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Abstract 

With continual miniaturization ever more applica-
tions of deep learning can be found in embedded 
systems, where it is common to encounter data 
with natural representation in the complex domain. 
To this end we extend Sparse Variational Dropout 
to complex-valued neural networks and verify 
the proposed Bayesian technique by conduct-
ing a large numerical study of the performance-
compression trade-off of C-valued networks on 
two tasks: image recognition on MNIST-like and 
CIFAR10 datasets and music transcription on Mu-
sicNet. We replicate the state-of-the-art result by 
Trabelsi et al. (2018) on MusicNet with a complex-
valued network compressed by 50 − 100× at a 
small performance penalty. 

1. Introduction 

Deep neural networks are an integral part of machine learn-
ing and data science toolset for practical data-driven prob-
lem solving. With continual miniaturization ever more ap-
plications can be found in embedded systems. Common 
embedded applications include on-device image recognition 
and signal processing. Despite recent advances in general-
ization and optimization theory specific to deep networks, 
deploying in actual embedded hardware remains a chal-
lenge due to storage, real-time throughput, and arithmetic 
complexity restrictions (Han et al., 2015). Therefore, com-
pression methods for achieving high model sparsity and 
numerical efficiency without losing much in performance 
are especially relevant. 

Complex-valued nature of the data in acoustic and radio sig-
nal processing has been the main driver behind the adoption 
of C-valued neural networks (CVNN). Hirose (2009) ar-
gues that the combined phase-magnitude effect of C-valued 
transformations removes the excess degrees of freedom, 

that cause degenerate transformations in R-valued networks 
with twice the feature dimensions. Their study demon-
strates superiority of CVNN in landmine detection using 
ground penetrating radar imaging. Other examples, where 
C-valued networks have outperformed R-valued networks, 
include magnetic resonance (Hui and Smith, 1995; Wang 
et al., 2020) and radar imaging (Haensch and Hellwich, 
2010; Zhang et al., 2017), music transcription and spec-
tral speech modelling (Trabelsi et al., 2018; Wisdom et al., 
2016), and wireless signal classification (Yang et al., 2020). 
Tarver et al. (2019) have lowered the out-of-band power 
leakage with a C-valued network for digital signal predis-
tortion. The networks have also been applied to non-C-
valued domains, such as image classification (Popa, 2017), 
sequence modelling (Danihelka et al., 2016), and motion 
prediction (Wolter and Yao, 2018), and for stabilizing back-
propagation in RNN (Wisdom et al., 2016). 

Despite promising results for embedded signal processing 
applications, C-valued networks remain a niche in deep 
learning, and as such little attention has been paid to com-
pression methods specific to CVNN. Yet there is an abun-
dance of research related to real-valued network compres-
sion, and many results can be applied to CVNN. Meth-
ods such as knowledge distillation (Hinton et al., 2015), 
which trains a small network to replicate a large well-trained 
teacher, low-rank matrix (Denton et al., 2014) and tensor 
decomposition (Novikov et al., 2015), or magnitude-based 
parameter pruning (Zhu and Gupta, 2018) can be adapted 
to CVNN without modifications. Parameter quantization 
and conversion from floating to fixed point arithmetic (Cour-
bariaux et al., 2015; Uhlich et al., 2020), appear to be readily 
applicable as well. For example, Wu et al. (2019) adapt k-
means quantization to C ≃ R2 parameters and successfully 
compress CVNN with the “prune-quantize-code” procedure 
of Han et al. (2016). 

Other methods cannot be translated to CVNN this straight-
forwardly. Probabilistic ℓ0 regularization of Louizos et al. 
(2018) prune networks using multiplicative [0, 1]-valued 
stochastic masks with distributions having an atom at 0, yet 
differentiable via the reparameterization trick (Kingma and 
Welling, 2014). By sharing a single mask value within a 
group of parameters their approach can be adapted to C 
parameters. However, methods such as Hessian-based pa-
rameter pruning (LeCun et al., 1990) or Sparse Variational 
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Dropout (Molchanov et al., 2017) require additional consid-
erations. 

Gale et al. (2019) compare magnitude pruning, ℓ0 regular-
ization and Sparse Variational Dropout (VD) on large-scale 
models. Their results suggest that VD may achieve good 
accuracy-sparsity balance and outperform pruning and ℓ0 in 
deep architectures, although pruning is preferred for simplic-
ity, stability and speed. They also observe that VD induces 
non-uniform sparsity throughout the model, which He et al. 
(2018) have shown to be essential for superior compression. 

Sparse Variational Dropout is a Bayesian Variational In-
ference method with automatic parameter relevance de-
termination effect. In this study we extend Sparse VD 

to CVNN, inspired by the results of Gale et al. (2019), 
and motivated by seldom application of Bayesian Inference 
to C-valued networks (Popa, 2017) and apparent scarcity 
of compression methods specific to them. We assess the 
performance-compression trade-off of the extension by con-
ducting a large-scale numerical study on image classification 
on MNIST-like and CIFAR10 datasets and music transcrip-
tion on MusicNet. 

