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Abstract

Individual fairness is an intuitive definition of
algorithmic fairness that addresses some of the
drawbacks of group fairness. Despite its benefits,
it depends on a task specific fair metric that en-
codes our intuition of what is fair and unfair for
the ML task at hand, and the lack of a widely ac-
cepted fair metric for many ML tasks is the main
barrier to broader adoption of individual fairness.
In this paper, we present two simple ways to learn
fair metrics from a variety of data types. We show
empirically that fair training with the learned met-
rics leads to improved fairness on three machine
learning tasks susceptible to gender and racial bi-
ases.1 We also provide theoretical guarantees on
the statistical performance of both approaches.

1. Introduction
Machine learning (ML) models are an integral part of mod-
ern decision-making pipelines. They are even part of some
high-stakes decision support systems in criminal justice,
lending, medicine etc.. Although replacing humans with
ML models in the decision-making process appear to elim-
inate human biases, there is growing concern about ML
models reproducing historical biases against certain histori-
cally disadvantaged groups. This concern is not unfounded.
For example, Dastin (2018) reports gender-bias in Amazon’s
resume screening tool, Angwin et al. (2016) mentions racial
bias in recidivism prediction instruments, Vigdor (2019)
reports gender bias in the credit limits of Apple Card.

As a first step towards mitigating algorithmic bias in ML
models, researchers proposed a myriad of formal definitions
of algorithmic fairness. At a high-level, there are two groups
of mathematical definitions of algorithmic fairness: group
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fairness and individual fairness. Group fairness divides the
feature space into (non-overlapping) protected subsets and
imposes invariance of the ML model on the subsets. Most
prior work focuses on group fairness because it is amenable
to statistical analysis. Despite its prevalence, group fairness
suffers from two critical issues. First, it is possible for an ML
model that satisfies group fairness to be blatantly unfair with
respect to subgroups of the protected groups and individuals
(Dwork et al., 2011). Second, there are fundamental incom-
patibilities between seemingly intuitive notions of group
fairness (Kleinberg et al., 2016; Chouldechova, 2017).

In light of the issues with group fairness, we consider in-
dividual fairness in our work. Intuitively, individually fair
ML models should treat similar users similarly. Dwork et al.
(2011) formalize this intuition by viewing ML models as
maps between input and output metric spaces and defining
individual fairness as Lipschitz continuity of ML models.
The metric on the input space is the crux of the definition
because it encodes our intuition of which users are similar.
Unfortunately, individual fairness was dismissed as imprac-
tical because there is no widely accepted similarity metric
for most ML tasks. In this paper, we take a step towards
operationalizing individual fairness by showing it is possible
to learn good similarity metrics from data.

The rest of the paper is organized as follows. In Section
2, we describe two different ways to learn data-driven fair
metric: one from knowledge of groups of similar inputs and
another from knowledge of similar and dissimilar pairs of
inputs. In Section 3, we show that (i) the methods are robust
to noise in the data, and (ii) the methods leads to individually
fair ML models. Finally, in Section 4, we demonstrate the
effectiveness of the methods in mitigating bias on two ML
tasks susceptible to gender and racial biases.

2. Learning fair metrics from data
The intuition underlying individual fairness is fair ML mod-
els should treat comparable users similarly. We write com-
parable instead of similar in the rest of this paper to em-
phasize that comparable samples may differ in ways that
are irrelevant to the task at hand. Formally, we consider
an ML model as a map h : X → Y , where (X , dx) and
(Y, dy) are the input and output metric spaces respectively.
Individual fairness (Dwork et al., 2011; Friedler et al., 2016)
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is L-Lipschitz continuity of h:

dy(h(x1), h(x2)) ≤ Ldx(x1, x2) for all x1, x2 ∈ X .
(2.1)

The choice of dY depends on the form of the output. For
example, if the ML model outputs a vector of the logits,
then we may pick the Euclidean norm as dY (Kannan et al.,
2018; Garg et al., 2018). The fair metric dx is the crux of
the definition. It encodes our intuition of which samples are
comparable; i.e. which samples only differ in ways that are
irrelevant to the task at hand. Originally, Dwork et al. (2011)
deferred the choice of dx to regulatory bodies or civil rights
organizations, but we are unaware of widely accepted fair
metrics for most ML tasks. This lack of widely accepted fair
metrics has led practitioners to dismiss individual fairness
as impractical. Our goal here is to address this issue by
describing two ways to learn fair metrics from data.

We start from the premise there is generally more agreement
than disagreement about what is fair in many application ar-
eas. For example, in natural language processing, there are
ways of identifying groups of training examples that should
be treated similarly (Bolukbasi et al., 2016; Madaan et al.,
2018) or augmenting the training set with hand-crafted ex-
amples that should be treated similarly as observed training
examples (Garg et al., 2019). Even in areas where humans
disagree, there are attempts to summarize the cases on which
humans agree in metrics by fitting metrics to human feed-
back (Wang et al., 2019). Our goal is similar: encode what
we agree on in a metric, so that we can at least mitigate the
biases that we agree on with methods for enforcing indi-
vidual fairness (Kim et al., 2018; Rothblum & Yona, 2018;
Yurochkin et al., 2020; Yurochkin & Sun, 2020).

