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Abstract

Games are an increasingly useful tool for training
and testing learning algorithms. Recent exam-
ples include GANs, AlphaZero and the AlphaStar
league. However, multi-agent learning can be ex-
tremely difficult to predict and control. Learn-
ing dynamics even in simple games can yield
chaotic behavior. In this paper, we present basic
mechanism design tools for constructing games
with predictable and controllable dynamics. We
show that arbitrarily large and complex network
games, encoding both cooperation (team play)
and competition (zero-sum interaction), exhibit
conservation laws when agents use the standard
regret-minimizing dynamics known as Follow-
the-Regularized-Leader. These laws persist when
different agents use different dynamics and en-
code long-range correlations between agents’ be-
havior, even though the agents may not interact
directly. Moreover, we provide sufficient condi-
tions under which the dynamics have multiple, lin-
early independent, conservation laws. Increasing
the number of conservation laws results in more
predictable dynamics, eventually making chaotic
behavior formally impossible in some cases.

1. Introduction

Games have become a powerful training mechanism used
in learning how to generate photorealistic images (Good-
fellow et al., 2014a), and also how to play Go, Chess and
StarCraft (Tesauro, 1995; Bansal et al., 2018; Silver et al.,
2017; Jaderberg et al., 2018; Vinyals et al., 2019). The un-
derlying assumption behind this family of architectures is
that competition between learning algorithms forces them
to continually improve their performance. However, this
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assumption is not always valid in practice. Indeed, in nu-
merous cases of multi-agent competition (or even coopera-
tion) the resulting dynamics can be unpredictable or, even
worse, formally chaotic (Sato et al., 2002; Galla & Farmer,
2013; Piliouras & Shamma, 2014; Palaiopanos et al., 2017;
Chotibut et al., 2018). This raises our central problem: How
can we effectively control learning dynamics in games?

Naturally, this is an important and well studied problem.
The classic mechanism design approach to it works in two
steps. Step one, design a game with “good” equilibria.
Ideally a game where all its equilibria (or at least some
prominent set of equilibria) satisfy the desirable properties.
Step two, apply/design algorithms that provably converge
to these equilibria.

Although such approaches are powerful, they exhibit serious
limitations in practice. For example, Generative Adversarial
Networks (GANSs) (Goodfellow et al., 2014b) have been
designed to follow exactly this one-two step approach. De-
signed as a competitive game between two networks (a
generator and a discriminator), this setting has a particularly
desirable equilibrium. In this equilibrium, the generator
produces realistic images and the discriminator not being
able to discern real and generated images classifies the im-
ages as fake or real uniformly at random. Step one is thus
guaranteed. Unfortunately, step two is far from guaranteed.
Standard learning dynamics, such as gradient descent ascent,
do not converge to Nash equilibria even in toy zero-sum
games (e.g., Matching Pennies) (Mertikopoulos et al., 2018;
Bailey & Piliouras, 2018; Cheung & Piliouras, 2019). Even
if we design algorithms with provable guarantees in simple
zero-sum games (Daskalakis et al., 2018; Balduzzi et al.,
2018; Mertikopoulos et al., 2019; Gidel et al., 2019a;b),
there is no guarantee that they converge in the high dimen-
sional network settings that we care about and even if they
do they may very well end up converging to artificial fixed
points (Daskalakis & Panageas, 2018; Adolphs et al., 2018;
Flokas et al., 2019).

Once we move from two agents to numerous agents then
whatever little structure we had to exploit goes away. For ex-
ample, in networks of zero-sum games, the notion of a value
of an agent no longer exists, e.g., there may exist multiple
equilibria where the same agent strictly prefers one of them
(Cai et al., 2016). In the case of networks of coordination
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(common utility) games multiple equilibria with widely dif-
ferent properties exist and the system performance is heavily
dependent on its initialization (Panageas & Piliouras, 2016).

Our approach. In this paper, we present a new approach
to solving games. More precisely we design a novel frame-
work for articulating when a multi-agent learning system
has succeeded in becoming coordinated. We do this by cir-
cumventing step one altogether, i.e., we do not artificially
require our system to fixate. Stationarity is not a prerequisite
for success. On the other hand, we do not want to go all
the way to other end and accept all possible system limit
behavior (e.g., unconstrained, “random” chaotic motion).
We wish to draw a balance between flexibility on one hand
(captured by the anarchic, local evolution of agents) and
predictability, globally coherent structure on the other (what
a centralized designer requires).

