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A. MNIST-like Experiments 

The plots presented in this appendix support the conclusions made in the main text and provide an overview of the 
experiments conducted on MNIST-like datasets. 

Each figure shows the compression-accuracy trade-off of a particular method and input features for SimpleConvModel 

and TwoLayerDenseModel models for all four of the studied datasets (described in the main text): EMNIST-Letters on 
the top-left, KMNIST – top-right, Fashion MNIST – bottom-left, and MNIST on the bottom-right. Figures 7, 8, 9, and 10 
present R and C models with the same intermediate feature sizes. 

We compare R networks against 1 C with half the number of parameters for raw input features on figures 13, and 14, and 2R2 
with double the number of parameters against C for Fourier input features on figures 11 and 12. 

B. Complex-valued Local Reparameterization 

In this section we show (11). 

expression it is used in, to the matrix-vector conformingvector of dimensionality -th unit idenote the weC→֒ R∈ieBy 
[M ] denotes row-major flattening of a matrix M into a vector, i.e. in lexicographic order of its indices. Furthermore diag(·) 
embeds vectors into matrices with zeros everywhere except the diagonal, and ⊗ is the Kronecker product, for which we note 
the following identities [P QR] = (P ⊗ R⊤)[Q], (P ⊗ Q)⊤ = (P ⊤ ⊗ Q⊤), and (P ⊗ R)(C ⊗ S) = PQ ⊗ RS (Petersen 
and Pedersen, 2012). 

If we assume a factorized C-Gaussian approximation (10) for W ∈ Cn×m , then [W ] is C-Gaussian vector with 

� � 
[W ] ∼ CNnm [µ], diag[�], diag[C] , (17) 

where with Cij = �ij ξij , �ij ≥ 0, and |Cij |2 ≤ �ij . Then for any x ∈ Cm and b ∈ Cn we have y = Wx + b = 
(In ⊗ x⊤)[W ] + b, whence the covariance and relation matrices of y are 

� �� � � �⊤ X� � � �⊤⊤ ⊤⊤ ⊤In ⊗ x diag[�] In ⊗ x = In ⊗ x (ei ⊗ ej )�ij (ei ⊗ ej )
⊤ In ⊗ x 

ij 
X ⊤ 

�⊤� � � ⊤= ei ⊗ x ej �ij ei ⊗ x ej 

ij 

n ˆ m ˙X X ⊤ = (eiei ) �ij |xj |2 , (18) 
i=1 j=1 

� � � �⊤ X� �� �� �⊤⊤ ⊤ ⊤ ⊤In ⊗ x diag[C] In ⊗ x = In ⊗ x (ei ⊗ ej )Cij (ei ⊗ ej )
⊤ In ⊗ x 

ij 

n ˆ m ˙X X ⊤ 2 = (eiei ) Cij xj . (19) 
i=1 j=1 

Since (18) and (19) are diagonal, the vector y has independent univariate C-Gaussian components, whence (11) follows. 

C. Backpropagation through C-networks 

Wirtinger (CR) calculus relies on the natural identification of C with R2 , and regards f : C → C as an algebraically 
equivalent function F : R2 → C defined f(z) = f(u + v) = F (u, v). It enables general treatment of functions of 
vector C-argument that possess partial derivatives with respect to real and imaginary parts, yet are not required to satisfy 
Cauchy-Riemann conditions. In CR calculus the complex argument z and its conjugate z act as independent variables and 
f(z) is treated as f(z, z) by way of geometric transformations z = u + v and z = u − v. 

� � � � 
∂ 1 ∂ ∂ 1 ∂Wirtinger partial derivative operators are formally defined as = −  ∂ and = +  ∂ and differentials 
∂z 2 ∂u ∂v ∂z 2 ∂u ∂v 

are dz = du + dv and dz = du − dv. In this paradigm The usual rules of calculus, like chain and product rules, follow 
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directly from the definition of the operators, e.g. 

∂(f ◦ g) ∂f(g(z)) ∂g(z) ∂f(g(z)) ∂g(z) 
= + . 

∂z ∂g ∂z ∂g ∂z 

The total differential of f at z = u + v  C is ∈

✚ ✚

∂f ∂f 
df(z) = dz + dz 

∂z ∂z � � � � 
1 ∂F ∂F ✚✚ ∂F ✚ ∂F 1 ∂F ∂F ✚✚ ∂F ✚ ∂F 

= du −  ✚du +  ✚dv + dv + du +  ✚du −  ✚dv + dv 
2 ∂u ∂v ∂u ∂v 2 ∂u ∂v ∂u ∂v✚ ✚ ✚ ✚ 

= dF (u, v) , 

At the same time the Cauchy-Riemann conditions − F  ∂ = ∂F can be expressed as ∂f = 0. Thus CR calculus subsumes
∂v ∂u ∂z 

the usual C-calculus of holomorphic functions, since f(z) = f(z, z) is constant with respect to z in the latter. 

In optimization-related tasks the objective is f : C → R, meaning that if it were to satisfy the Cauchy-Riemann conditions, 
then it necessarily should have been constant. Nevertheless, the expression of the CR gradient is compatible with what is 

expected, when   f is treated like a 2 function. For such f we have f = f , which implies ∂f = ∂f ∂f
R , whence

∂z ∂z = 
∂z 

� �
∂f ∂f ∂f ∂f ∂fdf = dz + dz = dz + dz = 2ℜ dz .
∂z ∂z ∂z ∂z ∂z 

Therefore the gradient of f at z is given by ∇  f(z) = ∂f = ∂F ∂F
z +  . The identification C ≃ 2 

R , backed by Wirtinger
∂z ∂u ∂v 

calculus, and emulation of C-arithmetic in computational graphs with R-valued operations makes it possible to reuse R 
back-propagation and existing auto-differentiation frameworks. 

