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Abstract

Graph representation learning is a ubiquitous task
in machine learning where the goal is to embed
each vertex into a low-dimensional vector space.
‘We consider the bipartite graph and formalize its
representation learning problem as a statistical
estimation problem of parameters in a semipara-
metric exponential family distribution: the bipar-
tite graph is assumed to be generated by a semi-
parametric exponential family distribution, whose
parametric component is given by the proximity
of outputs of two one-layer neural networks that
take high-dimensional features as inputs, while
nonparametric (nuisance) component is the base
measure. In this setting, the representation learn-
ing problem is equivalent to recovering the weight
matrices, and the main challenges of estimation
arise from the nonlinearity of activation functions
and the nonparametric nuisance component of
the distribution. To overcome these challenges,
we propose a pseudo-likelihood objective based
on the rank-order decomposition technique and
show that the proposed objective is strongly con-
vex in a neighborhood around the ground truth,
so that a gradient descent-based method achieves
linear convergence rate. Moreover, we prove that
the sample complexity of the problem is linear
in dimensions (up to logarithmic factors), which
is consistent with parametric Gaussian models.
However, our estimator is robust to any model
misspecification within the exponential family,
which is validated in extensive experiments.
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1. Introduction

Graphs naturally arise as models in a variety of applications,
ranging from social networks (Scott, 1988) and molecular
biology (Higham et al., 2008) to recommendation systems
(Ma et al., 2018) and transportation (Bell & Iida, 1997). In
a variety of problems, graphs tend to be high-dimensional
and highly entangled, and hence difficult to directly learn
from. As a prominent remedy, graph representation learn-
ing aims to learn a mapping that represents each vertex
as low-dimensional vector such that structural properties
of the original graph are preserved. Those learned low-
dimensional representations, also called embeddings, are
further used as the input features in downstream machine
learning tasks, such as link prediction (Taskar et al., 2004;
Al Hasan & Zaki, 2011), node classification (Bhagat et al.,
2011), and community detection (Fortunato, 2010).

There are three major approaches to graph embedding: ma-
trix factorization-based algorithms (Belkin & Niyogi, 2002;
Ahmed et al., 2013), random walk algorithms (Perozzi et al.,
2014; Grover & Leskovec, 2016), and graph neural net-
works (Scarselli et al., 2008; Zhou et al., 2018; Wu et al.,
2019). These approaches can be unified via the encoder-
decoder framework proposed in Hamilton et al. (2017b). In
this framework, the encoder is a mapping that projects each
vertex or a subgraph to a low-dimensional vector, whereas
the decoder is a probability model that infers the structural
information of the graph from the embeddings generated
by the encoder. The structural information here depends on
the specific downstream tasks of interest, which also deter-
mines the loss function of the decoder. The desired graph
representations are hence obtained by minimizing the loss
function as a function of embedding vectors. For example,
in the link prediction task, the decoder predicts whether an
edge between two vertices exists or not using a Bernoulli
model and logistic loss function, and the model parameter
is a function of embeddings (Baldin & Berthet, 2018).

Such an encoder-decoder architecture motivates the study of
graph representation learning through the lens of statistical
estimation for generative models. In particular, suppose the
observed graph is generated by a statistical model specified
by the decoder with true graph representations as its inputs.
We can then assess the performance of a graph embedding
algorithm by examining the difference between the learned
representation and the ground truth. Baldin & Berthet (2018)
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adopted this perspective to study the performance of a linear
embedding method for the link prediction problem. The
validity of their results hinges on the condition that both
the linear model of the encoder and the Bernoulli model of
the decoder are correctly specified. When either of these
assumptions are violated, they would incur large estimation
error. Recent advances in graph representation learning are
attributed to more flexible decoders (Cho et al., 2014; Good-
fellow et al., 2016; Badrinarayanan et al., 2017), which are
based on deep neural networks and can handle graphs with
edge attributes that can be categorical. These approaches
are poorly understood from a theoretical point of view.

In the present paper, we focus on bipartite graphs, where
there are two distinct sets of vertices, U and V, and only
edges between two vertices in different sets are allowed.
We study the semiparametric nonlinear bipartite graph rep-
resentation learning problem under the encoder-decoder
framework. We assume that each vertex u € U is associ-
ated with a high-dimensional Gaussian vector x,, € R%:,
Similarly, each vertex v € V is associated with a high-
dimensional Gaussian vector z,, € R%. The encoder maps
them via one-layer neural networks to low-dimensional vec-
tors ¢1(U*"'x,,), #2(V*''z,) € R”, where U* € R4*7,
V* € R%*" are weight matrices, {¢; };—1 2 are activation
functions evaluated entrywise, and r < (dy A dg). Fur-
thermore, in the decoder, we consider the link prediction
task under a semiparametric model. In particular, we as-
sume that the attribute of an edge follows a natural expo-
nential family distribution parameterized by the proximity
between two vertices, which is defined as the inner prod-
uct (o1 (U*T'x,), po(V*Tz,)) between the embedding vec-
tors. Here, ¢1 (U*”'x,,) is the embedding vector of u, while
$2(V*Tz,) is the embedding vector of v. We do not spec-
ify the base measure of the exponential family distribution,
but, instead, treat it as a nuisance parameter. This gives us
a semiparametric model for the decoder and robustness to
model misspecification within the exponential family.