A perfectly balanced multi-agent system does not stand
still in rigid deadlock, neither does it proceed erratically.
Instead, it looks like a chess board where pieces can move
around flexibly but where overall structure clearly exists
(i.e., rules and restrictions on allowable moves). But if we
are to follow this analogy, what are the rules of the game?
Thankfully, as it turns out, some classes of games (such as
zero-sum games, coordination games and networks thereof)
immediately enforce behavioral rules to their agents as long
as these agents apply standard online learning dynamics
(e.g., gradient descent). In other words, the rules are part of
the game. Once we know these hidden rules (and the more
such rules we know, or we embed by properly designing the
game), the better we can predict which configurations are
possible (or even likely) and which are not (e.g., the two
white bishops cannot lie on squares of the same color).

Our setting. We consider a class of network (graphical
polymatrix (Kearns et al., 2001)) n-player games, that we
call network constant-sum games with charges. This
class of games is characterized by a base network constant-
sum game (i.e., each edge between two agents is a constant-
sum game) and an individual charge A; € R\ {0} for each
agent. The charge of each agent can either by positive or
negative. The payoff of each agent ¢ is equal to the product
of her charge and her utility at the original network constant-
sum game. If her charge is positive then she experiences a
positive payoff, if it is negative then she experiences a nega-
tive cost. These games generalize both two agent constant-
sum games as well as two-agent coordination games as well
as other classes of games, e.g., separable constant-sum mul-
tiplayer games or polymatrix games with both coordination
and zero-sum games for which equilibrium computation
can be hard (Cai & Daskalakis, 2011). We assume that
all agents apply (possibly different variants) of Follow-the-
Regularized-Leader (FTRL) dynamics (Hazan et al., 2016;
Mertikopoulos et al., 2018). Special cases of these type of

dynamics include replicator dynamics, arguably the most
well studied evolutionary dynamic (Sandholm, 2010), as
well as the standard online gradient descent.

Our results. Firstly, we show that each network constant-
sum game with charges that has an interior Nash equilibrium
always exhibits a conservation law, even if agents use differ-
ent continuous-time variant of FTRL dynamics (Theorem
1). This result generalizes recent results of (Mertikopoulos
et al., 2018) which only apply to networks of constant-sum
games and the results of (Nagarajan et al., 2018), which
characterizes replicator dynamics restricted to the agents
playing either coordination or zero-sum games along the
edges of a triangle. These conservation laws constrain the
dynamics of the game by encoding long-range correlations
between agents, even though the agents may not interact
directly. Secondly, if the whole network is bipartite, then
symmetries between the agents yield additional, linearly
independent conservation laws (Theorem 2). Thirdly, as a
consequence of this phenomenon, we can prove periodicity
for specific classes of zero-sum network games with two
layers and arbitrarily large number of agents (Theorem 6),
whereas without such constraints even two agent systems
with a small number of actions can be chaotic (Sato et al.,
2002; Palaiopanos et al., 2017; Chotibut et al., 2018). Thus,
cyclic behavior emerges as the ideal balance between stabil-
ity and flexibility. Finally, in the inverse direction, given any
such conservation law, we provide an efficient procedure to
construct a sparse network constant-sum game with charges
that implements it (Theorem 7).

Figures 1 and 2 illustrate the difference between recurrent
dynamics (e.g., FTRL in general zero-sum games (Piliouras
& Shamma, 2014; Mertikopoulos et al., 2018)) and periodic
dynamics. The orbits in recurrent dynamics may produce a
complicated pattern of intersections given an arbitrary plane
whilst periodic orbits produce much simpler patterns.

2. Preliminaries

This section provides the necessary background concepts
including network generalizations of zero-sum games, the
replicator dynamic and its connection to game theory and
online learning. We conclude with some basic terminology
and facts about dynamical systems and information theory.

2.1. Network Zero-Sum Games with Charges

A graphical polymatrix game is defined by an undirected
graph G = (V, E), where V' corresponds to the set of agents
and where edges correspond to bimatrix games between
the endpoints/agents. We denote by S; the set of strate-
gies of agent ¢. We denote the bimatrix game on edge
(i,k) € E via a pair of payoff matrices: A“* of dimen-
sion |S;| x |Sk| and A of dimension |Sk| x |S;|. Let
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(a) The trajectories of agents’ behavior exhibit periodic motion.(b) The intersection points of the trajectories of agents’ behav-

ior with a plane form simple patterns.

Figure 1. Plots show the trajectories of agents updating their mixed strategies via replicator dynamics on a 4-agent complete bipartite
network (K2 2) of Matching Pennies games. Each agent in the first group wants to mismatch each agent in the second group. Each axis
represents the individual agent’s probability of playing the first strategy (i.e., Heads).
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(a) The trajectories of agents’ behavior exhibit a more compli-(b) The intersection points of the trajectories of agents’ behav-

cated recurrent behavior.

ior with a plane form complex patterns.