The paper is structured as follows. Sec. 2 reviews Vari-
ational Dropout, and sec. 3 provides a brief summary of 
the inner workings of complex-valued networks. The main 
contribution of this study is presented in sec. 4, where we 
provide the details of C-valued variational sparsification 
methods. In sec. 5 we estimate the compression and perfor-
mance trade-off on shallow and deep C-valued networks, 
and discuss the outcomes. 

2. Variational Dropout 

2.1. Variational Inference 

In broad terms Bayesian Inference is a principled framework 
for reasoning about uncertainty and updating prior beliefs 
about model’s parameters in accordance with evidence or 
empirical data into a posterior distribution. The posterior 
is useful for inference regarding unobserved data, predic-
tive statistics, parameter confidence regions, and model’s 
uncertainty. 

For an observed dataset D = (xi)
N and statistical model Q i=1 

p(D | ω) = p(xi | ω) with parameters ω the Bayes i 
rule transforms prior hypotheses π(ω) about the unknown 
distribution of model’s parameters into the posterior distri-

p(D|ω)π(ω)bution: p(ω | D) = 
p(D) . Save for the relatively 

simple set-ups, either the posterior distribution itself or the 
mathematical expectations it is involved in are analytically 
intractable or impractical to compute numerically. Vari-
ational Inference (VI), proposed by Jordan et al. (1999), 
can be used in such cases to make approximate inference. 
The approach finds an approximation within some distri-

bution family qθ(ω), which is closest to the true poste-
rior distribution in terms of Kullback-Leibler divergence: 

q�(ω)
KL(qθ(ω)kp(ω | D)) = Eω∼q� log . Jordan et al. 

p(ω|D) 
(1999) show that this problem is equivalent to variational 
maximization of the Evidence Lower Bound (ELBO) 

X N

L(θ; λ) = −KL(qθkπλ) + Eω∼q� log p(xi  ω) , (1) 
i=1 

|

where the variational parameters θ and λ parameterize the 
approximation and the prior, respectively. Kullback-Leibler 
and, by proxy, ELBO are standard objectives in VI, how-
ever it is possible to use other objectives, provided the true 
posterior p(ω | D) is evaluated only through log p(D | ω) 
and log π(ω), (Ranganath et al., 2016). 

In subsequent years several improvements to Variational 
Inference approach were introduced. To make VI able to 
handle large-scale datasets Hoffman et al. (2013) proposed 
Stochastic Variational Inference, which uses stochastic gra-
dient optimization of (1) based on noisy unbiased gradient 
estimates of ELBO computed on random mini-batches from 
the dataset. Titsias and Lázaro-Gredilla (2014) translated the 
dependence on location–scale parameters of qθ to the func-
tion inside its expectation and proposed Doubly Stochastic 

Variational Inference. DSVI constructs an unbiased finite-
sample estimator of the gradient of (1) by both subsampling 
the dataset and sampling from qθ, without forfeiting conver-
gence of SVI. 

Independently, Kingma and Welling (2014) proposed 
Stochastic Gradient Variational Bayes, which is an alterna-
tive efficient doubly stochastic estimator applicable to mod-
els with parameters ω that are continuous random variables 
amenable to the reparameterization trick, i.e. ω ∼ qθ(ω) 
is equivalent in distribution to ω = gθ(ε) for some non-
parametric random variable ε ∼ p(ε) and g(ε; θ) differ-
entiable with respect to θ. The estimator of (1) with L 
reparameterized draws per element in the mini-batch of size 
M is given by 

XN eL(θ; λ) = −KL(qθkπλ)+ log p(xik 
| g(εlk; θ)) ,

ML 
k,l 

(2) 
where (xik 

)M is a random subsample from D and (εlk)L 
k=1 l=1 

are k = 1..M independent iid samples from pε. Figurnov 
et al. (2018) extended the scope of the reparameterization 
gradients to include continuous distributions such as Gamma 
and von Mises. To handle the case of non-reparameterizable 
ω in doubly stochastic VI, e.g. discrete random parameters, 
Titsias and Lázaro-Gredilla (2015) proposed local expecta-

tion gradients, which is a version of REINFORCE gradient 
estimator (Williams, 1992) with variance reduced by careful 
use of dependence structures in the model. 

In this study we use the SGVB estimator (2) with L = 1 



�

�

and the local reparameterization trick proposed by Kingma 
et al. (2015). They argued that this gradient estimator can 
be made more statistically and computationally efficient, if 
the structure of the model permits translating global stochas-
ticity of ω down to local intermediate states of computation. 
The class of models that allow this include non-recurrent 
computational graphs, exemplified by neural networks with 
parameters ω ∼ qθ. In their case, (2) would require that 
the entire set of network’s parameters ω be independently 
drawn for each element in the mini-batch. Since that the 
parameters in a network naturally split into subsets with 
non-overlapping layer-wise effects, it is standard to assume 
that the approximation qθ(ω) is factorized over layers. Fur-
thermore, if W ∈ Rn×m in a linear layer y = b + W ⊤Q x

with qθ(W ) = N (wij | µij , σ
2 ), then by virtue of yij ij 

being a linear transformation of W , we get 
� �Y X X � 2 q(y) = N yi bi + µij xj , σij 

2 xj . (3) 
i j j 

This yields outputs equivalent in distribution to sampling 
W for each element in the mini-batch, which produces the 
SGVB estimator with smaller variance, as demonstrated by 
Kingma et al. (2015). 

