Bayesian Sparsification of Deep C-valued Networks

A. MNIST-like Experiments

The plots presented in this appendix support the conclusions made in the main text and provide an overview of the
experiments conducted on MNIST-like datasets.

Each figure shows the compression-accuracy trade-off of a particular method and input features for SimpleConvModel
and TwoLayerDenseModel models for all four of the studied datasets (described in the main text): EMNIST-Letters on
the top-left, KMNIST — fop-right, Fashion MNIST - bottom-left, and MNIST on the bottom-right. Figures 7, 8, 9, and 10
present R and C models with the same intermediate feature sizes.

We compare R networks against %(C with half the number of parameters for raw input features on figures 13, and 14, and 2R
with double the number of parameters against C for Fourier input features on figures 11 and 12.

B. Complex-valued Local Reparameterization
In this section we show (11).

By e; € R — C we denote the i-th unit vector of dimensionality conforming to the matrix-vector expression it is used in,
[M] denotes row-major flattening of a matrix M into a vector, i.e. in lexicographic order of its indices. Furthermore diag(-)
embeds vectors into matrices with zeros everywhere except the diagonal, and ® is the Kronecker product, for which we note
the following identities [PQR] = (P®@ RT)[Q], (PR Q)" = (PT ®Q"),and (P® R)(C ® S) = PQ ® RS (Petersen
and Pedersen, 2012).

If we assume a factorized C-Gaussian approximation (10) for W € C™*™, then [W] is C-Gaussian vector with
(W] ~ CNou ([, diag[ ], diag[CT]) , (17)

where with Cy; = ¥;;&;;, ¥;; > 0, and |C’l-j|2 < 3;;. Then forany x € C™ and b € C" wehave y = Wa + b =
(I, ® 2 T)[W] + b, whence the covariance and relation matrices of y are

(I, ® JcT)diag[Z] (I, ® xT)T = Z(I" ® xT) ((ei ®e;j);(e; @ ej)T> (In ® a:T)T
ij
= Z(el X xTej)Eij (6,’ X JTTej)T
ij

- Z(eiej){z 2¢j|xj|2}, (18)
j=1

i=1

(I, ® 2 ") diag[C) (I, ® xT)T = Z(In ®z") ((ei ®e;)Cij(e; @ ej)T> (In® xT)T
j=1

i=1
Since (18) and (19) are diagonal, the vector y has independent univariate C-Gaussian components, whence (11) follows.

C. Backpropagation through C-networks

Wirtinger (CR) calculus relies on the natural identification of C with R?, and regards f: C — C as an algebraically
equivalent function F': R? — C defined f(z) = f(u + jv) = F(u,v). It enables general treatment of functions of
vector C-argument that possess partial derivatives with respect to real and imaginary parts, yet are not required to satisfy
Cauchy-Riemann conditions. In CR calculus the complex argument z and its conjugate Z act as independent variables and
f(2) is treated as f(z,Z) by way of geometric transformations z = u + jv and Z = u — jv.

Wirtinger partial derivative operators are formally defined as 2 = (2 — 32} and Z = (2 + 7:&) and differentials
are dz = du + j7dv and dz = du — jdv. In this paradigm The usual rules of calculus, like chain and product rules, follow
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directly from the definition of the operators, e.g.

O(fog) _ 9f(g(2)) 99(=) | 91(g(2)) 99 9(2)

0z  Og 0z ag 0z
The total differential of f at z = u + jv € Cis
df(z) = g‘id + gd*
= (du—%% ﬁ—i—d) (du—&—ﬁ—ﬁ—l—d)
= dF(u,v)
At the same time the Cauchy-Riemann conditions —) ‘?% = ?95 can be expressed as ai = 0. Thus CR calculus subsumes

the usual C-calculus of holomorphic functions, since f(z) = f(z,Z) is constant with respect to Z in the latter.

In optimization-related tasks the objective is f: C — R, meaning that if it were to satisfy the Cauchy-Riemann conditions,
then it necessarily should have been constant. Nevertheless, the expression of the CR gradient is compatible with what is

expected, when f is treated like a R? function. For such f we have f = f, which implies 8f = gg = g’; , whence

df = %Ldz+ 2Laz = %az + L dz = 2m(Ldz) .

Therefore the gradient of f at z is given by Vzf(z) = g = au E 1 58E 3 . The identification C ~ R?, backed by Wirtinger
calculus, and emulation of C-arithmetic in computational graphs with R-valued operations makes it possible to reuse R

back-propagation and existing auto-differentiation frameworks.

D. Gradient of the KL-divergence in R case

In this appendix we study the approximation proposed by Molchanov et al. (2017) for the KL divergence term (4) for R
Sparse Variational Dropout. Following the logic of Lapidoth and Moser (2003) we derive the expression for h;ig ~K(a).
Acknowledging that the same result was obtained by Hron et al. (2018, eq. (5)), we provide this appendix for the sake of

completeness.