Figure 2. Plots show the trajectories of agents updating their mixed strategies via replicator dynamics on a 4-agent complete bipartite
network (K2 2) of Matching Pennies games. One agent in the first group wants to mismatch each agent in the second group, whereas the
other agent in the first group wants to match each agent in the second group. Each axis represents the individual agent’s probability of
playing the first strategy (i.e., Heads). In this network game the agents within a group are no longer symmetric to each other.

s € x,;5; be a strategy profile of the game, then we denote
by s; € S; the respective strategy of agent ¢. Similarly, let
5_; € Xjev\;S; denote the strategies of the other agents.
The payoff of agent ¢ € V in strategy profile s is the sum of
the payoffs that agent ¢ receives from all the bimatrix games
she participates in. Specifically, ui(s) = >_(; jyep AL
A randomized strategy x; for agent i lies on the simplex
A(S)={pe ]R'f"'| : Y. ges, Tir = 1}. Payoff functions
are extended to randomized strategies in the usual multi-
linear fashion. A (mixed) Nash equilibrium is a profile of

mixed strategies such that no agent can improve her payoff
by unilaterally deviating to another strategy.

Definition 1. (Cai & Daskalakis, 2011) A separable
constant-sum multiplayer game GG is a graphical poly-
matrix game in which, for any pure strategy profile, the sum
of all agent payoffs is equal to the same constant. Formally,

Vs € X8, ), ui(s) =c.

Constant-sum games trivially have this property. All graph-
ical games where each edge is a zero-sum game also be-
long in this class. These games are referred to as pair-
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wise zero-sum polymatrix games (Daskalakis & Papadim-
itriou, 2009). If the edges were allowed to be arbitrary
constant-sum games, the corresponding games are called
pairwise constant-sum polymatrix games. There exists (Cai
& Daskalakis, 2011) a (polynomial-time computable) payoff
preserving transformation from every separable constant-
sum multiplayer game to a pairwise constant-sum polyma-
trix game (i.e., a game played on a graph with agents on
the nodes and two-agent games on each edge such for each
i,k eV AR =cponl— (Aiv’“)T and 1 the all-one ma-
trix). We will assume this representation in the rest of the
paper. That is, we have a network of agents and each pair
of agents participates in a constant-sum game (possibly the
trivial all zero game).

Our main class of games will be produced by taking linear
transformations (rescalings with possible switch of the di-
rection of axes) of separable zero-sum games of the form
Aiu;, where A; € R\ {0}. That is we can think of each
agent as a charged particle, where their charge, )\; can be
either positive or negative.

Definition 2. An n-agent game G is a network constant-
sum game with charges if there exists a separable constant-
sum multiplayer game GG and constants \; € R\ {0} for
each agent i such that u© (s) = \ju$ (s) for each outcome

-

s € S. We will also denote such game as (\)-constant-sum
multiplayer game.

Positive rescalings of agent utilities do not affect the struc-
ture of Nash equilibrium outcomes. However, they can af-
fect the shape of learning dynamic trajectories and thus have
an effect on the properties supported by a specific system
trajectory. General (negative) rescalings naturally can lead
to different equilibrium sets. Specifically starting from a
zero-sum game a rescaling with multiplicative weight vector
(1, —1) results in a two-agent coordination (common utility)
game, which unlike zero-sum games always has pure Nash
equilibria. In fact, it is immediate that the class of network
constant-sum games with charges includes all two agent
coordination (common utility) games.

Network Topologies We will be particularly interested
in a special subclass of network constant-sum games with
charges. Inspired by the geometry of deep layered net-
works, we will consider bipartite, layered polymatrix games
where the set of all agents can be partitioned in sets V;
1 € {1,...,1} such that agents in V; only play games with
agents in their neighboring layers V;_; and V;;1. Moreover,
we will assume that all agents on the same level are to-
tally symmetric, except possibly to effects captured by their
individual charge. Specifically, given any tuple of agents
i,i’ € Vyand j,j € Vigq AW = AT = AbIT = AT
We call such games symmetric bipartite network constant-
sum games with charges.

We study graphs that are commonly used to embed agent
interactions through the framework of network constant-
sum games with charges, such as bipartite graphs and star
graphs (one center agent connected to leaf agents). When
there are K — 1 leaf agents we call this K-STAR. See Figure
1 in Section A in the supplementary material.