D. Gradient of the KL-divergence in R case 

In this appendix we study the approximation proposed by Molchanov et al. (2017) for the KL divergence term (4) for R
Sparse Variational Dropout. Following the logic of Lapidoth and Moser (2003) we derive the expression for d K

d (α).log α 
Acknowledging that the same result was obtained by Hron et al. (2018, eq. (5)), we provide this appendix for the sake of 
completeness. 

P 
For (  zi)

m
i=1 ∼ N (0, 1) iid and (µ )m 2 

Ri i=1 ∈ , the random variable W =  (µi i + zi) has non-central χ2 distribution withP
shape m and non-centrality parameter λ = µ2, i.e. W ∼ χ2 

i i m (λ). Therefore, the divergence (4) has the form

1 
K(α)  E � � ∝ 1 log W . (4’)

2 W ∼χ2
1 α

W can alternatively be represented as a Poisson mixture of ordinary χ2 distributions: if Z ∼ χ2 λ 
|J m J ois+2J for  ∼ P ( )2 

then W ∼ Z. Therefore, expanding the conditional expectation gives 
� � � � � 

E E E E EW χ2 (λ) log W =  log W | J) =  ∼ λ  ∼ 2 W χ log W .
m 

 (20)
J∼Pois( ) m+2J 

2 

� � 
Since χ2 is Gamma distribution �( ν 1 

ν , ), it can be shown that the logarithmic moment E 2 log W is ψ ν  log 1 ,2 2 W ∼χ� 2 − 2 

where ψ is the digamma function (ψ(x) = d log �(x)). By expanding expectation of a Poisson random variable we get� � dx 
λ 

EW (λ) log W = log 2 + gm , where∼χ2 
m 2

X xj � �−x m+2J gm(x) = e ψ . (21)
j! 2 

j 0 ≥

Making use of the property ψ(z + 1) = ψ(z) + 1 of the digamma funciton for z > 0, we conclude that the power series in 
z 

(21) converges for any x ≥ 0. Therefore the derivative of (21) is give
� �

n by 

jd X x � � 2−x m+2g j
m(x) = −gm(x) + e ψ + . (22)

dx j! 2 m + 2j
j≥0 
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By manipulating the partial sums within (22) we get 

Z xX j m X md x 1 1−x −x − j+ −1 gm(x) = e = e x 2 t 2 dt . (23)
dx j! j + m j! 02j≥0 j≥0 

m mP  Furthermore, the functions  7→ J 1 jt tj=0  + −1 2 are non-decreasing on (0, x) with growing  and converge to  −1 J t e t2 ,
j! 

which implies by the Monotone Convergence Theorem that 
Z Zx x m X m m md 1−x − j+ −1 −x − −1 t gm(x) = e x 2 t 2 dt = e x 2 t 2 e dt . (24)

dx 0 j! 0j≥0 

� � 

R 
2 −x x m−1 uSubstituting u = t on [0, ∞] with 2udu = dt and letting Im : x 7→ e 

2 
u e 

2 
du yields

0 

����
����

Z √ 
x �q � �q �d(20) 1 d − 

m
u 

m
λ−x m−1 2 = gm(x) = e x 2 u e 

2 

du = Im . (25)
λ 2dλ 2 dx λ λ 

x= 0 x= 2 2 

Since α is non-negative, it is typically parameterized via its logarithm, whence the derivative of (4’) with respect to log α 
1follows from (25) for m = 1 and λ = :
α � � dK(α) 1 

√1 = −√ I1 . (26)
2αd log α 2α 

We compute the Monte-Carlo estimate of (4) on a sample of 107 draws over an equally spaced grid of log α in [−12, +12] 
of size 4096. The approximation proposed by Molchanov et al. (2017) is given in (27), with coefficients k1 = 0.63576, 
k2 = 1.8732, and k3 = 1.48695. The derivative of the approximation with respect to log α follows (26) within 4% of 
relative tolerance, see fig. 15. 

1 � � � �− log α(4) ≈ log 1 + e + k1σ −(k2 + k3 log α) , (27)
2 

Similarly, the forward difference estimate of the derivative (26) very closely (up to sampling error). For sake of completeness, 
we compute a similar Monte-Carlo estimate for the KL divergence term in (13’) for C-valued Variational Dropout with 

1 
d(13’) − 

αβ = 2, fit the best approximation (27), and compare it against the exact log α derivative = e − 1.
d log α 
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Figure 7. The trade-off of ARD method for R and C models using Fourier features. 
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Figure 8. The trade-off of VD method for R and C models using Fourier features. 
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Figure 9. The trade-off of ARD method for R and C models using raw features. 
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Figure 10. The trade-off of VD method for R and C models using raw features. 
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Figure 11. The trade-off of ARD method for 2R and C models using Fourier features. 
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Figure 12. The trade-off of VD method for 2R and C models using Fourier features. 
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Figure 13. The trade-off of ARD method for R and 1 
C models using raw features. 
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Figure 14. The trade-off of VD method for R and 1 
C models using raw features. 
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Figure 15. 

d log � of the approximation (27), MC estimate of (4), and the exact derivative using (26).