To keep things simple, we focus on fitting metrics of the
form

dx(x1, x2) , 〈ϕ(x1)−ϕ(x2),Σ(ϕ(x1)−ϕ(x2))〉, (2.2)

where ϕ(x) : X → Rd is an embedding map and Σ ∈ Sd+.
The reason behind choosing Mahalanobis distance is that the
learned feature maps (e.g. the activations of the penultimate
layer of a deep neural network) typically map non-linear
structures in the raw feature space to linear structures in
the learned feature space (Mikolov et al., 2013; Radford
et al., 2015; Brock et al., 2018). To keep things simple,
we assume ϕ is known and learn the matrix Σ from the
embedded observations ϕ′s. The data may consist of human
feedback, hand-picked groups of similar training examples,
hand-crafted examples that should be treated similarly as
observed training examples, or a combination of the above.
In this section, we describe two simple methods for learning
fair metrics from diverse data types.

2.1. FACE: Factor Analysis of Comparable
Embeddings

In this section, we consider learning Σ from groups of com-
parable samples. The groups may consist of hand-picked
training examples (Bolukbasi et al., 2016; Madaan et al.,
2018) or hand-crafted examples that differ in certain “sen-
sitive” ways from observed training examples (Garg et al.,
2019).

To motivate the approach, we posit the embedded features
satisfy a factor model:

ϕi = A∗ui +B∗vi + εi (2.3)

whereϕi ∈ Rd is the learned representation of xi, ui ∈ RK

(resp. vi ∈ RL) is the protected/sensitive (resp. discrimina-
tive/relevant) attributes of xi for the ML task at hand, and εi
is an error term. A pair of samples are comparable if their
(unobserved) relevant attributes are similar. For example,
Bolukbasi et al.’s method for mitigating gender bias in word
embeddings relies on word pairs that only differ in their
gender associations (e.g. (he, she), (man, woman), (king,
queen) etc.).

The factor model (2.3) decomposes the variance of the
learned representations into variance due to the sensitive
attributes and variance due to the relevant attributes. We
wish to learn a metric that ignores the variance attributed to
the sensitive attributes but remains sensitive to the variance
attributed to the relevant attributes. This way, the metric
declares any pair of samples that differ mainly in their sen-
sitive attributes as comparable. One possible choice of Σ
is the projection matrix onto the orthogonal complement of
ran(A∗), where ran(A∗) is the column space of A∗. Indeed,

dx(x1, x2) = 〈ϕ1 − ϕ2, (I − Pran(A∗))(ϕ1 − ϕ2)〉
≈ 〈B∗(v1 − v2), (I − Pran(A∗))B∗(v1 − v2)〉,

which ignores differences between ϕ1 and ϕ2 due to dif-
ferences in the sensitive attributes. Although ran(A∗) is
unknown, it is possible to estimate it from the learned rep-
resentations and groups of comparable samples by factor
analysis (see Algorithm 1). We remark that our target is
ran(A∗), not A∗ itself. This frees us from cumbersome
identification restrictions common in the factor analysis
literature.

Algorithm 1 estimating ran(A∗) by factor analysis

1: Input: {ϕi}ni=1, comparable groups I1, . . . , IG
2: ÂT ∈ arg minWg,A{

1
2

∑G
g=1 ‖HgΦIg −WgA

T ‖2F },
where Hg , I|Ig| − 1

|Ig|1|Ig|1
T
|Ig| is the centering ma-

trix
3: Q← qr(Â) {get orthonormal basis of ran(Â)}
4: Σ̂← Id −QQT
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Algorithm 1 is based on the observation that groups of
comparable samples have similar relevant attributes; i.e.

HΦI = HUIA
T
∗ +���

��:≈ 0
HVIB

T
∗ +HEI

≈ HUIAT∗ +HEI ,
(2.4)

where H , I|I| − 1
|I|1|I|1

T
|I| is the centering matrix and

ΦI (resp. UI , VI) is the matrix whose rows are the ϕi’s
(resp. ui’s, vi’s). This is the factor model that Algorithm 1
fits in Step 2 to obtain Â whose range is close to that of Â.
In Steps 3 and 4, the algorithm forms the projector onto the
orthogonal complement of ran(Â).