In the above described semiparametric nonlinear model, our
goal is to recover weight matrices U* and V*. Based on
these weight matrices, we can then compute embeddings
for all vertices. There are two main obstacles that make the
estimation problem challenging. First, while the activation
functions {¢; };—1,2 make the encoder model more flexible,
their nonlinearity leads to a loss function that is nonconvex
and nonsmooth. Second, while the unknown nonparametric
nuisance component of the decoder model makes the graph
representation learning robust to the model misspecifica-
tion, it also makes the likelihood function not available. To
overcome these obstacles, we propose a pseudo-likelihood
objective, which is minimized at (U*, V*) locally. We an-
alyze the landscape of the empirical objective and show
that, in a neighborhood around the ground truth, the ob-
jective is strongly convex. Therefore, the vanilla gradient

descent (GD) achieves linear convergence rate. Moreover,
we prove that the sample complexity is linear in dimen-
sions dy V do, up to logarithmic factors, which matches
the best known result under the parametric model (Zhong
et al., 2018). Experiments on synthetic and real data corrob-
orate our theoretical results and illustrate flexibility of the
proposed representation learning model.

Notations. For any positive integer n, [n] = {1,2,...,n}
denotes the index set, and Unif([n]) is a uniform sampling
over the indices. We write a < bif a < ¢ - b for some con-
stant c,and a < bif a S band b < a. We define §;; = 1,—;,
which equals to 1 if 7 = j and 0 otherwise. For any matrix
U, vec(U) denotes the column vector obtained by vector-
izing U and ||U||,,, = (32,22, |U,;|P)a/P)1/4. As usual,
U7, || U] refer to the Frobenius and operator norm, re-
spectively, and 0,(U) denotes the p-th singular value of
U. For a square matrix U, diag(U) = (Uj1;Ugg;...)
is a vector including all diagonal entries of U; when U
is symmetric, Amax(U) (Amin (U)) denotes its maximum
(minimum) eigenvalue. We write A > B if A — B is pos-
itive semidefinite and A > B if it is positive definite. For
any vector @, ||@||min = min; |a;| is the minimal absolute
value of its entries.

Structure of the paper. In Section 2, we formalize the
semiparametric graph representation learning problem and
introduce related work. In Section 3, we present our esti-
mation method by proposing a pseudo-likelihood objective,
and the theoretical analysis of such objective is provided
in Section 4. In Section 5 we show experimental results
and conclusions are summarized in Section 6. Proofs and
auxiliary experiments are referred to the supplement.

2. Preliminaries and related work

We describe the setup of our problem and introduce the
applications and related work. We particularly focus on the
statistical literature on theory of semiparametric estimation
and matrix completion, although bipartite graph represen-
tation learning has been routinely applied to varied deep
neural networks (Nassar, 2018; Wu et al., 2018). We point
reader to Zha et al. (2001) for a survey on bipartite graph.

2.1. Problem formulation

Let G = (U, V, E) be a bipartite graph where U and V" are
two sets of vertices and F denotes the set of edges between
two vertex sets. For each vertex ©v € U, we assume it is
associated with a Gaussian vector x,, € R%, while for each
v € V we have a Gaussian vector z, € R%. An edge
between u and v has an attribute y(,, . that follows the
following semiparametric exponential family model

P(y(u,v) ‘ ®z(u,v)af)
= exp(y(u,v) . e‘(ku,v) - b(e‘(ku,v% f) + IOg f(y(u,'u)))7 (1)
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which is parameterized by the base measure function f :
R — R and a scalar

zu,,qz) = <¢1 (U*Txu,)7 (ZSQ(V*TZU».

In model (1), b(+, -) is the log-partition function (or normaliz-
ing function) that makes the density have unit integral. The
parametric component of the exponential family, ©F, , =
®* (x4, z, ), depends on the covariate x,, coming from the
set U and the covariate z, coming from the set V. The non-
parametric component f is treated as a nuisance parameter,
which gives us flexibility in modeling the edge attributes. To
make notation concise, we will drop the subscript of x,, and
z,, hereinafter, and use x and z to denote covariates from
set U and V, respectively. In our analysis, the activation
functions {¢; },=1 2 have one of the following three forms:
Sigmoid: ¢(z) = exp(x)/(1 + exp(x)); Tanh: ¢p(x) =
(exp(a) — exp(—)) /(exp(x) + exp(—a) ); ReLU: () =
max(0, x).