2.2. Follow the Regularized Leader

Follow the Regularized Leader (FTRL) is a class of learning
dynamics that tries to optimize the strategies being played
by tracking cumulative payoffs over time and maximizing
a regularized payoff at every time instant. The regularizer
makes sure that the learning is “smooth” and this leads to
a variety of learning algorithms with desirable no-regret
guarantees. To keep track of the payoffs of the pure strategy,
we introduce a new variable v;g(x) := wu;(R,z_;) and
thus v;(z) = (vir(z))res; The continuous time FTRL
dynamics can be specified as follows:

yi(t) = v:(0) + /0 vi(z(s))ds, (FTRL)

zi(t) = Qi(wi(t)), (1
where Q; : RS — X; is defined as

Qi(yi) = arg max{(y;, ¥;) — hi(x:) }- (2)

Ti€X;

In the above cases, X; = A(.S;). Furthermore, y;(¢) denotes
the evolution of player i’s payoff over time, whereas x; ()
represents the time evolution of the mixed strategy of player
¢ and is obtained by maximizing the function Q;(.) which
contains the regularization term h;. We may assume that the
regularizer h; (z) for player i satisfies the following standard
assumptions:

1. h; is continuous and strictly convex on X;.

2. h; is smooth on the relative interior of every face of X;
(including X; itself)

Another useful notion is that of the convex conjugate of
h;(x), which is defined to be:

hi (yi) = max {{y;, zi) — hi(z:)}- 3)
z; €EX;
The above definition is useful in measuring divergences
from the agents’ strategies to the Nash equilibrium in the
space of payoffs, and is known as the Fenchel coupling.

F(a™|ly) = Z h(x7) + hi(yi) = (yir 7). ()

Here y is the vector of payoffs of each agent i. The FTRL
framework is powerful enough to capture highly useful algo-
rithms such as replicator dynamics (when the regularizer is
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the (negative) Shannon entropy) and online gradient descent,
amongst others, by using the appropriate regularizers. For
more details refer to (Mertikopoulos et al., 2018).

2.3. Replicator Dynamics

Besides being a special case of FTRL dynamics, the replica-
tor equation (Taylor & Jonker, 1978; Schuster & Sigmund,
1983) is among the basic tools in mathematical ecology,
genetics, and mathematical theory of selection and evolu-
tion. In its classic continuous form, it is described by the
following differential equation:

A d.l?l (t)
o dt

n
& = z;[ui(x) —a(x)], a(z) = inui(x‘),
i=1

where x; is the proportion of type ¢ in the population,
x = (z1,...,2m) is the vector of the distribution of types
in the population, u;(x) is the fitness of type ¢, and @ (z) is
the average population fitness. The state vector x can also
be interpreted as a randomized strategy of an adaptive agent
that learns to optimize over its m possible actions, given an
online stream of payoff vectors. As a result, it can be em-
ployed in any distributed optimization setting. An interior
point of the state space is a fixed point for the replicator if
and only if it is a fully mixed Nash equilibrium of the game.
The interior (the boundary) of the state space x;A(.S;) are
invariants for the replicator. We typically analyze the behav-
ior of the replicator from a generic interior starting point,
since points of the boundary can be captured as interior
points of smaller dimensional systems. Summing all this up,
our model is captured by the following system:

iig = wig(u'(R) — Z zipu'(R)),
R'€S;

for each i € N, R € S; where we have that u’(R) =
Esiiiniui(R, S,i).

The replicator dynamic enjoys numerous desirable proper-
ties such as universal consistency (no-regret)(Fudenberg &
Levine, 1998; Hofbauer et al., 2009), as well as connections
to several well studied discrete time learning algorithms (e.g.
Multiplicative Weights algorithm (Kleinberg et al., 2009;
Arora et al., 2005) or Hedge (Freund & Schapire, 1999)).

3. Dimensionality Reduction and Invariant
Functions

In our first set of results we will describe an invari-
ant function when the agents in a network constant-sum
game with charges update their strategies using arbitrary
FTRL dynamics (different agents may use different dynam-
ics/regularizers).

3.1. Constant of Motion

We describe a function that is invariant to the evolution
of the agents’ strategies over time when playing a net-
work constant-sum game with charges, i.e., a constant of
motion. We show that the time derivative of H(y) :=
Y iey i (BRI (yi) — (yi, 7)) is zero, i.e., H(y) remains in-
variant with the motion of the FTRL dynamics. In the above
definition z* is an interior Nash equilibrium.

Theorem 1. H(y) := > .oy Ai (] (yi) — (ys, x7)) is in-
variant to the evolution of FTRL dynamics when agents

play a network constant-sum game with charges that has an
interior Nash equilibrium x*.