2.2. EXPLORE: Embedded Xenial Pairs Logistic
Regression

EXPLORE learns a fair metric from pair-wise comparisons.
More concretely, the data comes from human feedback in
the form of triplets {(xi1 , xi2 , yi)}ni=1, where yi ∈ {0, 1}
indicates whether the human considers xi1 and xi2 compa-
rable (yi = 1 indicates comparable). We posit (xi1 , xi2 , yi)
satisfies a binary response model.

yi | xi1 , xi2 ∼ Ber(2σ(−di)),
di , ‖ϕi1 − ϕi2‖2Σ0

= (ϕi1 − ϕi2)TΣ0(ϕi1 − ϕi2)

= 〈(ϕi1 − ϕi2)(ϕi1 − ϕi2)T︸ ︷︷ ︸
Di

,Σ0〉

(2.5)

where σ(z) , 1
1+e−z is the logistic function, ϕi1 (resp.

ϕi2) is the learned representations of xi1 (resp. xi2), and
Σ0 ∈ Sd+. The reason for multiplying by 2 is to make
P (yi = 1|xi1 , xi2) close to 1 when ϕi1 is close to ϕi2 with
respect to this scaled distance. This ensures that if we have
two comparable samples, then the corresponding yi = 1
with high probability. To estimate Σ0 in EXPLORE from
the humans’ feedback, we seek the maximum of the log-
likelihood

`n(Σ) =
1

n

n∑
i=1

yi log
2σ(−〈Di,Σ〉)

1− 2σ(−〈Di,Σ〉)

+ log(1− 2σ(−〈Di,Σ〉)).
(2.6)

on Sd+. As `n is concave (in Σ), we appeal to a stochastic
gradient descent (SGD) algorithm to maximize `n. The
update rule is

Σt+1 = ProjPSD(Σt + ηt∂ ˜̀
n(Σt)),

where ˜̀
n is the likelihood of the t-th minibatch, ηt > is a

step size parameter, and ProjPSD is the projection onto
the PSD cone.

2.3. FACE vs EXPLORE

At first blush, the choice of which approach to use seems
clear from the data. If the data consists of groups of com-
parable samples, then the factor analysis approach is ap-
propriate. On the other hand, if data consists of pair-wise
comparisons, then the logistic-regression approach is more
appropriate. However, the type of data is usually part of the
design, so the question is best rephrased as which type of
data should the learner solicit. As we shall see, if the data is
accurate and consistent, then FACE usually leads to good
results. However, if the data is noisy, then EXPLORE is
more robust.

The core issue here is a bias variance trade-off. Data in
the form of a large group of comparable samples is more
informative than pair-wise comparisons. As FACE is ca-
pable of fully utilizing this form of supervision, it leads to
estimates with smaller variance. However, FACE is also
more sensitive to heterogeneity within the groups of compa-
rable samples as FACE is fully unbiased if all the variation
in the group can be attributed to the sensitive attribute. If
some of the variation is due to the discriminative attributes,
then FACE leads to biased estimates. On the other hand,
EXPLORE imposes no conditions on the homogeneity of
the comparable and incomparable pairs in the training data.
While EXPLORE cannot fully utilize comparable groups of
size larger than two, it is also more robust to heterogeneity
in the pairs of samples in the training data.

In the end, the key factor is whether it is possible for humans
to provide homogeneous groups of comparable samples. In
some applications, there are homogeneous groups of compa-
rable samples. For example, in natural language processing,
names are a group of words that ought to be treated similar
in many ML tasks. For such applications, the factor analysis
approach usually leads to better results. In other applica-
tions where there is less consensus on whether samples are
comparable, the logistic regression approach usually leads
to better results. As we shall see, our computational results
validate our recommendations here.

2.4. Related work

Metric learning The literature on learning the fair metric
is scarce. The most relevant paper is (Ilvento, 2019), which
considers learning the fairness metric from consistent hu-
mans. On the other hand, there is a voluminous literature
on metric learning in other applications (Bellet et al., 2013;
Kulis, 2013; Suárez et al., 2018; Moutafis et al., 2017),
including a variety of methods for metric learning from
human feedback (Frome et al., 2007; Jamieson & Nowak,
2011; Tamuz et al., 2011; van der Maaten & Weinberger,
2012; Wilber et al., 2014; Zou et al., 2015; Jain et al., 2016).
The approach described in subsection 2.1 was inspired by
(Bolukbasi et al., 2016; Bower et al., 2018).
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Learning individually fair representations There is a
complementary strand of work on enforcing individual fair-
ness by first learning a fair representation and then training
an ML model on top of the fair representation (Zemel et al.,
2013; Bower et al., 2018; Madras et al., 2018; Lahoti et al.,
2019). Although it works well on some ML tasks, these
methods lack theoretical guarantees that they train individu-
ally fair ML models.

