
PolyGen: An Autoregressive Generative Model of 3D Meshes

Appendix

Figure 11. Examples of data augmentation and randomized render-
ing conditions. For each input mesh we create 50 augmentations,
and render each while varying lighting, camera and material prop-
erties.

A. Data Augmentation
For each input mesh from the ShapeNet dataset we create
50 augmented versions which are used during training (Fig-
ure 11). We start by normalizing the meshes such that the
length of the long diagonal of the mesh bounding box is
equal to 1. We then apply the following augmentations,
performing the same bounding box normalization after each.
All augmentations and mesh rendering are performed prior
to vertex quantization.

Axis scaling. We scale each axis independently, uniformly
sampling scaling factors sx, sy and sz in the interval
[0.75, 1.25].

Piecewise linear warping. We define a continuous, piece-
wise linear warping function by dividing the interval [0, 1]
into 5 even sub-intervals, sampling gradients g1, . . . , g5 for
each sub-interval from a log-normal distribution with vari-
ance 0.5, and composing the segments. For x and y co-
ordinates, we ensure the warping function is symmetric
about zero, by reflecting a warping function with three sub-
intervals on [0, 0.5] about 0.5. This preserves symmetries in
the data which are often present for these axes.

Planar mesh decimation. We use Blender’s planar
decimation modifier (https://docs.blender.org/
manual/en/latest/modeling/modifiers/
generate/decimate.html) to create n-gon meshes.
This merges adjacent faces where the angle between
surfaces is greater than a certain tolerance. Different
tolerances result in meshes of different sizes with differing
connectivity due to varying levels of decimation. We
use this property for data augmentation and sample the
tolerance degrees uniformly from the interval [1, 20] .

B. Rendering
We use Blender to create rendered images of the
3D meshes in order to train image-conditional
models (Figure 11). We use Blender’s Cycles
(https://docs.blender.org/manual/en/
latest/render/cycles/index.html) path-
tracing renderer, and randomize the lighting, camera, and

mesh materials. In all scenes we place the input meshes at
the origin, scaled so that bounding boxes are 1m on the
long diagonal.

Lighting. We use an 20W area light located 1.5m above
the origin, with rectangle size 2.5m, and sample a number
of 15W point lights uniformly from the range [0, 1, . . . , 10].
We choose the location of each point light independently,
sampling the x and y coordinates uniformly in the inter-
vals [−2,−0.75] ∪ [0.75, 2], and sampling the z coordinate
uniformly in the interval [0.75, 2].

Camera. We position the camera at a distance d from the
center of the mesh, where d is sampled uniformly from
[1.25, 1.5], at an elevation sampled between [0, 1], and
sample a rotation uniformly between [0, 360]. We sample
a focal length for the camera in [35, 36, . . . , 50]. We also
sample a filter size (https://docs.blender.org/
manual/en/latest/render/cycles/render_
settings/film.html) in [1.5, 2], which adds a small
degree of blur.

Object materials. We found the ShapeNet materials
and textures to be applied inconsistently across different
examples when using Blender, and in many cases no
textures loaded at all. Rather than use the inconsis-
tent textures, we randomly generated materials for the
3D meshes, in order to produce a degree of visual
variability. For each texture group in the mesh we
sampled a new material. Materials were constructed by
linking Blender nodes (https://docs.blender.
org/manual/en/latest/render/shader_
nodes/introduction.html#textures). In
particular we use a noise shader with detail = 16, scale
=
√
100 ∗ u, u ∼ U(0, 1), and scale draw from the interval

[0, 20]. The noise shader is used as input to a color ramp
node which interpolates between the input color, and white.
The color ramp node then sets the color of a diffuse BSDF
material https://docs.blender.org/manual/
en/latest/render/shader_nodes/shader/
diffuse.html, which is applied to faces within a
texture group.