2.2. Dropout 

Variational Inference can be used as model regularization 
and sparsification method for certain posterior approxima-
tion qθ and prior π. 

Dropout, proposed by Hinton et al. (2012), prevents over-
fitting by injecting multiplicative binary noise into layer’s 
weights, which breaks up co-adaptations that could occur 
during training. Wang and Manning (2013) argued that the 
overall effect of binary Dropout on the intermediate outputs 
can be approximated by a Gaussian with weight-input de-
pendent mean and variance via the Central Limit Theorem. 
Srivastava et al. (2014) proposed using independent N (1, 1) 
multiplicative noise, arguing that higher entropy of a Gaus-
sian has better regularizing effect. Gal and Ghahramani 
(2016) showed that Dropout is a Bayesian approximation 
method with close ties to deep Gaussian Processes that 
yields inexpensive model uncertainty estimates. In a study 
concerning multitask learning Cheung et al. (2019) demon-
strated the possibility of storing task-specific parameters 
in non-destructive superposition within a single network. 
Regarding Dropout their argument implies that if the single 
task setting is viewed as multitask learning with replicated 
task, then by sampling uncorrelated binary masks Dropout 
acts as a superposition method, utilizing the learning capac-
ity of the network better. 

Kingma et al. (2015) provided a unifying perspective on 
Dropout, DropConnect (Wan et al., 2013), and Gaussian 
Dropout (Wang and Manning, 2013) through the lens of Vari-

ational Inference and propose Variational Dropout. They 
argued that the multiplicative noise introduced by Dropout 
methods induces a distribution equivalent to a fully factor-Q
ized variational posterior qθ(ω) = j qθ(ωj ), where qθ(ωj ) 
is ωj = µj ηj with ηj ∼ pθ(ηj ) iid from some pθ(η). 

Variational Dropout uses fully factorized Gaussian approxi-Q 
2mation qθ(ω) = j N (ωj | µj , αj µj ) and factorized scale 

invariant log-uniform prior π(ω) with π(ωj ) ∝ |ωj |−1 . 
Molchanov et al. (2017) noticed that αj reflects the rel-
evance of the parameter ωj it is associated to by being the 
ratio of its squared mean to its effective variance. Based on 
this observation they proposed Sparse Variational Dropout, 
a modification that enables automatic model sparsification 
by optimizing αj for each individual parameter. Louizos 
et al. (2017) extended the idea to structured sparsity by con-
sidering hierarchical prior and variational approximation. 
They grouped the parameters ωj and coupled them within 
each one through a shared latent variable, which on the 
whole enabled pruning entire input features in each layer. 

Due to factorization assumption, the term KL(qθkπ) in (2) 
P σj 

2 

for Sparse VD unravels into j K(
µ ) with2 
j 

Kingma et al. (2015) approximated K(α) over α ∈ (0, 1) by 
a polynomial with a logarithmic term, and later Molchanov 
et al. (2017) refined the approximation of (4) by weighted 
sum of a sigmoid and a soft-plus term. In appendix D we 
verify the derivative of their approximation against a Monte-
Carlo estimate for α varying over a fine log-scale grid and 
the exact expression for gradient of (4). 

Kharitonov et al. (2018) addressed theoretical issues with 
improper prior π in Sparse VD, emphasized by Hron et al. 
(2018), and proposed Automatic Relevance Determination 

Variational Dropout, by replacing π(ωj ) with a proper Gaus-
sian prior πλ(ωj ) = N (ωj | 0, τ−1) with learnable precision j 
τj > 0 (Neal, 1996). This recast the VD as the Empirical 

Bayes approach, which performs Bayesian Inference over 
ω, but uses Maximum Likelihood estimates for the hyper-
parameters λ, (MacKay, 1994). Maximizing (2) over τ , 

−12holding other parameters fixed, yields τ ∗ = (µj + σ2) ,j j 
whence 

Simultaneously the method Molchanov et al. (2017) pro-
posed to use additive noise parameterization in the factor-
ized Gaussian qθ(ω) in conjunction with the local reparam-
eterization trick. They reverted the (µ, α) parameterization 
in qθ(ω) back to (µ, σ2), arguing that it reduces the variance 
of the SGVB (2), by rendering the gradient with respect to 
µ independent from the local noise, injected by (3). This 

�� ��
21 1K(α) ∝ Eε∼N (0,1) log √ + ε . (4)

2 α 

�

1 � � 
K(α) = log 1 + 1 . (5)

2 α 
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modification is important for pruning, since µ of a relevant 
parameter serves as the estimate of its value. 