Enforcing individual fairness We envision FACE and
EXPLORE as the first stage in a pipeline for training in-
dividually fair ML models. The metrics from FACE and
EXPLORE may be used in conjunction with methods that
enforce individual fairness (Kim et al., 2018; Rothblum
& Yona, 2018; Yurochkin et al., 2020; Yurochkin & Sun,
2020) or methods for individual fairness auditing (Xue et al.,
2020). There are other methods that enforce individual fair-
ness without access to a metric (Gillen et al., 2018; Jung
et al., 2019). These methods depend on an oracle that de-
tects violations of individual fairness, and can be viewed as
combinations of a metric learning method and a method for
enforcing individual fairness with a metric.

3. Theoretical properties of FACE
In this section, we investigate the theoretical properties of
FACE. We defer proofs and theoretical properties of EX-
PLORE to the Appendix.

3.1. Learning from pairwise comparison

In this subsection, we establish theory of FACE when we
learn the fair metric from comparable pairs. Given a pair
(ϕi,1, ϕi,2) (the embedded version of (xi,1, xi,2)), define
for notational simplicity zi = ϕi1 − ϕi2 . Here, we only
consider those zi’s which come from a comparable pair, i.e.,
with corresponding yi = 1. Under our assumption of factor
model (see equation (2.3)) we have:

zi = ϕi1 − ϕi2
= A∗(ui1 − ui2) +B∗(vi1 − vi2) + (εi1 − εi2)

= A∗µi +B∗νi + wi (3.1)

Here we assume that the sensitive attributes have more than
one dimension which corresponds to the setting of intersec-
tional fairness (e.g. we wish to mitigate gender and racial
bias). We also assume µi’s and νi’s are isotropic, variance
ofwi is σ2Id and µi, νi, wi are all independent of each other.
The scalings of µi and νi are taken care of by the matrices
A∗ andB∗ respectively. Let ΣZ be covariance matrix of zi’s.
From model equation 3.1 and aforementioned assumptions:

ΣZ = A∗A
T
∗ +B∗B

T
∗ + σ2Id (3.2)

We assume that we know the dimension of the sensitive
direction beforehand which is denoted by k here. As φi1

is comparable to φi2 , we expect that variability along the
protected attribute is dominant. Mathematically speaking,
we assume λmin(A∗A

T
∗ ) > ‖B∗BT∗ + σ2Id‖op. Here the

fair metric we try to learn is:

dx(x1, x2) = 〈(ϕ1 − ϕ2),Σ0(ϕ1 − ϕ2)〉

where Σ0 =
(
I − Pran(A∗)

)
. To estimate (and hence elimi-

nate) the effect of the protected attribute, we compute the
SVD of the sample covariance matrix Sn = 1

n

∑n
i=1 ziz

>
i

of the zi’s and project out the eigen-space corresponding
to the top k eigenvectors, denoted by Û . Our estimated
distance metric will be:

d̂x(x1, x2) = 〈(ϕ1 − ϕ2), Σ̂(ϕ1 − ϕ2)〉 ,

where Σ̂ =
(
I − Û Û>

)
. The following theorem quantifies

the statistical error of the estimator:
Theorem 3.1. Suppose zi’s are centered sub-gaussian ran-
dom vectors, i.e. ‖zi‖ψ2 < ∞ where ψ2 is the Orlicz-2
norm. Then we have with probability at-least 1− 2e−ct

2

:

‖Σ̂− Σ0‖op ≤ b+ δ∨δ2
γ̃−(δ∨δ2) (3.3)

for all t < (
√
nγ̃ − C

√
d) ∧ (

√
nγ̃ − C

√
d), where:

1. b =
(

λmin(A∗A
T
∗ )

‖B∗BT
∗ +σ2Id‖op − 1

)−1

2. δ = C
√
d+t√
n

.

3. γ̃ = λmin(A∗A
T
∗ )− ‖B∗BT∗ ‖op.

The constants C, c depend only on ‖xi‖ψ2 , the Orlicz-2
norm of the xi’s.

The error bound on the right side of (3.3) consists of two
terms. The first term b is the approximation error/bias in
the estimate of the sensitive subspace due to heterogeneity
in the similar pairs. Inspecting the form of b reveals that
the bias depends on the relative sizes of the variation in the
sensitive subspace and that in the relevant subspace: the
larger the variation in the sensitive subspace relative to that
in the relevant subspace, the smaller the bias. In the ideal
scenario where there is no variation in the relevant subspace,
Theorem 3.1 implies our estimator converges to the sensitive
subspace. The second term is the estimation error, which
vanishes at the usual 1√

n
-rate. In light of our assumptions

on the sub-Gaussianity of the zi’s, this rate is unsurprising.