For (z;)™, ~ N(0,1) iid and (p;)7", € R, the random variable W = 3" (; + 2;)? has non-central x? distribution with
shape m and non-centrality parameter A = ), pZ,ie. W~ x2 (). Therefore, the divergence (4) has the form
1

K(a) x =

QEW~X§<§) IOgW. (4’)

W can alternatively be represented as a Poisson mixture of ordinary x? distributions: if Z; ~ X2, ,; for J ~ Pois(3)
then W ~ Z. Therefore, expanding the conditional expectation gives

Erwnxs, o0 logW =E(E(logW | ) =E,__ 2 (Ewerz,,,, l0gW). (20)

Since x?2 is Gamma distribution I'(%, 1), it can be shown that the logarithmic moment Ey .2 log W is 1 (%) — log 3,
where 1 is the digamma function (¢ (x) = log I'(z)). By expanding expectation of a Poisson random variable we get
Ewyz (x) logW =log2 + gm(%) here
— ez Z ,(/} m+2J (21)
J>O

Making use of the property ¥(z + 1) = ¥(z) + % of the digamma funciton for z > 0, we conclude that the power series in
(21) converges for any x > 0. Therefore the derivative of (21) is given by

igm<x>=—gm<x>+ewz‘?‘f<w<m;2f)+ 2 ) )

= ! m + 2j
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By manipulating the partial sums within (22) we get

d | _m 1 ,m
G =Y = 22;/ e (23)
Jj=0

jZOJ-J‘FQ

m_
Furthermore, the functions ¢t Z =0 ]1' t +9 - ! are non- decreasing on (0, ) with growing J and converge to ¢ 2 tet,

which implies by the Monotone Convergence Theorem that

i — 5 R I P _m/a: (mfl) t
dmgm( = /Z —tT2ldt=e Ot2 eldt. (24)

j>0

Substituting u2? = ¢ on [0, 00| with 2udu = dt and letting I,,,:  — e~ Joy um? " du yields

wot [Tt = (7) (/) 25

d2o) 1d @
ax o 2dzpIm\*

r=

B>
N[>

Since « is non-negative, it is typically parameterized via its logarithm, whence the derivative of (4”) with respect to log o
follows from (25) form = 1and A = 1
dK(a) 1

_ _1
dloga \/ﬁll(m). (26)

We compute the Monte-Carlo estimate of (4) on a sample of 107 draws over an equally spaced grid of log v in [—12, +12]
of size 4096. The approximation proposed by Molchanov et al. (2017) is given in (27), with coefficients k; = 0.63576,
ko = 1.8732, and k3 = 1.48695. The derivative of the approximation with respect to log « follows (26) within 4% of
relative tolerance, see fig. 15.

1
(4) ~ 3 log (1+e71%%) + kyo (— (ko + ks log ) , (27)

Similarly, the forward difference estimate of the derivative (26) very closely (up to sampling error). For sake of completeness,
we compute a similar Monte-Carlo estimate for the KL divergence term in (13”) for C-valued Variational Dropout with

1
sy _ -~
dloga e « L.

B = 2, fit the best approximation (27), and compare it against the exact log « derivative
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Trade-off on EMNIST-Letters (fft) by ARD (t=-0.5)
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Figure 7. The trade-off of ARD method for R and C models using Fourier features.
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Figure 8. The trade-off of VD method for R and C models using Fourier features.
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Trade-off on EMNIST-Letters (raw) by ARD (t=-0.5) Trade-off on KMNIST (raw) by ARD (t=-0.5)
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Figure 9. The trade-off of ARD method for R and C models using raw features.
Trade-off on EMNIST-Letters (raw) by VD (t=-0.5) Trade-off on KMNIST (raw) by VD (t=-0.5)
0.900 Figmpdipsresfiaug e ; LF Y
LT v00 [Pingaie "‘""“‘ﬂw =
0.875 4 £
' ¥ Hnngegen
‘ 0.85 1 ¢ '“"""”‘""hu.
2 0.850 W“!ﬂno“. 3 4 o
@© ' ©
5 5 0.80 A
3 0.825 1 i 3 ’;
© 0.8001 * CSimpleConvModel ’ ©0754 « ¢ SimpleConvModel
e C TwolayerDenseModel f e C TwolayerDenseModel
0.775- e R SimpleConvModel 0.70{ e R SimpleConvModel
e R TwolayerDenseModel e R TwolayerDenseModel
0.750 T T T 0.65 T T T
x1 x10 x100 x1000 x1 x10 x100 x1000
compression compression
Trade-off on Fashion-MNIST (raw) by VD (t=-0.5) Trade-off on MNIST (raw) by VD (t=-0.5)
0.90
Sidipsetad 055 e A S R iy
0.88 - ot ¢ i ? f 0.98 ~ iﬁ
g 0.861 Uhwmmesetteiseeptet ot w,‘ 3097 “OW"I;“
St ' 3 0.96 -
3 0.84 3
« C SimpleConvModel 0.954 * CSimpleConvModel
e C TwolayerDenseModel e C TwolayerDenseModel
0.821 ® R SimpleConvModel 0.94- e RSimpleConvModel
® R TwolayerDenseModel e R TwolayerDenseModel
0.80 T T T 0.93 T T T
x1 x10 x100 x1000 x1 x10 x100 %1000
compression compression

Figure 10. The trade-off of VD method for R and C models using raw features.
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Figure 11. The trade-off of ARD method for 2R and C models using Fourier features.
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Figure 12. The trade-off of VD method for 2R and C models using Fourier features.
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Figure 13. The trade-off of ARD method for R and %C models using raw features.
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Figure 14. The trade-off of VD method for R and %(C models using raw features.
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Figure 15. dK( ) of the approximation (27), MC estimate of (4), and the exact derivative using (26).
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