We formalize the bipartite graph representation learning as
a statistical parameter estimation problem of a generative
model. In particular, suppose the graph is generated by
the exponential family model (1) with some unknown base
measure f, and we observe part of edge attributes, y, and
associated covariates on two ends, x and z. Thus, we obtain
data set { (i, X, z;) }:,; where 7, j index the vertices of two
sets. The graph representation learning in our setup is then
equivalent to recovering U* € R4*" and V* € Rd2x7,
which can be used to compute parametric component of the
decoder model and estimate embedding vectors, ¢ (ﬂTx)
and ¢2(VTZ), for all vertices in two sets, since activation
functions are user-chosen and known.

2.2. Applications and related works

Graph representation learning underlies a number of real
world problems, including object recognition in image anal-
ysis (Bunke & Messmer, 1995; Fiorio, 1996), community de-
tection in social science (Perozzi et al., 2014; Cavallari et al.,
2017), and recommendation systems in machine learning
(Kang et al., 2016; Jannach et al., 2016). See Bengio et al.
(2013), Hamilton et al. (2017a), Hamilton et al. (2017b) for
recent surveys and other applications. The bipartite graph
is of particular interest since it classifies vertices into two
types, which extensively appears in modern applications.

For concreteness, in user-item recommendation systems,
the attribute of an edge between a user node and an item
node represents the rating, which is modeled by the proxim-
ity of projected features onto the latent space. Specifically,
each user is represented by a high-dimensional feature vec-
tor x and each item is represented by a high-dimensional
feature vector z. A simple generative model for the rating
y that a user gives to an item is y = (U*'x, V*Tz) + ¢
with € ~ N(0, 1) independent from x, z. Such a model is

studied in the inductive matrix completion (IMC) literature
(Abernethy et al., 2006; Jain & Dhillon, 2013; Si et al., 2016;
Berg et al., 2017). Zhong et al. (2018) studied nonlinear
IMC problem, where a generalized model for the rating is
y = ((U*Tx), p(V*T'z)) + ¢, with ¢(-) being a common
activation function. In this generalized nonlinear model,
one-layer neural network compresses the high-dimensional
features into low-dimensional embeddings. Zhong et al.
(2018) proposed to minimize the squared loss to recover
weight matrices U* and V*, and established consistency
for their minimizer, with linear sample complexity in dimen-
sion d; V da, up to logarithmic factors.

Our work contributes to this line of research by enhancing
the IMC model from two aspects. First, we allow for two
separate neural networks to embed user and item covariates.
Although this modification may seem minor, it makes theo-
retical analysis more challenging when two networks mis-
match: one network has a smooth activation function while
the other does not. Second, we consider an exponential fam-
ily model with unknown base measure, which extends the
applicability of the model and allows for model misspecifi-
cation within the exponential family. In particular, the semi-
parametric setup makes our estimator independent of the
specific form of f. For example, the model in Zhong et al.
(2018) is a special case of (1) with f(y) = exp(—y?/2),
while the link prediction problem in Liben-Nowell & Klein-
berg (2007) and Menon & Elkan (2011) is a special case

with f(y) = 1.

Furthermore, our work contributes to the literature on graph
embedding (Qiu et al., 2018; Goyal & Ferrara, 2018). Our
paper studies the bipartite graph and casts the graph repre-
sentation learning as the problem of parameter estimation in
a generative model. This setup allows us to analyze statisti-
cal properties, such as consistency and convergence rate, of
the learned embedding features. To the best of our knowl-
edge, statistical view of representation learning is missing
although it was successfully used in real experiments (see,
e.g., Graepel et al., 2001; Yang et al., 2015). In addition,
our work also contributes to a growing literature on semi-
parametric modeling (Fengler, 2005; Li & Liang, 2008; Fan
et al., 2017), where the parametric component in (1) is given
by ®* = 3*Tx and the goal is to estimate 3* by regress-
ing y on x, without knowing f. Fosdick & Hoff (2015)
formalized the representation learning as a latent space net-
work model, where the parameter ®* is given by the inner
product of two latent vectors and f(y) = exp(—y?/2), that
is under a Gaussian noise setup, and proposed methodol-
ogy for testing the dependence between nodal attributes
and latent factors. Ma et al. (2019) studied a similar model
with f(y) = 1 and proposed both convex and nonconvex
approaches to recover latent factors. However, our work
is more challenging due to the nonlinearity of activation
functions and the missing knowledge of f.
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Lastly, several estimation methods for pairwise measure-
ments have been studied in related, but simpler, models
(Chen & Goldsmith, 2014; Chen & Suh, 2015; Chen et al.,
2016; Pananjady et al., 2017; Negahban et al., 2018; Chen &
Candes, 2018; Chen et al., 2019). Chen et al. (2018) studied
model (1) by assuming the parameter matrix of the graph to
be low-rank, and estimated ®* as a whole. As a comparison,
our model is more complicated since each entry of ®* in
our setup is given by the inner product of two embedding
vectors, which measures the proximity of two vertices. Our
task is to recover two underlying weight matrices U*, V*
that are convolved by activation functions to formalize ®*.

