

]
< e−2mγ2
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Plugging in the value of m = − ln (δ/(2d))
2γ2 we get:

Pr
[
W(D,Σ)j − Eσ[Oα(D, σ)]j > 2Dγ

]
< δ/(2d)

Pr
[
W(D,Σ)j − Eσ[Oα(D, σ)]j < −2Dγ

]
< δ/(2d)

Thus, by union bound

Pr
[
‖W(D,Σ)−E[Oα(D, σ)]‖1 > 2Dγ

]
≤

d∑
j=1

Pr
[∣∣W(D,Σ)j−E[Oα(D, σ)j ]

∣∣ > 2Dγ
]
<

d∑
j=1

δ/(2d) = δ/2

D Experiments Details

D.1 Implentation Details

The implementation is written in Python and uses Gurobi as a solver. We run the experiments on a
server machine with an 8-core AMD processor and 192 GB of RAM.

D.2 Mixed Integer Programs for OPDisc and RSPM

We use a mixed integer programs (MIP) to encode the optimization problems of OPDisc and
RSPM over the space of d-dimentional discrete halfspaces. The input to our algorithm is a dataset
{(xi, yi)}n where xi ∈ Rd, y ∈ {−1, 1} and a noise vector η ∈ Rd+1. The discretization parameter is
τ and D is the `2-norm bound of W .

min
w∈W

n∑
i=1

ei −
d∑
i=1

ηiwi/D − ηd+1λ/D

s.t. yi

d∑
j=1

wjxj + cei > 0 ∀i ∈ [n]

λ2 + ‖w‖22 ≤ D2

ei ∈ {0, 1} ∀i ∈ [n]
wj ∈ τZ ∀j ∈ [d]

(15)

Figure 2: MIP oracle used by OPDisc. The MIP consist of n integral constraints, d linear and 1
quadratic constraint.

In OPDisc, the objective we want to minimize is L(D, w)−
〈
η, π

(
w
)〉

which we can rewrite as

L(D, w)−
d∑
i=1

ηiwi/D − ηd+1

√
D2 − ‖w‖22/D (16)

The loss term L(D, w) in the objective is encoded as a sum of n binary variables ei ∈ {0, 1}, such
that if ei = 0 only then the constraint yi

〈
w, xi

〉
> 0 must be satisfied. Thus, the sum

∑n
i=0 ei is equal
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to the number of misclassified samples. For each i ∈ [n], we enconde the constraint corresponding
to ei in our MIP by the inequality yi

〈
w, xi

〉
+ cei > 0 where c is a large enough constant with

c > maxx,w ‖x‖2‖w‖2. The third term in the objective function 16 is non-linear but we can express
it as linear term in the objective by introducing the slack variable λ. Then, in order to force the
condition that λ =

√
D2 − ‖w‖22 we add the quadratic constraint λ2 + ‖w‖22 ≤ D2.

min
w∈W

n∑
i=1

ei −
d∑
i=1

ηiwi

s.t. yi

d∑
j=1

wjxj + cei > 0 ∀i ∈ [n]

ei ∈ {0, 1} ∀i ∈ [n]
− 1 ≤ wj ≤ 1 ∀j ∈ [d]
wj ∈ τZ ∀j ∈ [d]

(17)

Figure 3: MIP oracle used by RSPM. The MIP consist of n integral constraints, and d linear
constraint.

In RSPM, we are simply optimizing the 0-1 loss over the augmented data set, including the
input data set as well as the weighted examples from the separator set.
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