3. C-valued Networks 

C-valued neural networks are networks that rely on the arith-
metic in the complex domain. To achieve this implementa-
tions of CVNN use the geometric representation of a com-
plex number as paired real and imaginary values, C ≃ R2 , 
ensuring that the resulting R-valued computational graph 
respects C-arithmetic. For example, f : Cn → Cm is iden-
tified with a real vector-valued function F : R2m → R2m 

defined via F (u, v) = (ℜf(u + v), ℑf(u + v)), ℜ and ℑ 
denoting the real and imaginary parts, respectively. When 
f is a C-valued linear transformation, the computations are 
“wired” so that 

� � � �� � 
Pu − Qv P −Q u 

F (u, v) = = , (6)
Pv + Qu Q P v 

with P, Q : Rn → Rm given by P = ℜf and Q = ℑf re-
stricted to Rn . Non-linearities in CVNN can be hyperbolic 
functions or maps that operate on C numbers in planar form, 
z 7→ σ(ℜz) + σ(ℑz), or polar form reφ 7→ σ(r, φ). 

This C ≃ R
2 identification allows straightforward 

retrofitting of CVNN into existing R-valued auto-
differentiation frameworks for deep learning. This act is 
backed by Wirtinger (CR) calculus, which enables gen-
eralized treatment of functions of complex argument, by 
regarding z and its complex conjugate z as independent vari-
ables and defining derivative operators with respect to them 
through partial derivatives with respect to real and imagi-
nary parts. These definitions simplify manual analysis of C 
derivatives and satisfy the product and chain rules, respect 
complex conjugation and linearity for C → C maps, and 
as such were used to define C version of back-propagation, 
(Benvenuto and Piazza, 1992; Guberman, 2016). However, 
since auto-differentiation frameworks can algorithmically 
handle computational graphs of arbitrary complexity, ex-
plicit use of Wirtinger derivatives is not required, especially 
considering the fact that the direction of the steepest ascent 
of a C → R function is given by complex conjugate gradi-
ent ∇z , which coincides with the classical gradient of the 
same function viewed as R2 → R, (see appendix C). 

Development of deep C-valued networks has been active. 
Haensch and Hellwich (2010) put forward C-valued con-
volutional networks, Guberman (2016) and Popa (2017) 
developed modifications of pooling, Arjovsky et al. (2016) 
and Wisdom et al. (2016) proposed C-valued RNNs with 
unitary recurrent transition matrices, and Danihelka et al. 
(2016) developed C-valued holographic representations for 
LSTMs. More recently Trabelsi et al. (2018) proposed C-
valued batch-normalization and weight initialization, Wolter 
and Yao (2018) investigated different C-valued gating mech-

anisms for RNNs, and Yang et al. (2020) proposed C-valued 
self-attention and complex transformer architecture. It mer-
its noting that Gaudet and Maida (2018) generalized CVNN 
further to deep quaternion-valued networks, and Vecchi et al. 
(2020) studied sparsity inducing regularizers for them. 

4. C-Variational Dropout 

In this section we develop Sparse Variational Dropout for 
CVNN by using a fully factorized complex Gaussian pos-
terior approximation. We outline the C version of the local 
reparameterization trick and derive the divergence penal-
ties in (2). The proposed C-valued extension can readily 
be a part of a hierarchical variational approximation for 
structured sparsity (Louizos et al., 2017). 
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4.1. C-Gaussian Distribution 

A vector z ∈ Cm has complex Gaussian distribution, 
q(z) = CNm(µ, �  , C) with mean µ ∈ Cm, complex co-
variance and relation matrices � and C, respectively, if 

� � �� � � �ℜz 
z 

ℜµ 1 ℜ(�+C) ℑ(C−�) ∼ N2m , , (7)ℑµ 2 ℑ(�+C) ℜ(�−C)ℑ

� 

provided � is positive definite Hermitian matrix, C⊤ = C, 
and � � C�−1C. Matrices � and C are given by E(z − 
µ)(z − µ)⊤ and E(z − µ)(z − µ)⊤ , respectively, and the 
random vector z is a circularly symmetric C-Gaussian vector 
if z and z are uncorrelated, i.e. C = 0. The entropy of z 
terms of � and C is 

�� ��

H(q) = −Ez∼q log q(z) (8) 
1 = log det (πe�) det (πe(� − C�−1C)) 2 

= log det (πe�) , for C = 0 . 

Parameterization of a univariate C-Gaussian distribution is 
simpler: CN (µ, σ2, σ2ξ) with ξ ∈ C such that |ξ| ≤ 1 and 
σ2 ≥ 0. By (8) its entropy is log πeσ2

p
1 − |ξ|2. 