3. Methodology

We propose a pseudo-likelihood objective function to esti-
mate the unknown weight matrices and discuss identifiabil-
ity of the parameters. The objective function is minimized
by the gradient descent with a constant step size. Theoretical
analysis of the iterates is provided in Section 4.

The likelihood for the model in (1) is not available due to the
presence of the infinite-dimensional nuisance parameter f.
Using the rank-order decomposition technique (Ning et al.,
2017), we focus on the pairwise differences and develop a
pseudo-likelihood objective. Importantly, the differential
pseudo-likelihood does not depend on f and, as a result, our
estimator is valid for a wide range of distributions, without
having to explicitly specify them in advance.

We follow the setup described in Section 2.1. To simplify
the presentation, suppose we have 2n; vertices in U and 2ng
vertices in V, denoted by U = {uy, ..., upn,, uy,...,u, }
and V = {v1,...,0p,,0],..., nQ} respectlvely For

i € [n1] and j € [na], welet x; = xu,, X; = Xy/, Zj = Zy;,
e Ndl(() I) and

zj,%; g d N4, (0, 1), independent of each other. Further,
we assume to observe m edge attributes, y, between vertices
{u1,...,upn, } and {v1,...,vp,}, and another m edge at-
tributes, 3/, between {uy, ..., u;, } and {v},..., v}, }, both
of which follow the distribution in (1) and are sampled with
replacement from the set of all possible n1no edges. We
note that the sampling setup is commonly adopted in the lit-
erature on partially observed graphs and matrix completion
problems (Zhong et al., 2018; Chen et al., 2018), which is
equivalent to assuming edges are missing at random.

7 = z,/, and suppose that Xi, X,

Denote sample sets Q {(yu(k) o(k)s Xuk)s Zo(k)) } et
and (' = {(y;’(l) X (l)7 ’(l)}l 1» where u(k), u/(1)
= Unif([n4]) and v(k), v’(l) Unif([ny]). While the ob-
servations within Q or £ are not independent, as they may
have common features x or z, the observations between
Q and Q' are independent. Such two independent sets of
samples are obtained by sample splitting in practice. We

stress that the splitting is used only to make the analysis
concise without enhancing the order of sample complexity.
In particular, it does not help us avoid the main difficulties
of the problem.

Based on samples €2 and €', we consider m?2 pairwise dif-
ferences and construct an empirical loss function. For
k € [m], let k; = wu(k), ke = v(k), and L, =
(p1(U*Txy,,), ¢2(V*Tzy,)) denote the true parameter as-
sociated with the k-th sample (similarly for ©;7, ). Note
that ©7 ;. is the underlying parametric component of the
model that generates yi = Y, k,. The key idea in construct-
ing the pseudo-likelihood objective is to use rank-order de-
composition to extract a factor, that is independently from
the base measure. Given a pair of independent samples, yj,
and y;, we denote their order statistics as y.) and rank statis-

tics as R. Then we know y(.y = (y&, ;) or y¢y = (47, Yr)»
and R = (1,2) or R = (2, 1). Thus, (y.), R) fully charac-
terizes the pair (v, y;), and is hence a sufficient statistics.
Note that

P(yka yll | 621k27 6;1/127 f) = P(y()7 R | ®;1k27 Q;Ilzz f)

= P(R | y()7 621k27®l*1/l27f) : P(y() | 621k27®;1,l27f)

_ P(yk|®F, oy IPWIOF] 1, 1) Py O 1oy ®@F 15 :F)

T Pukl®f 1y HP WO, P WEIOF 1 HIP(W]1OF 1, f)

o) exp(Ye Ok, ky + 11O 1,) - P(yey | OFy1ys OF1y, f)
exp(yr O, 1, T ¥197)1,) +exp(y,OF 1, + ¥:©7,,)

11ls
1

= Plyy | Ok, 071, ).

1+exP(—(yl_y;)(®;1k2—91*1/12)) (y( ) | kikos Plila f)

local differential pseudo-likelihood

(@)

The first term is the density of the rank statistics given or-
der statistics, which is only a function of unknown weight
matrices U* and V*. The second term is the density of
order statistics, which relies on the specific base measure f.