Proof. We begin by expanding H (y) and taking the time
derivative.

dffliy) = (wil), A (VR (y:) — 7))
%
i€V

i€V j:(i,j)EE
= Z ()\213?14”33] — )\l(xr)TAlj$] (6)
i,jEE

+ ijfAjixi —Aj (z;f)TAjixi)

= Z (Ci,j — )\Z(I:)TAZJQTJ — /\J(x;‘)TAﬂxl)
i,jEeE
(7N
= Z (—ci’j + )\ixJTAji:c’{ + )\jx;?rAijx;f)
i,jEE
3
— Z (—cij+ Xi(@)T ATy + Nj(a)) T AV )
i,jEE
)]
=0 (10)

where 5 follows due to the “maximizing argument” iden-
tity ; = Vh(y;) (See pg. 149 in (Shalev-Shwartz et al.,
2012)). Lines (7),(8) follow from the fact that the A rescaled
edge games are constant sum where the constant on the edge
(2,7) is ¢; ;. The last line follows from the fact that the Nash
equilibrium z* is fully mixed. O

Remark 1. The above conservation law immediately im-
plies the Fenchel coupling (see Equation (4)), is invariant
over time. Note that ), \;h;(x}) can be subsumed in the
constant.
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3.2. Dimensionality Reduction & Symmetries

To describe our dimensionality reduction results for bipar-
tite graphs and to state the main theorems, we first describe
formally these games. Consider a network constant-sum
game with charges with a m-by-m constant-sum base game
matrix A, where the network topology is a bipartite graph
with L layers and where each layer has K vertices (agents).
Let the set of all vertices be V' and the set of all edges be
E. The agents are indexed by their vertex and the layer. For
instance, the agent in vertex 4 and layer j is indexed as (%, j).
The corresponding mixed strategies, payoff vectors and util-
ities are thus going to be indexed by z(%7), 3(1:7) u(;,5) and
the vector of charges by X = A1) A@2,1) -5 AL, -
See Figure 1(b) in Section A for the exact structure.

We use G := (V, E; X, A) to represent this setting that is

parameterized by charges X and the base game matrix A.
Then the following theorem holds:

Theorem 2. The dynamical system induced by agents using
any FTRL dynamics in any symmetric bipartite network

constant-sum game with charges G = (V, E; X, A), lies on

a low dimensional space requiring only L(m — 1) variables
to completely describe the system.

Proof Sketch. The idea is to uncover the symmetries in the
system through an appropriate transformation. In this case,
we use the techniques described in (Mertikopoulos et al.,
2018) to first define variables that track the difference in
accumulative payoffs w.r.t a reference strategy. Furthermore,
the time derivatives of these variables can be written as a
difference of two utilities. To obtain the dimensionality
reduction for agents in each layer, we need to make the
following observation:

For any agent (i, j), i.e., vertex 4 in layer j, if there is another
agent in the same layer (I, j), that plays a scalar multiple of
the games played by (4, j) then the time derivative of these
variables for the two agents will simply be scalar multiples
of each other. This allow us to find new linearly independent
invariant functions. We apply this principle for each layer
carefully, alternating between row and column agents to
obtain the required reduction. For the full proof refer to
Section B in the supplementary material. O

Remark 2. The above theorem implies that, if wlog we were
to track the (m — 1) strategies of the first agent, i.e., (1,1),
we can derive every other agent’s values and the system
effectively reduces down from having K(m — 1) tom — 1
variables. Overall, this means that for each layer it suffices
to track the first agent’s n — 1 strategies and thus making
reduction from K Lm to L(m — 1) variables. In practice,
usually for such graphs, the number of layers in general is
much smaller than the number of agents K.

3.3. The Case of Replicator Dynamics

We have seen that the replicator dynamics is a special case
of FTRL when the regularizer is the (negative) entropy, i.e.,
hi(z) = ZReAi ;g In x; . Using the previous theorem
we get the dimensionality reduction and in addition we can
obtain a closed form representation of the mixed strategies,
in terms of the initial conditions and the mixed strategies of
the agents we are tracking.

Lemma 3. In the dynamical system induced by agents us-
ing replicator dynamics in any symmetric bipartite network
V.E: X, A), the
mixed strategies of agent (i + 1, j) has a closed form repre-

sentation in terms of the mixed strategies of agent (i, j) and
the initial conditions.

constant-sum game with charges G =

- A<;+1,j)
exp ( = ) zy (1) (&)
G.d) A )\ @ ()
Tk = B i)
-2 —C9 209 (1) (i:0)
L+ >0 ex ( k ) i
2k=o P Ao ) \ 2l (1)

Y

where C,g is a constant term that depends only on the initial
strategies (at time 0) and the charges.