C-Gaussianity is preserved under linear transformations, i.e. 
for A ∈ Cn×m and b ∈ Cn 

� � 
b + Az  n b + Aµ, A�A⊤, ACA⊤ . (9) ∼ CN

Therefore, if we have a Cn×m matrix W with independent 

C-Gaussian entries, i.e. 
Y 

q(W ) = CN (µij , �ij , �ij ξij ) , (10) 
ij 

with µ, ξ ∈ Cn×m , � ∈ [0, +∞)n×m and |ξij | ≤ 1, then 
for x ∈ Cm and b ∈ Cn each component yi of y = b + Wx 
is independent univariate C-Gaussian 

� m m m X X X 
yi ∼ CN bi + µij xj , �ij |xj |2 , �ij xj ξij . 

j=1 j=1 j=1 

(11) 

2 
�
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This is the C-Gaussian version of the local reparameteriza-
tion trick (3). It requires three matrix-vector operations: 
C-valued b + µx and Cx2 , and R-valued �|x|2 , where 
Cij = �ij ξij and the complex modulus and square are 
applied elementwise. (4.1) can be applied to any layer, 
the output of which depends linearly on its parameters, 
such as convolutional, affine, and bilinear transformations 

⊤W (j)((x, z) 7→ bj + x z). Similar to the R case, C convo-
lutions draw independent realizations of W for each spatial 
patch in the input (Molchanov et al., 2017). This provides 
faster computations and better statistical efficiency of the 
SGVB gradient estimator by eliminating correlation from 
overlapping patches (Kingma et al., 2015) and allowing (11) 
to efficiently leverage C convolutions of the relation and 
variance kernels with elementwise complex squares x 2 and 
amplitudes |x|2 . 
For C-Sparse Variational Dropout we propose to use fully 
factorized C-Gaussian approximation (10) with ξij = 0 and 
additive noise parameterization (αij = 

�ij ) for weights in |µij |2 

dense linear, convolutional and other effectively parameter-
affine layers. Point estimates are used for biases. 

4.2. The priors 

For a fully factorized approximation q(ω) and factorized Q
prior π(ω) = ij π(ωij ), the divergence term (2) is 

X 
KL(qkπ) = − H(q(ωij )) + Eq(ωij ) log π(ωij ) . (12) 

ij 

We consider two fully factorized priors: an improper prior, 
resembling VD, and C-Gaussian ARD prior. We omit sub-
scripts ij for brevity in this section. 

4.2.1. VD PRIOR 

From (8) and ξ = 0 the KL-divergence for an improper 
prior π(ω) ∝ |ω|−β with β ≥ 1 is 

� � 
βKL(qkπ) ∝ − log σ2 + Eω∼q(ω) log|ω|2 . (13)2 

For µ = 0 and σ2 = α|µ|2 property (9) implies 
CN (µ, σ2 , 0) ∼ µ · CN (1, α, 0), whence the expectation in 
brackets is given by 

6

P 

�� ��21log α|µ|2 + Eε∼CN (0,1,0) log √ + ε . (14)
α 

If (z )m m 
Ci i=1 ∼ CN (0, 1, 0) iid and θ P ∈ , then |θi i +

z |2 ∼ χ2 2 2 2 
i 2m(s ) with s = |θi i| , i.e. a non-central
χ2 with parameter s 22m . Its log-moments for general integer 
m ≥ 1 have been derived by Lapidoth and Moser (2003, 
p. 2466). In particular, for m = 1 and θ  C we have ∈

Ez∼CN (0,1,0) log|θ + z|2 = log|θ|2 − Ei(−|θ|2) , (15) 

R x 
where Ei(x) = t−1etdt for x < 0 is the Exponen-−∞ 
tial Integral, which satisfies Ei(x) ≤ log (−x), Ei(x) ≈ 
log (−x) − γ as x → 0 (γ is Euler’s constant) and Ei(x) ≥ 
−ex for x ≤ −1. Although Ei is an intractable integral, re-
quiring numerical approximations to compute, its derivative 
is exact: d Ei(x) = e

x 

at x < 0.
dx x 

From (14) and (15), the terms of the divergence that depend 
on the parameters are given by 

KL(q π)  β−2 log µ 2 + log 1  β Ei(  1 ) . (13’)2 α 2 α k ∝ | | − −
We set β = 2 to make the divergence term depend only on α 
and add γ so that the right-hand side is non-negative (Lapi-
doth and Moser, 2003, eq.(84)). Since Ei(x) has simple 
analytic derivative and (2) depends additively on (13’), it is 
possible to back-propagate through the divergence without 
forward evaluation, which speeds up gradient updates. 

4.2.2. ARD PRIOR 

We consider the fully factorized �circularly symmetric � C-
Gaussian ARD prior πτ (ω) = CN ω|0, τ−1 , 0 with τ > 0. 
The per element divergence term in (12) is 

� � 
KL(q πτ ) = 1  log (τσ2) + τ σ2 + µ 2 . (16) k − − | |

In Empirical Bayes the prior adapts to the observed data, i.e. 
(2) is optimized w.r.t. τ of each weight’s prior. The Maxi-
mum Likelihood estimator of τ is given by the minimizer 
(16), i.e. τ ∗ = (σ2 + µ 2)−1 , thereby giving | |

� � � �|µ|2 

KL(q πτ � ) = log 1 + = log 1 + 1 . (16’)
σ2 α k

Thus in both R and C cases ARD produces a tractable 
analytic expression for the KL-divergence term in (2). 

4.2.3. C-VARIATIONAL DROPOUT VIA R-SCALING 

We consider the following parameterization of W : Wij = 
µij εij , εij ∈ R with εij ∼ N (1, αij ), yet µ ∈ Cn×m . 
This case corresponds to inference regarding multiplicative 
noise ε rather than the parameters themselves. Under this 
parameterization q(Wij ) is effectively degenerate univariate 
C-Gaussian (10) with �ij = α 2 φ

ij |µij | and ξij = e ij 

with φij = arg µij , thereby making the complex relationP 
parameter in (11) equal αij (xij µij )

2
j , which is non-zero. 