Thus, we omit the second term and sum over all m? paired
samples for the first term to arrive at the following objective

V) =

L(U
1 & / /
— Z (1 +exp (=(yr — 41)(Onykz — ©1,1,))) - (3)

The above loss function is similar to the logistic loss for the
pairwise measurements. However, it is nonconvex in both
components even for identity activation functions. When
feature vectors x, z follow the multinomial distribution and
activations {¢; }?_; are not present, Chen et al. (2018) esti-
mated the rank-r matrix U*V*7 as a whole by minimizing
(3) with an additional nuclear norm penalty. Our goal is
to recover both components U*, V*, in the presence of
nonlinear activation functions, resulting in a challenging
nonconvex optimization problem.

We propose to minimize (3) using the gradient descent with
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constant step size. The iteration is given by

Uttt Ut LU V)
(Vt+1> = <Vt) -1 (aﬁ(gjgvt) ) “)

. . . aL(Ut V)
with explicit formulas for 50

in the supplement.

d dL(U V)
v

given

Identifiability. In general, the weight matrices in loss func-
tion (3) are not identifiable as the function is bilinear in U,
V. For example, when both activation functions are identity,
£(UQ,V(QT)™1) and £L(U, V) have the same value for
any invertible matrix Q € R"*", which makes the Hessian
at (U*, V*) indefinite. Similarly, for ReLU activation, this
phenomenon reappears by letting Q be any diagonal matrix
with positive entries. To resolve this issue, one can use a
penalty function [UTU — VT'V||Z to balance two compo-
nents U and V (Yi et al., 2016; Park et al., 2018; Na et al.,
2019). Fortunately, in our problem, the identifiability issue
disappears when a smooth nonlinear activation is used, such
as sigmoid or tanh, although their nonconvexity brings other
challenges.

Different from over-parameterized problems in neural net-
works (Sagun et al., 2017; Li & Liang, 2018; Allen-Zhu
et al., 2018), the identifiability issue comes from the redun-
dancy of parameters, which is also observed in inductive
matrix completion problem (Zhong et al., 2018). Zhong
et al. (2018) showed that by fixing the first row of U*, both
components are recoverable from the square loss even with
ReLU activation. In our problem, when either one of activa-
tion functions is ReLU, we use a similar restriction on U*
and show that the loss in (3) has positive definite Hessian at
(U*, V*), without adding any penalties.

4. Theoretical analysis

In this section, we will show that the ground truth (U*, V*)
is a stationary point of the loss (3) and then show that this
objective is strongly convex in its neighborhood. Using
these two observations, we further establish the local linear
convergence rate for iterates in (4). Since the radius of the
neighborhood is fixed in terms of (U*, V*), a wart-start
initialization can be obtained by a third-order tensor method
(see, e.g., Zhong et al., 2017; 2018). In our simulations,
due to high computational cost of a tensor method, we
recommend a random initialization (Du et al., 2017; Cao &
Gu, 2019).

We require two assumptions to establish our main results.
The first assumption fixes the scale of weight matrices, while
the second one imposes a mild regularity condition.

Assumption 1. The weight matrices U*, V* have rank r
and satisfy 0,.(U*) = 0,.(V*) = L.

Assumption 2. Let D = {(yij,Xi,2;) Yic[n,],je[ns] (Simi-

larly for D') be the complete subgraph. We assume

(a) (boundedness): There exist o, > 0 such that,
for any (y,x,z) € D UTD, we have |®*| =
(61(U*"%), 62(V*"2))| < ovand |y| < B;

(b) (regularity condition): Suppose (y,x,z) € D and
(y,x',2") € D, we let

My (©",0")=E[(y—v)* vQaly—y') | 7],

where (z) = exp(x)/(1 + exp(x))®. We as-
sume M, (©*,©*') is a continuous, positive two-
dimensional function.

Assumption 2 is widely assumed in the analysis of logistic
loss function (Chen et al., 2018). In particular, Assumption
2(a) restricts the parametric component ®* into a compact
set, which controls the range of proximity between two
connected nodes. Intuitively, larger o implies a harder esti-
mation problem. We also add boundedness condition on the
response y for simplicity. It can be replaced by assuming y
to be subexponential (Ning et al., 2017). Boundedness holds
deterministically for some distribution in exponential family,
such as Bernoulli and Beta, and holds with high probability
for a wide range of exponential family distributions, though
£ may depend on the sample size n; and ny. Assumption
2(b) is the regularity condition, which plays the key role
when showing the strong convexity of the population loss at
the ground truth. It can be shown to hold for all exponential
family distributions with bounded support, and for some
unbounded distributions, such as Gaussian and Poisson.

With the above assumptions, our first result shows that the
gradient of the population loss at (U*, V*) is zero.

Theorem 3. The loss (3) satisfies E [VL(U*, V*)] = 0.