3.2. Learning from group-wise comparisons

In this subsection, we consider the complementary setting
in which we have a single group of n comparable samples.
We posit a factor model for the features:

ϕi = m+A∗µi +B∗νi + εi i = 1, 2, . . . , n, (3.4)
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where m ∈ Rd is a mean term that represents the common
effect of the relevant attributes in this group of comparable
samples, A∗µi represents the variation in the features due
to the sensitive attributes, and B∗νi represents any residual
variation due to the relevant attributes (e.g. the relevant
attributes are similar but not exactly identical). As before,
we assume µi, νi’s are isotropic, Var(εi) = σ2Id and the
scale factors of µi’s and νi’s are taken care of by the matrices
A∗ and B∗ respectively due to identifiability concerns. In
other words, the magnitudes of B∗νi’s are uniformly small.
As the residual variation among the samples in this group
due to the relevant factors are small, we assume that B∗ is
small compared to A∗, which can be quantified as before
by assuming λmin(A∗A

>
∗ ) > ‖B∗B>∗ + σ2I‖. Hence to

remove the effect of protected attributes, we estimate the
column space of A∗ from the sample and then project it out.
From the above assumptions we can write the (centered)
dispersion matrix of ϕ as:

Σφ = A∗A
>
∗ +B∗B

>
∗ + σ2I, .

Note that the structure of Σz in the previous sub-section is
same as Σϕ as z is merely difference of two ϕ’s. As before
we assume we know dimension of the protected attributes
which is denoted by k. Denote (with slight abuse of nota-
tion) by Û , the top k eigenvalues of Sn = 1

n

∑n
i=1 ϕiϕ

>
i .

Our final estimate of Σ0 is Σ̂ =
(
I − Û Û>

)
and the corre-

sponding estimated fair metric becomes:

dx(x1, x2) = 〈(ϕ1 − ϕ2), Σ̂(ϕ1 − ϕ2)〉 .

The following theorem provides a finite sample concentra-
tion bound on the estimation error:

Theorem 3.2. Assume that ϕi have subgaussian tail, i.e
.‖ϕi‖ψ2

< ∞. Then with probability ≥ 1 − 2e−ct
2

we
have:

‖Σ̂− Σ0‖op ≤ b+ δ∨δ2
γ̃−(δ∨δ2) + t

n

for all t < (
√
nγ̃ − C

√
d) ∧ (

√
nγ̃ − C

√
d) where:

1. b =
(

λmin(A∗A
T
∗ )

‖B∗BT
∗ +σ2Id‖op − 1

)−1

2. δ = C
√
d+t√
n

.

3. γ̃ = λmin(A∗A
T
∗ )− ‖B∗BT∗ ‖op.

The constants C, c only depend on the subgaussian norm
constant of φi.

The error bound provided by Theorem 3.2 is similar to the
error bound provided by Theorem 3.1 consists of two terms.
The first term B̄ is again the approximation error/bias in the
estimate of the sensitive subspace due to heterogeneity in
the group; it has the same form as the bias as in Theorem

3.1 and has a similar interpretation. The second term is the
estimation error, which is also similar to the estimation error
term in Theorem 3.1. The third term is the error incurred
in estimating the mean of the ϕi’s. It is a higher order term
and does not affect the rate of convergence of the estimator.

3.3. Training individually fair ML models with FACE
and SenSR

We envision FACE as the first stage in a pipeline for train-
ing fair ML models. In this section, we show that FACE
in conjunction with SenSR (Yurochkin et al., 2020) trains
individually fair ML models. To keep things concise, we
adopt the notation of (Yurochkin et al., 2020). We start by
stating our assumptions on the ML task.

1. We assume the embeded feature space of ϕ is bounded
R , max{diam(ϕ), diam∗(ϕ)} < ∞, where diam∗
is the diameter of ϕ in the (unknown) exact fair metric

d∗x(x1, x2) = 〈(ϕ1 − ϕ2),Σ0(ϕ1 − ϕ2)〉1/2,

and diam is the diameter in the learned fair metric

dx(x1, x2) = 〈(ϕ1 − ϕ2), Σ̂(ϕ1 − ϕ2)〉1/2.

2. Define L = {`(·, θ) : θ ∈ Θ} as the loss class. We
assume the functions in the loss class L = {`(·, θ) :
θ ∈ Θ} are non-negative and bounded: 0 ≤ `(z, θ) ≤
M for all z ∈ Z and θ ∈ Θ, and L-Lipschitz with
respect to dx:

3. the discrepancy in the fair metric is uniformly bounded:
there is δc > 0 such that

sup
(x1,x2)∈Z

|d2
x(x1, x2)− (d∗x(x1, x2))2| ≤ δcR2.

The third assumption is satisfied with high probability as
long as δc ≥ (b+ δ∨δ2

γ̃−(δ∨δ2) ).