The KL-divergence term coincides with (4), however the 
major drawback of this approximation is that the gradient of 
the loss with respect to µ cannot be disentangled from the 
local output noise by additive reparameterization. 

5. Experiments 

To verify the proposed C-valued variational sparsification 
methods presented above and explore their compression-
performance trade-off we carry out a numerical study of 
CVNN for image classification and music transcription. 
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Since image data is not naturally C-valued, we preprocess 
it using the natural inclusion R  →֒ C (raw, ℑz = 0) or
applying the two-dimensional Fourier Transform (fft), 
centering the lower frequencies. We do not train an auxiliary 
network that synthesizes the imaginary component from R 
input data (Trabelsi et al., 2018). Following Wolter and Yao 
(2018) and Trabelsi et al. (2018), the class logit scores are 
taken as real part of the complex-valued output of a network. 

The networks are trained in three successive stages in every 
experiment: the “pre-train” stage for pre-training the net-
work, the “sparsify” stage to determine parameter relevance 
using Variational Dropout, and the “fine-tune” to train the 
pruned network (sec. 5.1). Network’s parameters are ini-
tialized with values from the previous stage. Networks are 
trained with ADAM optimizer, with the learning rate re-
set to 10−3 before each stage and global ℓ2-norm gradient 
clipping at 0.5. 

Each experiment is replicated five times to account for ran-
dom effects from initialization, stochastic gradient opti-
mization, noisy output from intermediate layers, and non-
determinism of computations on GPU. 

The compression rate is calculated based on the number of 
floating point values needed to store the network and equals 

npar , where nzer is the number of explicit zeros at the 
npar−nzer 

“fine-tune” stage and npar is the total number of values. In a 
R-valued network each parameter counts as one value and as 
two values in a CVNN. Each model has a compression limit, 
determined by biases, shift and scaling in R- and C-valued 
batch normalization layers. 

5.1. Stagewise training 

At the “pre-train” stage every network is fit “as-is” using 
deterministic layers and only the likelihood term from (2). 

During the “sparsify” stage we make every layer stochastic 
and apply variational sparsification (sec. 4.2.1, 4.2.2, or 
their R versions). We inject a coefficient C ∈ (0, 1] at the 
KL divergence term in (2): 

− 
C 
KL(qθkπλ) + 

N 
1 

M 

MX 
log pφ(xik 

| g(εk; θ)) . (2’) 
k=1 

In contrast to (Molchanov et al., 2017), who anneal C from 
zero to one during training, we use constant C and vary it 
between runs. This allows us to explore the compression-
performance profile by balancing model’s likelihood and 
posterior’s penalty for diverging form the sparsifying prior 
in (2’). In particular, higher C implies higher sparsity. 

Between “sparsify” and “fine-tune” stages we compute 
masks of non-zero weights in each layer based on the rele-
vance scores α (sec. 2.2). Since qθ factorizes into univariate 
distributions, a C or R parameter is considered non-zero 

iff log α ≤ τ for α = | 
σ
µ| 
2

2 . The threshold τ is picked so 
that the remaining non-zero parameters are within δ rela-
tive tolerance of their mode with high probability under 
the approximate posterior. For a univariate R- or a circu-

k|w−µ|2 

larly symmetric C-Gaussian random variable w, 
α|µ|2 

is χ2 distributed with k = 1 (R) or 2 (C). For a tolerancek 
δ = 50% values log α below −2.5 yield at least 90% chance 
of a non-zero R/C parameter. We pick τ = − 1 to retain2 
parameters sufficiently concentrated around their mode and 
encourage higher sparsity, at the same time being aware 
that qθ is merely an approximation. In comparison, τ = 3 
is commonly used as the threshold (Kingma et al., 2015; 
Molchanov et al., 2017). 

At the “fine-tune” stage the network reverts back to de-
terministic architecture and proceeds the same way as the 
“pre-train” stage, except for training only those parameters, 
which are specified by sparsity masks. 

5.2. MNIST-like datasets 

We conduct a moderately sized experiment on MNIST-
like datasets of 28 × 28 greyscale images to study the 
performance-compression trade-off of the proposed C-
valued Sparse Variational Dropout: MNIST (Lecun et al., 
1998), KMNIST (Clanuwat et al., 2018), EMNIST (Cohen 
et al., 2017) and Fashion-MNIST (Xiao et al., 2017). We 
deliberately use a fixed random subset of ten thousand im-
ages from the train split of each dataset to fit the networks 
and measure the performance with classification accuracy 

score on the usual test split. 