The next theorem lower bounds the population Hessian at
the ground truth. We separate results into two cases: (1) ¢1,
@2 € {sigmoid, tanh}; (2) either ¢ or ¢ is ReLU.
Theorem 4. Suppose Assumptions 1 and 2 hold. We let
R(U*) = H;:1 Zig*; and similarly for V*. There exist a
constant C' > 0, independent of U* and V*, and a constant
Yo > 0, depending on o only, such that

(Case 1) If &1, @2 € {sigmoid, tanh}, then

Amin (E[VZL(U*, V"))
> CYa :
~ R(U*)R(V*) max(|[U*[|3, [V*]]3)’
(Case 2) If either @1 or ¢ is ReLU, then by fixing the first
row of U* (i.e., treating it as known)

Amin (E[VZL(U*, V)
> Callel Ui
~ R(UME(V*) max([U*[[3, [V*[I3)(1 + [ef U*|[2)>”

where e; = (1,0,...,0) € R%,
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By symmetry one can alternatively fix the first row of V*
in the second case. . We realize that the lower bound of
population Hessian in Case 2 is smaller than the bound in
Case 1. This is due to nonsmoothness and unboundedness of
ReLU activation function. In later analysis we will see the
sample complexity when using ReLU for either networks
will have larger logarithmic factor, while is linear in d; V da
in both cases.

Combining Theorem 3 and 4, we obtain that (U*, V*) is a
local minimizer of the population loss. In order to character-
ize how the empirical loss behaves near the ground truth, we
study its local geometry via the concentration of the Hessian
matrix. We summarize the concentration result next.

Theorem 5 (Concentration of the Hessian matrix). Suppose
Assumptions 1 and 2 hold. Forany s > 1, if m Ani Ang 2

s(dy + dy) {log (r(dy 4 d2))}' %, where q = 0 for Case
1 and ¢ = 1 for Case 2, then with probability at least
1— 1/(d1 + dg)s,

IV2L(U, V) —E [VL(U*, V)] ||2
3(1—q) « %
(VI3 + 10 )13)

<o
<\/slog(d1 + d2) log (r(d1 + d2))
: +
m ANy N\ ng

2-gq
(U =U"E+ IV -VE) * )

Combining Theorem 5 and 4, we know that the em-
pirical loss function has positive curvature in a neigh-
borhood of (U*,V*). This local geometry guaran-
tees that GD has the local linear convergence rate, as
stated in the next theorem. For notation simplicity,
we let N5 = Apin (E[VZL(U*, V*)]) be the mini-
mum eigenvalue of the population Hessian and A} . =
Amax (E[V2L(U*, V*)]) be the maximum eigenvalue. The
explicit formula for A* . is given by Theorem 4 and A% ., =

min max

B2 (|V*]|% + ||U*H%)q, as proven in Lemma 11.

Theorem 6 (Local linear convergence rate). Suppose the
conditions of Theorem 5 hold. For any s > 1 and any initial
point (U, V) in the neighborhood

B(U",V") = {(U,V) U =UE+ IV = VIR

)\* . 2—q

< min ,

=\ CcB3r3i-a)/2 (HU*H?}q + ||V*||?}’7‘q)
with constant C' sufficiently large, the iterates in (4) with
n = 1/X5 ., satisfy

[UT = U5+ (IVT = VI
<pT (U - U E 4 VO - V),

with probability at least 1 —T'/(d1+d3)®, where contraction
rate p=1— X5, J(TAL

min max)'

Comparing the above sample complexity with the one for
inductive matrix completion problem (Zhong et al., 2018),
our rate improves from d(logd)® to dlogd, when ¢y, ¢o
are sigmoid or tanh. Moreover, we allow a semiparametric
model with two different activation functions, which results
in a more involved analysis.

5. Experiments

We show experimental results on synthetic and real-world
data. In the following, we call our model nonlinear semi-
parametric matrix completion (NSMC). We compare NSMC
with the baseline nonlinear inductive matrix completion
(NIMC) proposed by Zhong et al. (2018), where they as-
sumed the generative model to be Gaussian and minimized
the squared loss. The models obtained by removing non-
linear activation functions in NSMC and NIMC are called
SMC and IMC, respectively. The local linear convergence
result in Theorem 6 is verified in the supplement.

5.1. Robustness to Model Misspecification

We generate synthetic data with model misspecification and
compare the performance of estimators given by NSMC,
SMC, NIMC and IMC. We fixd = di; = dy = 50, r = 3,
n1 = no = 400, and use ReLLU as the activation function
for NSMC and NIMC. For NSMC and SMC, we randomly
generate two independent sample sets with m = 1000
observations, which are denoted as 2 and ’. The ob-
served sample set for NIMC and IMC are set to be the
union Q U . For NSMC and SMC, we minimize the pro-
posed pseudo-likelihood objective. For NIMC and IMC,
we minimize the square loss as suggested by Zhong et al.
(2018). We apply gradient descent starting from a random
initialization near the ground truth (U*, V*), in order to
guarantee convergence of all methods. We evaluate the
estimated matrix U using the relative approximation error
&g = |U—U*||¢/||U*]| . with &y, defined similarly. We
also evaluate the performance of a solution (IAJ7 V) on recov-
ering the parametric component © using relative test error

fo = \/Z(x,z)eﬂt((:) — 02/ Y, pea, ©*2 where
6 = (3(07x),6(V72)), @ = ($(UTx),6(V*T)),
and €); is a newly sampled test data set. For each setting
below, we report results averaged over 10 runs.