Proof. For a fixed agent indexed by (i, j) (represents the
vertex ¢ in layer j) we can rewrite their replicator equa-
tions after a diffeomorphic change of all variables using the
following variables w instead:

dln(x,(;’j)) dln(z(i’j) )

m—1

dt dt ’

where k denotes the action index (goes from 0 to m — 1).

wi?) = (12)

Consider tracking the agent (1, ), i.e., we are given xfﬁl’j) (t)
Vke0,1,2,...,m—2and Vt > 0.

Using the invariant equations derived in Theorem 2 we then
have the following relationship for each k, it holds that:

Mir1pywy” = Mg w7 =0 (13)

Substituting for w, and integrating with respect to time, we

get the following relations:
w0 () CY Ay, (2@
In CESwi) =3 + h\ In )
Ty (1) (i-0) (i-9) T2 (1)
i+1,j i+1,j ~Cy
() = 7 (1) exp ( " fj)
iJ

Ai+1,5)

. <m,(;j)(t)> X(i.9)
(4,9)
xmfl(t)

(14)
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Where,
(i,5) (i+1,5)
Cr = Ait1,5) In ( (i9) ~ A In G+ L) gy |
x7rL—1(0) ‘r'rn—l (0)

Now sum of the above equations over all k should be 1, as
these are mixed strategies. Using this and solving for x,(;’j ),
we get the following relation:

Ait1,5)
i g N
o (28) (23)
(i.9) Aia) )\ w3 (#)
€T =
k N Ali+1.5)
-2 el ORI )
1 m ex( ’“) b
+ 2= P (37 a9 (1)
(15)
O

As the above relation depends only on all the initial con-
ditions and the variable being tracked. Using a series of
substitutions for ¢, starting from 1, we can obtain the full
mixed strategies of all players.

4. Periodic Orbits

Here we show how the dimensionality reduction proven in
the previous section can be applied to establish the emer-
gence of periodic orbits and other useful properties about
the system dynamics (such as the lack of chaos). It is im-
portant here to remind ourselves that chaotic behavior can
actually emerge even in very simple settings such as repli-
cator dynamics in Rock-Paper-Scissors and variants (Sato
et al., 2002). To counter this possibility we will leverag-
ing the following two theorems from dynamical systems
literature:

Theorem 4. Poincaré Recurrence (Poincaré, 1890; Bar-
reira, 2006) If a flow preserves volume and has only
bounded orbits then for each open set there exist orbits
that intersect the set infinitely often.

Next, we mention one of the key results in planar (2-
dimensional) dynamical systems.

Theorem 5. Poincaré-Bendixson theorem (Bendixson,
1901, Teschl, 2012) Given a differentiable real dynamical
system defined on an open subset of the plane, then every
non-empty compact w-limit set of an orbit, which contains
only finitely many fixed points, is either a fixed point, a peri-
odic orbit, or a connected set composed of a finite number
of fixed points together with homoclinic and heteroclinic
orbits connecting these.

Remark 3. Theorem 5 restricts the possible limit behaviors
of a planar dynamical system. Only simple limit behavior is
possible (no chaos). Theorem 4 states that a neighborhood

of the initial condition is visited infinitely often. When used
in conjunction with Theorem 5, this will allow us to show
that the limit behavior is periodic.

Next, we will show by applying a strong enough version
of our dimensionality reduction arguments we can actually
understand to a large extent the topology of these multi-
agent systems, despite the fact that they correspond to games
with possibly arbitrarily large number of agents. When
contrasting this with the possibility of chaos even in two
player games (Sato et al., 2002; Palaiopanos et al., 2017,
Chotibut et al., 2018), we see the power of these techniques.

Theorem 6. If the setting of symmetric bipartite network
constant-sum games with charges G = (V, E; X, A) con-
sists of two layers and each agent has two actions and the

charges of all agents have the same sign then almost all
orbits are periodic.