C. Transformer blocks
We use the improved Transformer variant with layer normal-
ization moved inside the residual path, as in (Child et al.,
2019; Parisotto et al., 2019). In particular we compose the
Transformer blocks as follows:

R
(l)
MMH = MaskedMultiHead(LN(H

(l−1)
FC)) (12)

H
(l)
MMH = H

(l−1)
FC +R

(l)
MMH (13)

R
(l)
FC = Linear(ReLU(Linear(LN(H

(l)
MMH)))) (14)

H
(l)
FC = H

(l)
MMH +R

(l)
FC (15)

https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/decimate.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/decimate.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/decimate.html
https://docs.blender.org/manual/en/latest/render/cycles/index.html
https://docs.blender.org/manual/en/latest/render/cycles/index.html
https://docs.blender.org/manual/en/latest/render/cycles/render_settings/film.html
https://docs.blender.org/manual/en/latest/render/cycles/render_settings/film.html
https://docs.blender.org/manual/en/latest/render/cycles/render_settings/film.html
https://docs.blender.org/manual/en/latest/render/shader_nodes/introduction.html#textures
https://docs.blender.org/manual/en/latest/render/shader_nodes/introduction.html#textures
https://docs.blender.org/manual/en/latest/render/shader_nodes/introduction.html#textures
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/diffuse.html
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/diffuse.html
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/diffuse.html

PolyGen: An Autoregressive Generative Model of 3D Meshes

v1=0.5

v2=-0.1

v4=0.2

v5=0.4

p(v3|v<3)=

p(v5|v<5)=

p(v6|v<6)=

p(v2|v1)=

p(v1)=

Vertex Transformer

Prediction
Probabilities

Vertex
Coordinates

Location

v3=0.3 p(v4|v<4)=
v = (0.3, -0.1, 0.5)

v = (-0.1, 0.4, 0.2)
Flatten

Vertices

x, y, z

Figure 12. The vertex model is a masked Transformer decoder that takes as input a flattened sequence of vertex coordinates. The
Transformer outputs discrete distributions over the individual coordinate locations, as well as the stopping token s. See Section 2.2 for a
detailed description of the vertex model.

p(f3|f<3)=

p(f5|f<5)=

p(f6|f<6)=

p(f2|f1)=

p(f1)=

Vertex
Index

p(f7|f<7)=

p(f8|f<8)= 1 2 3 4

p(f4|f<4)=

n s

Vertex
Transformer

v1

v2

v3

v4

e1

e2

e3

e4

Vertex
Locations

Vertex
Embeddings

f = (1, 2, 3)

f = (1, 2, 4)

Faces

e1

e2

e3

e1

e2

e4

en

f1=1

f2=2

f3=3

f5=1

f6=2

f7=4

f4=n
Gather

Face Transformer

Pointer
Embeddings

Flatten

Vertex
Indices

n

s

en

es

Figure 13. The face model operates on an input set of vertices, as well as the flattened vertex indices that describe the faces. The vertices
as well as the new face token n and stopping token s are first embedded using an un-masked Transformer encoder (Vertex Transformer).
A gather operation is then used to identify the embeddings associated with each vertex index. The index embeddings are processed with a
masked Transformer decoder (Face Transformer) to output distributions over vertex indices at each step, as well as over the next-face token
and the stopping token. The final layer of the Transformer outputs pointer embeddings which are compared to the vertex embeddings
using a dot-product and then passed through a softmax to produce the desired distributions. See Section 2.3 for a detailed description of
the face model and Figure 5 in particular for a detailed depiction of the pointer network mechanism.

Where R(l) and H(l) are residuals and intermediate repre-
sentations in the l’th block, and the subscripts FC and MMH
denote the outputs of fully connected and masked multi-
head self-attention layers respectively. We apply dropout im-
mediately following the ReLU activation as this performed
well in initial experiments.