Gaussian model. We introduce model misspecification by
sampling y fromy ~ N ((1 —7)2- ©, (1 — 7)?). Parame-
ter 7 is introduced to modify the impact of model misspec-
ification. We summarize the relative errors in Table 1 and
Figure 1. When 7 = 0, there is no model misspecification
and NSMC and NIMC achieve comparable relative approx-
imation errors. As 7 increases, the relative approximation
errors of NIMC grow rapidly due to the increase of model
misspecification. However, NSMC gives robust estimations.
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SMC and IMC serve as bilinear modeling baselines that fail
to learn in the nonlinear embedding setting.

Table 1: Relative error in the Gaussian model.

T=0 T=0.2 T=04
& £ £ & & s &y &y o
NSMC | 0.0291 | 0.0299 | 0.0383 | 0.0322 | 0.0326 | 0.0427 | 0.0365 | 0.0365 | 0.0468
SMC | 0.8163 | 0.8603 | 0.9954 | 0.8139 | 0.8557 | 0.9938 | 0.7970 | 0.8338 | 0.9849
NIMC | 0.0425 | 0.0410 | 0.0527 | 0.2140 | 0.1935 | 0.3633 | 04315 | 03638 | 0.6377
IMC | 0.6209 | 0.6191 | 1.0899 | 0.6495 | 0.6349 | 1.0503 | 0.6981 | 0.6681 | 1.0289

Method

Binomial model. We sample y ~ B(Ng, 1_(:;1;&)(?(2))) and
apply NSMC and SMC with original attributes y. For NIMC
and IMC, we first do variance-stabilizing transformation
§ = arcsin () as the data preprocessing step, inspired
by what people might do for non-Gaussian data in practical
applications. From Table 2, NSMC achieves the best esti-
mating result in each setting, while other methods fail to

learn the embeddings with a binomial model.

Table 2: Relative error in the Binomial model.

Np = 100 Np = 200 Np = 500

& & £ £ & £ £ & £
NSMC | 0.0354 | 0.0352 | 0.0464 | 0.0329 | 0.0327 | 0.0441 | 0.0301 | 0.0297 | 0.0381
SMC | 0.8629 | 0.8896 | 0.9956 | 0.9402 | 0.9493 | 0.9988 | 0.9843 | 0.9873 | 0.9998
NIMC | 0.8221 | 06151 | 0.9364 | 0.8212 | 0.6201 | 0.9248 | 0.8236 | 0.6138 | 0.9259
IMC | 08137 | 07934 | 1.0044 | 08302 | 0.7781 | 1.0038 | 0.8205 | 0.7891 | 1.0078

Method

Poisson model. We generate y ~ Pois(exp(®)), where
the activation functions are ¢; = ReLU and ¢ € {ReLU,
sigmoid, tanh}. Due to model misspecification, we apply
transformation § = ,/y for NIMC and IMC. The activation
function of NIMC is set to be the same as ¢o. We see from
Table 3 that NSMC achieves the best estimating result, while
other methods fail to recover the parameters.

Table 3: Relative error in the Poison model.

ReLU+ReLU ReLU+sigmoid ReLU+tanh
&y &y Eo &g &y Eo &y &g o
NSMC | 0.0691 | 0.0718 | 0.0975 | 0.0661 | 0.0617 | 0.0631 | 0.0442 | 0.0457 | 0.0727
SMC 0.3696 | 0.3852 | 0.5559 | 0.7855 | 0.8229 | 0.9757 | 0.2812 | 0.3019 | 0.4500
NIMC | 22479 | 2.3282 | 10.7018 | 1.3024 | 0.4078 | 1.4877 | 0.5203 | 0.2522 | 0.5595
IMC 1.5717 | 1.5889 | 5.7169 | 0.5745 | 0.6368 | 1.0922 | 0.3604 | 0.3847 | 1.1643

Method

5.2. Clustering of Embeddings

We generate synthetic data with clustered embeddings and
compare the performance of NSMC and NIMC on learning
the true embedding clustering. We fix d = d; = ds = 30,
r = 2, n; = ngy = 400, and choose tanh as the activation
function. We generate features x and z independently from
a Gaussian mixture model with four components, resulting
in the ground-truth embedding clustering with four compo-
nents. We sample y from a binomial model with N = 20.
We fix observed sample size m = 1000 and apply NSMC
and NIMC to get the estimated Uand V, respectively. We
plot the top 2 left singular vectors (i1, i) of ¢1(UTx) for
NSMC and NIMC, respectively, where the points are col-
ored according to the ground-truth clustering. We also plot

the top 2 left singular vectors (¢}, ¢5) of the ground-truth
embeddings ¢1(U*"x). Similar plots for feature z are
shown as well. We see from Figure 2 that NIMC fails to
find the ground-truth embeddings due to model misspecifi-
cation, while NSMC gives robust estimation and recovers
the ground-truth embeddings.