Theorem 3.3. Under the preceding assumptions, if we de-
fine δ∗ ≥ 0 such that:

minθ∈Θ supP :W∗(P,P∗)≤ε EP
[
`(Z, θ)

]
= δ∗ (3.5)

and

θ̂ ∈ arg minθ∈Θ supP :W (P,Pn)≤ε EP
[
`(Z, h)

]
,

then the estimator θ̂ satisfies:

supP :W∗(P,P∗)≤ε EP
[
`(Z, θ̂)

]
−EP∗

[
`(Z, θ̂)

]
≤ δ∗+2δn,

(3.6)
whereW andW∗ are the learned and exact fair Wasserstein
distances induced by the learned and exact fair metrics (see
Section 2.1 in Yurochkin et al. (2020)) and

δn ≤ 48C(L)√
n

+ 48LR2
√
nε

+ LδcR
2

√
ε

+M
(

log 2
t

2n

) 1
2

.
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where C(L) =
∫∞

0

√
log (N∞ (L, r)) dr, with N∞ (L, r)

being the covering number of the loss class L with respect
to the uniform metric.

Theorem 3.3 guarantees FACE in conjunction with SenSR
trains an individually fair ML model in the sense that its fair
gap (3.6) is small. Intuitively, a small fair gap means it is
not possible for an auditor to affect the performance of the
ML model by perturbing the training examples in certain
“sensitive” ways.

The same conclusion can also be drawn using Theorem 3.2
with essentially similar line of arguments.
Remark 3.4. The theory of EXPLORE is same in spirit with
the theory of Face. In EXPLORE, we try to learn fair metric
from comparable and incomparable pairs. As mentioned in
the previous section, we solve MLE under the assumption of
quadratic logit link to estimate Σ0. Under the assumption
that the parameter space and the space of embedded covari-
ates (ϕ(x)) are boudned, we can establish the finite sample
concentration bound of our estimator. It is also possible
to combine our results with the results of Yurochkin et al.
(2020) to obtain guarantees on the individual fairness of ML
models trained with EXPLORE and SenSR (see Corollary
B.9 in Supplement).

4. Computational results
In this section, we investigate the performance of the learned
metrics on two ML tasks: income classification and senti-
ment analysis.

4.1. Eliminating biased word embeddings associations

Many recent works have observed biases in word embed-
dings (Bolukbasi et al., 2016; Caliskan et al., 2017; Brunet
et al., 2019; Dev & Phillips, 2019; Zhao et al., 2019). Boluk-
basi et al. (2016) studied gender biases through the task
of finding analogies and proposed a popular debiasing al-
gorithm. Caliskan et al. (2017) proposed a more method-
ological way of analyzing various biases through a series of
Word Embedding Association Tests (WEATs). We show that
replacing the metric on the word embedding space with a
fair metric learned by FACE or EXPLORE eliminates most
biases in word embeddings.

Word embedding association test Word embedding as-
sociation test (WEAT) was developed by (Caliskan et al.,
2017) to evaluate semantic biases in word embeddings. The
tests are inspired by implicit association tests (IAT) from the
psychometrics literature (Greenwald et al., 1998). Let X ,Y
be two sets of word embeddings of target words of equal
size (e.g. African-American and European-American names
respectively), and A,B be two sets of attribute words (e.g.
words with positive and negative sentiment respectively).

For each word x ∈ X , we measure its association with the
attribute by

s(x,A,B) ,
1

|A|
∑
a∈A

〈x, a〉
‖x‖‖a‖

− 1

|B|
∑
b∈B

〈x, b〉
‖x‖‖b‖

(4.1)

If x tends to be associated with the attribute (e.g. it has
positive or negative sentiment), then we expect s(x,A,B)
to be far from zero. To measure the association of X with
the attribute, we average the associations of the words in X :

s(X ,A,B) ,
1

|X |
∑
x∈X

s(x,A,B).

Following (Caliskan et al., 2017), we consider the absolute
difference between the associations of X and Y with the
attribute as a test statistic:

s(X ,Y,A,B) , |s(X ,A,B)− s(Y,A,B)|.

Under the null hypothesis, X and Y are equally associated
with the attribute (e.g. names common among different races
have similar sentiment). This suggests we calibrate the test
by permutation. Let {(Xσ, Yσ)}σ be the set of all partitions
of X ∪ Y into two sets of equal size. Under the null hy-
pothesis, s(X ,Y,A,B) should be typical among the values
of {s(Xσ,Yσ,A,B)}. We summarize the “atypicality” of
s(X ,Y,A,B) with a two-sided p-value2

P =

∑
σ 1{s(Xσ,Yσ,A,B) > s(X ,Y,A,B)}

card({(Xσ, Yσ)}σ)
.

Following (Caliskan et al., 2017), we also report a standard-
ized effect size

d =
s(X ,Y,A,B)

SD({s(x,A,B)}x∈X∪Y)

for a more fine-grained comparison of the methods.

Learning EXPLORE and FACE: To apply our fair met-
ric learning approaches we should define a set of compara-
ble samples for FACE and a collection of comparable and
incomparable pairs for EXPLORE.