Conditional models. As described in Section 2.5 For
global features like class identity, we project learned class
embeddings to a vector that is added to the intermedi-
ate Transformer representations HMMH following the self-

attention layer in each block:

r
(l)
global = Linear (hglobal) (16)

H
(l)
global = H

(l)
MMH + Broadcast

(
r
(l)
global

)
(17)

For high dimensional inputs like images, or voxels, we
jointly train a domain-appropriate encoder that outputs a
sequence of context embeddings. The Transformer decoder
performs cross-attention into the embedding sequence after
the self-attention layer, as in the original machine translation

PolyGen: An Autoregressive Generative Model of 3D Meshes

Transformer model:

R(l)
seq = CrossMultiHead

(
H

(l)
MMH,Hseq

)
(18)

H(l)
seq = H

(l)
MMH +R(l)

seq (19)

The image and voxel encoders are both pre-activation
resnets, with 2D and 3D convolutions respectively. The
full architectures are described in Table 4.

D. AtlasNet
We use the same image and voxel-encoders (Table 4) as
for the conditional PolyGen models. For consistency with
the original method, we project the final feature maps to
1024 dimensions, before applying global average pooling
to obtain a vector shape representation. As in the original
method, the decoder is an MLP with 4 fully-connected
layers of size 1024, 512, 256, 128 with ReLU non-linearities
on the first three layers and tanh on the final output layer.
The decoder takes the shape representation, as well as 2D
points as input, and outputs a 3D vector. We use 25 patches,
and train with the same optimization settings as PolyGen
(Section 3) but for 5e5 steps.

Chamfer distance. To evaluate the chamfer distance for
AtlasNet models, we first generate a mesh by passing 2D
triangulated meshes through each of the AtlasNet patch
models as described in (Groueix et al., 2018). We then
sample points on the resulting 3D mesh.

E. Alternative Vertex Models
In this section, we provide more details for the more efficient
vertex model variants mentioned in Section 2.2.

In the first variant, instead of processing x, y and z coordi-
nates in sequence we concatenate their embeddings together
and pass them through a linear projection. This forms the
input sequence for a 22-layer Transformer which we call the
torso. Following (Salimans et al., 2017) we output the pa-
rameters of a mixture of 40 discretized logistics describing
the joint distribution of a full 3D vertex. The main benefit of
this model is that the self-attention is now performed for se-
quences which are 3 times shorter. This manifests in a much
improved training time (see 2). Unfortunately, the speed-
up comes at a price of significantly reduced performance.
This may be because the underlying continuous components
are not well suited to the peaky and multi-modal vertex
distributions.

In the second variant we lift the parametric distribution
assumption and use a MADE-style masked MLP (Germain
et al., 2015) with 2 residual blocks to decode each output
of a 18-layer torso hn into a sequence of three conditional

discrete distributions:

p(vn|hn) = p(zn|hn)p(yn|zn, hn)p(xn|zn, yn, hn) (20)

As expected, this change improves the test data likelihood
while simultaneously increasing the computation cost. We
notice that unlike the base model the MADE decoder has
direct access only to the coordinate components within a
single vertex and must rely on the output of the torso to learn
about the components of previously generated vertices.

We let the decoder attend to all the generated coordinates
directly in the third alternative version of our model. We re-
place the MADE decoder with a 6-layer Transformer which
is conditioned on {hn}n (this time produced by a 14-layer
torso) and operates on a flattened sequence of vertex com-
ponents (similarly to the base model). The conditioning
is done by adding hn to the embeddings of zn, yn and xn.
While slower than the MADE version, the resulting network
is significantly closer in performance to the base model.

Finally, we make the model even more powerful using a 2-
layer Transformer instead of simple concatenation to embed
each triplet of vertex coordinates. Specifically, we sum-pool
the outputs of that Transformer within every vertex. In this
variant, we reduce the depth of the torso to 10 layers. This
results in test likelihood similar to the that of the base model.

F. Masking Invalid Predictions
As mentioned in Section 2.2 we mask invalid predictions
when evaluating our models. We identify a number of hard
constraints that exist in the data, and mask the model’s
predictions that violate these constraints. The masked prob-
ability mass is uniformly distributed across the remaining
valid values. We use the following masks:

Vertex model.