To quantitatively evaluate the performance, we apply the

k-means clustering to the left singular vectors. We define
the clustering error following Zhong et al. (2018) as

Tagen; + Z

(1,5)RE#RS

2
- § In, =,
n(n —1) Rl

(i,):RF=N%

where R* is the ground-truth clustering and X is the predicted
clustering. As a result, NIMC attains clustering error 0.0596
and 0.1725 for x and z respectively. NSMC achieves a
better performance with clustering error 0.0196 and 0.0147
for x and z respectively.

5.3. Semi-supervised Clustering

We further illustrate the superior performance of NSMC
over NIMC with real-world data. Following the experimen-
tal setting in Zhong et al. (2018), we apply NSMC and
NIMC to a semi-supervised clustering problem, where we
only have one kind of features, x € R4, on a set of items.
The edge attribute y;; = 1, if the i-th item and j-th item
are similar, and y;; = 0, if they are dissimilar. To apply
NSMC and NIMC, we set x = z, ¢1 = ¢ = ¢, and
assume U* = V*. We initialize U = V© as the same ran-
dom Gaussian matrix and apply gradient descent to ensure
Ut = V* during training. After training, we apply k-means
clustering to the top r left singular vectors of ¢(UTx). We
follow Zhong et al. (2018) and again use the clustering error
defined by (5.2). We set the activation function ¢ to be tanh
for all data sets. For NSMC, we first uniformly sample two
independent sets of items with n; = ny = 1000. Then we
generate independent observation sets 2 and " with size
m = 5000. For NIMC, the observed dataset is set to be
the union Q U Q. We consider three datasets: Mushroom,
Segment and Covtype (Dua & Graff, 2017), and regard items
with the same label as similar (y;; = 1). Covtype dataset
is subsampled first to balance the size of each cluster. As
shown in Table 4, for linear separable dataset Mushroom,
both NSMC and NIMC achieve perfect clustering. For the
other two datasets, NSMC achieves better clustering results
than NIMC.

Table 4: Relative error in the Poison model.

Dataset d r || NIMC | NSMC
Mushroom | 112 | 2 0 0

Segment 19 | 7 || 0.0971 | 0.0427

Covtype 54 | 7 0.1931 | 0.1373
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Figure 1: Relative Error of NSMC, SMC, NIMC and IMC. The plot shows how relative error of estimations given by each
method varies with parameter 7, which introduces model misspecification in the Gaussian model. We see that NSMC gives
accurate and robust estimation, while NIMC suffers from model misspecification. SMC, IMC fail to learn the non-linear

embeddings and give unsatisfactory estimations for all 7.
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Figure 2: The comparison of learned embeddings based on NIMC and NSMC, with the ground truth embeddings. The
first row shows embeddings of x, while the second row shows embeddings of z. The points are colored according to the

ground-truth clustering.

6. Conclusion

We studied the nonlinear bipartite graph representation learn-
ing problem. We formalized the representation learning
problem as a statistical parameter estimation problem in
a semiparametric model. In particular, the edge attributes,
given node features, are assumed to follow an exponen-
tial family distribution with unknown base measure. The
parametric component of the model is assumed to be the

proximity of outputs of one-layer neural network, whose
inputs are node representations. In this setting, learning
embedding vectors is equivalent to estimating two low-rank
weight matrices (U*, V*). Using the rank-order decompo-
sition technique, we proposed a pseudo-likelihood function,
and proved that GD with constant step size achieves local
linear convergence rate. The sample complexity is linear in
dimensions up to a logarithmic factor, which matches exist-
ing results in matrix completion. However, our estimator is
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robust to model misspecification within exponential family
due to the adaptivity to the base measure. We also provided
numerical simulations and real experiments to corroborate
the main theoretical results, which demonstrated superior
performance of our method over existing approaches.

One potential extension is to consider a more general distri-
bution for node representations. For example, when node
representations follow a heavy-tailed distribution, it is not
clear whether we can still recover (U*, V*) with the same
convergence rate. In addition, using two-layer or even deep
neural networks for encoders in our semiparametric model,
while still providing theoretical guarantee is another inter-
esting extension.
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