For the set of comparable samples for FACE we choose
embeddings of a side dataset of 1200 popular baby names
in New York City3. The motivation is two-fold: (i) from
the perspective of individual fairness, it is reasonable to say
that human names should be treated similarly in NLP tasks
such as resume screening; (ii) multiple prior works have
observed that names capture biases in word embeddings

2Caliskan et al. (2017) used one-sided p-value, however we
believe that inverse association is also undesired and use a two-
sided one

3available from https://catalog.data.gov/
dataset/

https://catalog.data.gov/dataset/
https://catalog.data.gov/dataset/
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Table 1. Word Embedding Association Test (WEAT) results. p-values that are significant/insignificant at the 0.05-level are shown in bold.
See Table 3 in Supplement for the unabbreviated forms of the targets and attributes

Target Attribute Euclidean EXPLORE FACE-3 FACE-10 FACE-50
P d P d P d P d P d P d P d

FLvINS PLvUPL 0.00 1.58 0.00 1.55 0.00 1.55 0.00 1.41 0.00 1.59 0.00 1.56 0.00 1.27
INSTvWP PLvUPL 0.00 1.46 0.00 1.45 0.00 1.46 0.00 1.44 0.00 1.48 0.00 1.58 0.00 1.49
MNTvPHS TMPvPRM 4e-5 1.54 4e-5 1.54 4e-5 1.54 4e-4 1.31 4e-5 1.56 0.00 1.6 0.00 1.68

EAvAA PLvUPL 0.00 1.36 0.00 1.36 0.00 1.38 1e-2 0.62 5e-1 0.17 7e-2 0.46 2e-1 0.33
EAvAA PLvUPL 0.00 1.49 0.00 1.51 0.00 1.51 2e-1 0.49 7e-1 0.15 6e-2 0.67 2e-1 0.51
EAvAA PLvUPL 8e-5 1.31 4e-5 1.41 4e-5 1.41 1e-1 0.55 4e-1 0.31 4e-1 0.3 4e-1 0.34
MNvFN CARvFAM 0.00 1.69 2e-3 1.23 2e-3 1.23 2e-1 0.25 1e-3 1.24 6e-3 1.13 8e-2 0.53

MTHvART MTvFT 8e-5 1.5 3e-2 0.84 1e-3 1.34 1e-3 1.34 1e-3 1.35 4e-3 1.18 6e-3 1.16
SCvART MTvFT 9e-3 1.05 9e-3 1.08 4e-2 0.76 6e-2 0.65 4e-2 0.72 3e-2 0.84 1e-1 0.3

YNGvOLD PLvUPL 1e-2 1.0 2e-4 1.5 1e-4 1.53 7e-2 0.6 9e-2 0.5 2e-3 1.27 4e-3 1.16

and used them to improve fairness in classification tasks
(Romanov et al., 2019; Yurochkin et al., 2020). We consider
three choices for the number of factors of FACE: 3, 10 and
50.

For EXPLORE we construct comparable pairs by sampling
pairs of names from the same pool of popular baby names,
however because there are too many unique pairs, we sub-
sample a random 50k of them. To generate the incomparable
pairs we consider random 50k pairs of positive and nega-
tive words sampled from the dataset proposed by Hu & Liu
(2004) for the task of sentiment classification.

WEAT results First we clarify how the associations (4.1)
are computed for different methods. The Euclidean ap-
proach is to use word embeddings and directly compute
associations in the vanilla Euclidean space; the approaches
of Bolukbasi et al. (2016) 4 and Dev & Phillips (2019) 5

is debias word embeddings before computing associations;
associations with FACE and EXPLORE are computed in the
Mahalanobis metric space parametrized by a correspond-
ing Σ, i.e. the inner product 〈x, y〉 = xTΣy and norm
‖x‖ =

√
〈x,Σx〉. When computing P, if the number of

partitions of target words card({(Xσ, Yσ)}σ) is too big,
we subsample 50k partitions.

We evaluate all of the WEATs considered in (Caliskan et al.,
2017) with the exact same target and attribute word combi-
nations. The results are presented in Table 1.

First we verify that all of the methods preserve the cele-
brated ability of word embeddings to represent semantic
contexts — all WEATs in the upper part of the table corre-
spond to meaningful associations such as Flowers vs Insects
and Pleasant vs Unpleasant and all p-values are small corre-

4https://github.com/tolga-b/debiaswe
5github.com/sunipa/Attenuating-Bias-in-Word-Vec

sponding to the significance of the associations.

On the contrary, WEATs in the lower part correspond to
racist (European-American vs African-American names and
Pleasant vs Unpleasant) and sexist (Male vs Female names
and Career vs Family) associations. The presence of such
associations may lead to biases in AI systems utilizing word
embeddings. Here, larger p-value P and smaller effect size
d are desired. We see that previously proposed debiasing
methods (Bolukbasi et al., 2016; Dev & Phillips, 2019), al-
though reducing the effect size mildly, are not strong enough
to statistically reject the association hypothesis. Our fair
metric learning approaches EXPLORE and FACE (with 50
factors) each successfully removes 5 out of 7 unfair associ-
ations, including ones not related to names. We note that
there is one case, Math vs Arts and Male vs Female terms,
where all of our approaches failed to remove the association.
We think that, in addition to names, considering a group of
comparable gender related terms for FACE and comparable
gender related pairs for EXPLORE can help remove this
association.