We consider two simple architectures in this experiment, 
which have been chosen for the purpose of illustrating the 
compression and understanding the effects of experiment 
parameters. TwoLayerDenseModel is a wide dense ReLU 
network 784 → 4096 → nout, and SimpleConvModel is 
a ReLU net with two 2d k5s1 convolutions with filters 
20 → 50, two k2s2 average pooling steps, and a classifier 
head 800 → 500 → nout. For each dataset we experiment 
with all combinations of model kinds (R or C) and sparsifi-
cation methods (VD or ARD). To take into account potential 
differences in the capacity of CVNN we consider halving or 
doubling the number of features in the intermediate layers 
(Mönning and Manandhar, 2018). Halved CVNN are tagged 
1 
C, and doubled R-valued networks are labelled 2R. For 2 

fft we compare {R, C, 2R} and for raw – { 1 C, R, C}.2 

Stages (sec. 5.1) last for 40, 75 and 40 epochs, respectively, 
in each experiment. The sparsification threshold τ is fixed 
at − 1 , the training batch size is set to 128 and the base2 
learning rate 10−3 is reduced after the 10-th epoch to 10−4 

k 
at every stage. We vary C ∈ { 3 2− 2 : k = 2, · · · , 38} in2 
(2’) and repeat each experiment 5 times to get a sample of 
compression-accuracy pairs. 
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Figure 1. The compression-accuracy curve (VD, fft, MNIST): Figure 2. The compression-accuracy curve (ARD, raw, MNIST): 
/ 1

2R C (top) and R/C (bottom). R/C (top) and R/ C  (bottom). 
2

Figures 1 and 2 depict the resulting compression-accuracy 
trade-off on MNIST for the models described above. Each 
point represents the trade-off of the compressed network 
after fine-tuning, while its tail illustrates the impact of this 
stage on the performance. Transparent horizontal bands 
on each plot represent min-max performance spread of the 
pre-trained uncompressed network on the test split. Results 
for other MNIST-like dataset are presented appendix A. 

The overarching conclusion from the conducted experiments 
is that both C-ARD and C-VD methods compress similarly 
to each other, but for the same value of C in (2’) ARD 
yields marginally lower compression and slightly higher 
performance post fine-tuning. For each fixed C the com-
pression rates after “sparsify” stage are roughly identical. 
At the same time, “fine-tune” stage almost always improves 
performance in high compression regime (×50+ high C in 
(2’)), likely due to regularization from high sparsity. Fourier 
features catch up to the raw data in terms of performance 
at high compression rates ×100+ only for the TwoLayer-

DenseModel. Comparison of R and C networks with match-
ing architecture, i.e. same effective layer widths in 2R vs. C 
and R vs. 1 

C, shows that doubled R networks perform and 2
compress better than C, due to higher intrinsic redundancy 
unchecked by C-arithmetic constraint. 

5.3. CIFAR10 

Having verified the C variational sparsification method on 
MNIST-like datasets and simple models, we turn to the 
CIFAR10 dataset comprising 32 × 32 colour images of 
10 classes (Krizhevsky, 2009) and focus on the VGG16 
network (Simonyan and Zisserman, 2015). We train the 
VGG16 network and its C variant, in which we have re-
placed R-valued layers with their C-valued counterparts. 
We do not halve or double the features in any network, since 
the goal of this experiment is to assess the trade-off for a 
deep convolutional network. Unlike experiment in sec. 5.2, 
we consider the raw features only, use full training split, 
measure accuracy on the usual test split, and allocate 20, 
40, and 20 epochs to each stage. During training every 
mini-batch of 128 samples is augmented by random hor-
izontal flipping and random cropping, which is done by 
zero-padding the image with four pixels and extracting a 
32 × 32 patch from the 40 × 40 intermediate image. 

The compression-accuracy curve in figure 3, constructed for 
k 

2−3 with k = 7, · · · , 15, shows that it is possible C 2= 2 
to confidently achieve around ×100 compression of a deep 
CVNN without losing accuracy, provided the network is 
fine-tuned after undergoing Variational sparsification. Re-
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garding methods themselves, C-VD and C-ARD follow the 
same declining compression-accuracy pattern, but for the 
same setting C the latter provides slightly less compression 
with marginally better accuracy. 

5.4. MusicNet 

MusicNet is a corpus of 330 annotated classical music 
recordings used for learning feature representations for mu-
sic transcription tasks (Thickstun et al., 2017). Trabelsi et al. 
(2018) have proposed a 1d VGG-like C-valued network that 
surpassed a similar R-valued network and achieved 72.9% 
pooled Average Precision on this dataset. Recently Yang 
et al. (2020) have reported 74.2% AP with a C-valued trans-
former, Thickstun et al. (2018) have achieved 77.3% with 
a four-layer R-valued network on log-spaced spectrogram, 
and Draguns et al. (2020) report 78.0% with a residual-
shuffle-exchange network. 

In this experiment we seek to compress of the CVNN pro-
posed by Trabelsi et al. (2018). The dataset is split into the 
same validation and test samples and handled identically to 
their study. The input features are C-valued Fourier trans-
forms of 4096-sample windows from each waveform, and 
the label vectors are taken from annotations at the middle of 
the window. Each epoch lasts for 1000 random mini-batches 
of the musical pieces. However, we deviate from the set-up 
used by Trabelsi et al. (2018) by clipping ℓ2 norm of the gra-
dients to 0.05 and shifting the low frequencies of the input 
to the centre to maintain spatial locality for convolutions. 