• The stopping token can only occur after an x-
coordinate:

vk = s =⇒ vk mod 3 = 1 (21)

• z-coordinates are non-decreasing:

zk ≥ zk−1 (22)

• y-coordinates are non-decreasing if their associated
z-coordinates are equal:

yk ≥ yk−1 if zk = zk−1 (23)

• x-coordinates are increasing if their associated z and
y-coordinates are equal:

xk > xk−1 if yk = yk−1 and zk = zk−1 (24)

PolyGen: An Autoregressive Generative Model of 3D Meshes

Face model.

• New face tokens n can not be repeated:

fk 6= n if fk−1 = n (25)

• The first vertex index of a new face is not less than the
first index in the previous face:

f
(k)
1 ≥ f (k−1)1 , k = 1, . . . , Nf (26)

• Vertex indices within a face are greater than the first
index in that face:

f
(k)
j > f

(k)
1 (27)

• Vertex indices within a face are unique:

f
(k)
i 6= f

(k)
j , ∀i, j (28)

• The first index of a new face is not greater than the
lowest unreferenced vertex index:

f
(k)
1 ≤ min

[
{v : v ≤ NV } \ {f (j)1 , . . . , f

(j)
Nj
}k−1j=1

]
(29)

G. Draco Compression Settings
We compare our model in Table 1 to Draco (Google), a per-
formant 3D mesh compression library created by Google.
We use the highest compression setting, quantize the po-
sitions to 8 bits, and do not quantize in order to compare
with the 8-bit mesh representations that our model operates
on. Note that the quantization performed by Draco is not
identical to our uniform quantization, so the reported scores
are not directly comparable. Instead they serve as a ballpark
estimate of the degree of compression obtained by existing
methods.

H. Unconditional Samples
Figure 14 shows a random batch of unconditional samples
generated using PolyGen with nucleus sampling and top-
p = 0.9. We observe that the model learns to mostly output
objects consistent with a shape class. In addition, the sam-
ples contain a large proportion of certain object classes, in-
cluding tables, chairs and sofas. This reflects the significant
class-imbalance of the ShapeNet dataset, with many classes
being underrepresented. Finally, certain failure modes are
present in the collection. These include meshes with discon-
nected components, meshes that have produced the stopping
token too early, producing incomplete objects, and meshes
that don’t have a distinct form that is recognizable as one of
the shape classes.

PolyGen: An Autoregressive Generative Model of 3D Meshes

layer name output size layer parameters
conv1 128×128×64 7×7, 64, stride 2

conv2 x 64×64×64

3×3 max pool, stride 2[
3×3, 64
3×3, 64

]
×1

conv3 x 32×32×128
[

3×3, 128
3×3, 128

]
×2

conv4 x 16×16×256
[

3×3, 256
3×3, 256

]
×2

256×256 spatial flatten (or)
1×256 average pool

(a) Image encoder

layer name output size layer parameters
embed 28×28×28×8 embed, 8
conv1 14×14×14×64 7×7×7, 64, stride 2

conv2 x 14×14×14×64
[

3×3×3, 64
3×3×3, 64

]
×1

conv3 x 7×7×7×256
[

3×3×3, 256
3×3×3, 256

]
×2

343×256 spatial flatten (or)
1×256 average pool

(b) Voxel encoder

Table 4. Architectures for image and voxel encoders. Pre-activation residual blocks are shown in brackets, with the numbers of blocks
stacked. Downsampling is performed by conv3 1, conv4 for image encoders, and by conv3 for voxel encoders, with a stride of 2. For
AtlasNet models, we perform an additional linear projection up to 1024 dimensions before average pooling to obtain a vector shape
representation.

PolyGen: An Autoregressive Generative Model of 3D Meshes

Figure 14. Random unconditional samples using nucleus sampling with top-p = 0.9.