When comparing FACE to EXPLORE, while both per-
formed equally well on the WEATs, we note that learning
fair metric using human names appears more natural with
FACE. We believe that all names are comparable and any
major variation among their embeddings could permeate
bias in all of the word embeddings. FACE is also easier
to implement and utilize than EXPLORE, as it is simply a
truncated SVD of the matrix of names embeddings.

4.2. Applying EXPLORE with SenSR

SenSR is a method for training fair ML system given a
fair metric (Yurochkin et al., 2020). In this paper we apply
SenSR along with the fair metric learned using EXPLORE
on the adult dataset (Bache & Lichman, 2013). This data-

https://github.com/tolga-b/debiaswe
github.com/sunipa/Attenuating-Bias-in-Word-Vec
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Table 2. Summary of Adult experiment over 10 restarts. Results for all prior methods are copied from Yurochkin et al. (2020)

B-Acc,% S-Con. GR-Con. GapRMS
G GapRMS

R Gapmax
G Gapmax

R

SenSR+Explore (With gender) 79.4 0.966 0.987 0.065 0.044 0.084 0.059
SenSR+Explore (Without gender) 78.9 0.933 0.993 0.066 0.05 0.084 0.063
SenSR 78.9 .934 .984 .068 .055 .087 .067
Baseline 82.9 .848 .865 .179 .089 .216 .105
Project 82.7 .868 1.00 .145 .064 .192 .086
Adv. debiasing 81.5 .807 .841 .082 .070 .110 .078
CoCL 79.0 - - .163 .080 .201 .109

set consists of 14 attributes over 48842 individuals. The
goal is to predict whether each individual has income more
than 50k or not based on these attributes. For applying
EXPLORE, we need comparable and incomparable pairs.
We define two individuals to be comparable if they belong
to the same income group (i.e. both of them has > 50k or
< 50k annual salary) but with opposite gender, whereas two
individuals are said to be incomparable if they belong to the
different income group. Based on this labeling, we learn
fair metric Σ̂ via EXPLORE. Finally, following Yurochkin
et al. (2020), we project out a “sensitive subspace” defined
by the coefficients of a logistic regression predicting gender
from Σ̂ i.e.:

Σ̂←− (I − Pgender)Σ̂(I − Pgender) .

where Pgender is the projection matrix on the span of this
sensitive subspace. We then apply SenSR along with

dx(x1, x2) = (x1 − x2)>Σ̂(x1 − x2) .

Although most of the existing methods use protected at-
tribute to learn a fair classifier, this is not ideal as in many
scenarios protected attributes of the individuals are not
known. So, it is advisable to learn fair metric without using
the information of protected attributes. In this paper we
learned our metrics in two different ways (with or without
using protected attribute) for comparison purpose:

1. SenSR + EXPLORE (with gender) utilizes gender
attribute in classification following prior approaches.

2. SenSR + EXPLORE (without gender) discards gen-
der when doing classification.

In Yurochkin et al. (2020), the authors provided a compara-
tive study of the individual fairness on Adult data. They con-
sidered balanced accuracy (B-Acc) instead of accuracy due
to class imbalance. The other metrics they considered for
performance evaluations are prediction consistency of the
classifier with respect to marital status (S-Con., i.e. spouse
consistency) and with respect to sensitive attributes like

race and gender (GR-Con.). They also used RMS gaps and
maximum gaps between true positive rates across genders
(GapRMS

G and Gapmax
G ) and races (GapRMS

R and Gapmax
R )

for the assessment of group fairness (See Appendix for the
detailed definition). Here we use their results and compare
with our proposed methods. The results are summarized in
Table 2. It is evident that SenSR + EXPLORE (both with
gender and without gender) outperforms SenSR (propsoed
in (Yurochkin et al., 2020)) in almost every aspect. Dis-
carding gender in our approach prevents from violations of
individual fairness when flipping the gender attribute as seen
by improved gender and race consistency metric, however
accuracy, spouse consistency and group fairness metrics are
better when keeping the gender. Despite this we believe that
it is better to avoid using gender in income classification as
it is highly prone to introducing unnecessary biases.

5. Summary and discussion
We studied two methods of learning the fair metric in the
definition of individual fairness and showed that both are
effective in ignoring implicit biases in word embeddings.
Our methods remove one of the main barriers to wider
adoption of individual fairness in machine learning. We
emphasize that our methods are probabilistic in nature and
naturally robust to inconsistencies in the data. Together with
tools for training individually fair ML models (Yurochkin
et al., 2020), the methods presented here complete a pipeline
for ensuring that ML models are free from algorithmic
bias/unfairness.
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