Experiments with the uncompressed model aimed at repli-
cating the original result have shown that early stopping 
almost always terminates within the first 10 − 20 epochs of 
the 200 epochs used in their study, due to the validation per-
formance peaking at 10 − 15 epochs and steadily declining 
afterwards. Thus we opt to use shorter stages: 12, 32 and 50 
epochs (sec. 5.1), with early stopping activated only during 

the “fine-tune” stage. To keep the learning rate schedule 
consistent, we scale the learning rate of 10−3 after 5, 10, 

1 1 1and 20-th epoch by , and , respectively. 10 20 100 

We explore the C-VD and C-ARD methods by varying C 
1 3over the grid { 1 , , , 1} · 10−k with k = 1, 2, 3, while4 2 4 

keeping τ at − 1 . The performance is measured after “pre-2 
train” stage, just before and upon termination of fine-tuning. 
Additionally, we test the model of Trabelsi et al. (2018), 
in which we purposefully halve the receptive field of the 
first convolution from 6 to 3 (denoted by suffix k3). The 
motivation is to test if the handicap introduced by the forced 
compression of the most upstream layer can be alleviated by 
non-uniform compression, induced by Variational Dropout. 
We test only C-VD in this sub-experiment, since prior re-
sults have not demonstrated significant superiority of one 
method over another. 

The performance-compression frontier in figure 4 shows 
that VD and ARD deliver similar compression rates, but 
ARD slightly outperforms in terms of the average precision 
at the cost of marginally lower compression. At ×100 com-
pression level the k3 model outperforms its uncompressed 
baseline, but yields lower AP score than the full model. In 
conjunction with post-pruning fine-tuning, both C-valued 
variational sparsification methods achieve average precision 
level comparable to the result of Trabelsi et al. (2018) with 
a network having 50-200 times less parameters. 

1We take the full models compressed with C ∈ { 1 }20 , 200 
and re-run only the fine-tuning stage for various pruning 
thresholds τ ∈ { k : k = −8 · · · + 8}. The performance-2 
compression curves depicted in figure 5 are parameterized 
by decreasing τ from left to right, since models are not re-
compressed which makes τ monotonically affect the com-
pression rate. From (2’) and the relative positions of the 
curves it can be concluded that C has a much more substan-
tial impact on the compression profile of each method, than 
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the choice of the pruning threshold. 

We provide the following interpretation of the apparent con-
trast in performance impact borne by fine-tuning between 
less than ×50 and higher than ×100 compression regimes 
in figure 4, also observed in sec. 5.2. The value of C in 
(2’) is a good proxy for the ranking of the final compression 
rate since it directly affects the feedback from sparsifying 
prior. So, during the 50 epoch allotted for “sparsify” stage, 
low C prevents the sparsity inducing prior from pulling the 
posterior sufficiently away from the likelihood-maximizing 
parameters inherited from the “pre-train” stage. It is reason-
able, therefore, to expect that for undercompressed models 
the fine-tuning stage acts essentially as a continuation of 
pre-training. And, since we have observed that longer train-
ing invariably deteriorates the validation performance, the 
“fine-tune” stage should lead to overfitting for small C. Fig-
ure 6 shows that the models, which have been sparsified 
with C less than 1 , have less than 50× compression and 400 
need considerably less training epochs before early stopping 
terminates the process. 
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Figure 5. The effect of fine-tuning on performance-compression 
curves for C 2 { 1 1 

20 , } 
200 in (2’).

6. Conclusion 

In this study we have presented C-valued variational sparsi-
fication methods to the ever growing set of tools for learning 
deep C-valued neural networks. To validate these meth-
ods we have carried out a large numerical study of CVNN 
with simple architectures to assess the feasible performance-

compression trade-off, and studied compression of two deep 
convolutional CVNN. At the cost of marginally lower per-
formance, we have achieved ×50-×100 compression of the 
deep CVNN of Trabelsi et al. (2018) on the MusicNet. 

Experimental results show that C-VD (sec. 4.2.1) and C-
ARD (sec. 4.2.2) exhibit trade-off profiles matching their 
R-valued counterparts. This makes us confident that the 
overall conclusion of Gale et al. (2019) is applicable to 
CVNN and the proposed C-valued variational sparsification 
methods. Furthermore our findings indicate that between 
each other under similar circumstances the methods yield 
comparable compression and performance results, which 
echoes earlier results by Kharitonov et al. (2018). 

This study has direct implications for embedded deep learn-
ing applications both in terms of lower storage requirements 
and higher throughput stemming from fewer floating point 
multiplications due to sparsity, despite somewhat higher 
arithmetic complexity of C-valued networks. 

Software and Data 

The source code for a package based on PyTorch (Paszke 
et al., 2019), which implements C-valued Sparse Varia-
tional Dropout and ARD layers and provides other ba-
sic layers for CVNN is available at https://github. 
com/ivannz/cplxmodule. The source code for 
the experiments and the figures in this study is avail-
able at https://github.com/ivannz/complex_ 
paper/tree/v2020.6. 
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