Proof. When all agents have the same sign, then this net-
work game belongs to the class of affine variants of net-
work constant-sum games, for which it is known that al-
most all trajectories are (Poincaré) recurrent (Mertikopoulos
et al., 2018). This is effectively due to an application of the
Poincaré recurrence theorem. Moreover, by the invariance
of the Fenchel coupling almost all trajectories stay bounded
away from the set of equilibria. When we have a two layer
bipartite graph with agents playing two-by-two network
constant-sum game with charges, Theorem 2 guarantees that
the system reduces to an autonomous two dimensional dy-
namical system. This allows us to apply Poincaré-Bendixon.
However, the only type of recurrence behavior allowable
by Poincaré-Bendixon is periodicity. Combining these two
arguments the theorem follows. O

Figure 3 shows that the behavior of the agents matches with
what we expect from the dimensionality reduction. The orig-
inal system is 4-dimensional, but using reduction arguments
we can show that system is effectively periodic. This is seen
in Figure 3(a) and this is observed for any 3-dimensional
projection that involves the center agent. Interestingly, the
leaf agents (2,3 and 4) exhibit the behavior as shown in Fig-
ure 3(b), which indicates a form of coordination among the
leaf agents as the probability of playing the same strategy
(strategy 1) increases simultaneously for all the leaf agents.
We observe this pattern in 3-STAR graphs as well.

5. Reverse-Engineering the Game

Our stated goal is to design systems that exhibit these
conservation laws, i.e., long-range correlations. By the-
orem 1 we have that specific classes of games enforce
a parametric family of constant of motions of the form
H(y) == > ,cv i (b (ys) — (ys, 7). We will show how
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(a) The trajectory of (any) two leaf agents and the center agent

is shown.
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(b) The trajectory of 3 leaf agents is shown.

Figure 3. Plots show the trajectories of agents updating via replicator dynamics on a 4-STAR (see Figure 1(a) in Section A of the
supplementary material) network of Matching Pennies. Each axis represents the individual agent’s probability of playing strategy 1. We
show one projection that includes the center agent (left) and one with only the leaf agents (right).

to compute these games efficiently. For simplicity, we will
assume that the target equilibrium 2* is given explicitly.

Theorem 7. Given any conservation law of the form
H(y) :== > v i (B (yi) — (yi, 7)) we can compute in
linear time a network constant-sum game with charges that
implements it when each agent i uses FTRL dynamics with
regularizer h;. Moreover, the payoff matrices of the network
constant-sum game with charges are sparse.'

Proof. 1t suffices to identify a network constant-sum game
with charges such that it has the desired fully mixed Nash
equilibrium z* and then have each agent ¢ apply FTRL
dynamic with regularizer h;(z).

We will do so by utilizing sparse payoff matrices A’* in the
construction of network constant-sum games with charges.
In fact, since any constant shift to the payoff matrix of any
agent does not affect the trajectories of FTRL dynamics,
it suffices to consider (network) zero-sum games. We will
show our analysis for the two-agent case and the multi-agent
case is in the supplementary material.

Zero-sum game: The geometry of the Nash equilibrium
set of zero-sum games is a classic problem (Bohnenblust

"Naturally, all such properties can be trivially satisfied by the
all-zero separable multi-agent game. This game gives rise to trivial
learning dynamics, since all points of the state space are fixed
points of the dynamic. So, the constant of the motions are satisfied
by the fact that the system is not in motion. However, this clearly
violates the spirit of what we wish to achieve, which is to give rise
to dynamically evolving systems that allow both for agent coordi-
nation and flexibility. One way of excluding such trivial system is
to aim for system with equilibrium sets of small dimension (e.g.
unique fixed point).

et al., 1950). Let Ny, No denote the set of equilibrium
(i.e. maxmin) strategies for the row and column agent re-
spectively. Let F; and F5 be the smallest faces of sim-
plices containing N7 and Ns. In all zero-sum games (with
finite set of strategies) we have that dimF; — dim/N; =
dimF, — dim/N, (Bohnenblust et al., 1950). Since we are
interested in zero-sum games of full support, we have that
|S1] — dimNy = |S2| — dimN,. To avoid trivial games
(such that all zero-one), and allow for more flexibility of
motion for our agents, we aim to minimize the dimen-
sion of the equilibrium strategies. We start by considering
games with a unique fully mixed Nash equilibrium. Since
dimN; = dimNy = 0, we derive the necessary condition
that the payoff matrix is square (i.e. |S1| = |S2]).

Case: |S1| = |S2|t Lett = |S1] —1 = |S2] — 1 and
let’s denote for notational convenience this unique equi-
librium profile as (zo, 21 ...,2¢), (Yo,¥1-..,Yy:) instead
of (1‘10, 11 .- - ,l‘lt), (l’go, 21 ... ,zgt). Given a Value2
¢ # 1, the zero-sum game defined by the matrix A(c, &, §)
exhibits the desired equilibrium and value (i.e. c¢) and fur-
thermore its equilibrium is unique (Bohnenblust et al., 1950).
The matrix A(c, #,¥) (of dimension ¢ + 1=|57|=|S2|) has
as follows:

CTYt
Yo

*For ¢ = 1/t use matrix A(2/t, %, ) /2.
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c(zo+yo—1)+ 1-’_ TiYi
where a(c) = (zo+yo m()]yoz L™ and where the subma-

trix ;¢ corresponds to the identity matrix of size t. The
sparsity of the matrix is immediate. See Section C in the
supplementary material for the case when |S1| # |S2| and
the multi-agent case. O

6. Discussion

In this section, we look at how our results can be used to
understand learning in games with an algorithmic approach.
Firstly, we note that conservations laws do not require the
constant-sum property. For example, all coordination games,
which are potential games, lie in our class of network zero-
sum games with charges. Moreover, our family of games
allows for potential games with arbitrarily many agents and
strategies. So, even games/dynamics that have very different
behavior (potential games-convergence, network zero-sum
games-cycles) can both be analyzed under the same lens of
conservations laws the same way a ball rolling down a hill
(decreasing its potential on its way to a local minimum) and
an oscillating pendulum can both be studied by the same
set of conservation laws. A couple of ways to utilize these
conservation laws, which might serve as follow-ups of our
work, are described below:

Equilibrium selection in potential games/non-convex
optimization: In the case of potential games, the invariant
functions can help us compute boundaries between regions
of attraction of different equilibria. For example, given an
unstable fixed point, all the points both on its stable and
unstable manifold (i.e., points that converge to it at +/- co)
have to agree with the value of the invariant function. The
equation H(x) = H (unstable Nash) is satisfied exactly by
these points and these points alone. So, now we have an
algebraic handle to try to compute separatrices and thus
the regions of attraction of stable fixed points. Zhang &
Hofbauer (2015) apply a similar idea for replicator in 2x2
coordination games. Our ideas can be applied to potential
games of arbitrary size even if the agents mix-and-match
using different optimization algorithms. Additionally, one
might be able to identify the “optimal” regularizer in terms
of equilibrium selection.

Invariant measure as a solution concept in zero-sum
games: In the case of network zero-sum games, where
the dynamics cycle on a closed, bounded level set of the
invariant function, we now have a new way of understand-
ing them. Instead of having the Dirac distribution at the
Nash equilibrium as an invariant of the dynamics, we can
define invariant measures on any level set. Furthermore,
if the system is periodic then it is trivial to compute them
on every trajectory. This idea is related to the notion of
mixed Nash in WGANSs (Hsieh et al., 2019). WGANSs are
infinite dimensional bi-affine games and (Hsieh et al., 2019)

studies entropic mirror-descent (discretization of replica-
tor) from the perspective of mixed strategies (i.e. measures
over the parameter space to argue convergence to invariant
measures). However, this approach cannot provide any char-
acterization about what are the properties of the invariant
measures, or which of the uncountably infinitely many such
measures (at least one for each level set and their convex
combinations) do they approximately converge to. Experi-
mentally, however, they seem to work well. Our invariant
functions may help towards a better understanding of these
algorithmic techniques.

Discrete time FTRL: Although we analyze continuous
time FTRL dynamics, with appropriate discretization (based
on ideas coming from geometric and symplectic integra-
tion) it may be possible to create discrete versions of FTRL
dynamics that preserve new invariants functions. These
invariant functions would be perturbations of the invariant
functions for the continuous-time dynamics. See (Bailey
et al., 2019) for some early results in this direction that focus
on gradient dynamics in two player zero-sum games. These
results suggest that our framework may be fully extendable
to discrete-time algorithms as well.

7. Conclusion

What is self-organization? We know it when we see it in
familiar games like soccer, where forcing teams to compete
encourages players to learn coordinated behaviors such as
passing (Liu et al., 2019). In this paper, we examine a special
instance of this immensely complex question. We precisely
characterize how self-organization arises in simple network
games. Our strategy is twofold. Firstly, we show that large
classes of network games satisfy conservation laws. That
is, the dynamics of the game are contained in level sets of
certain invariant functions. It follows that the dynamics of
the game live on a (sometimes much) lower dimensional
subspace of the space of possible joint actions. Secondly,
we apply the dimensionality reduction argument to show
that, for symmetric games on bipartite networks, the limit
behaviors of the dynamics are simple, chaotic dynamics
are excluded. Understanding how far these ideas can be
applied is a fascinating question that lies on the intersection
of machine learning, dynamical systems and information
theory and could help expand our vocabulary when it comes
to dealing with complex non-equilibrating systems.
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