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Abstract
Learning algorithms are often used in conjunction
with expert decision makers in practical scenarios,
however this fact is largely ignored when design-
ing these algorithms. In this paper we explore
how to learn predictors that can either predict
or choose to defer the decision to a downstream
expert. Given only samples of the expert’s deci-
sions, we give a procedure based on learning a
classifier and a rejector and analyze it theoreti-
cally. Our approach is based on a novel reduction
to cost sensitive learning where we give a con-
sistent surrogate loss for cost sensitive learning
that generalizes the cross entropy loss. We show
the effectiveness of our approach on a variety of
experimental tasks.
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A. Practitioner’s guide to our approach
Given a dataset of tuples S = {(xi, yi,mi)}ni=1 where xi represents the covariates, yi is the target and mi are the expert
labels, we want to construct a classifier h : X → Y and rejector function r : X → {−1, 1}. Our method for predicting
on a new example x ∈ X given expert context z ∈ Z that only the expert can observe, a function class H where
h ∈ H : X → R|Y|+1 (an example would be the set of deep networks with |Y|+ 1 output units) , and an expert M : Z → Y
is summarized below in Algorithm 1.

Algorithm 1 Our proposed method for prediction on a new example x ∈ X with expert input z ∈ Z
Input: training data S = {(xi, yi,mi)}ni=1, function classH, example x, Expert M and expert input z
g1, · · · , g|Y|, g⊥ ← arg ming∈H

∑
i∈S LCE(g, xi, yi,mi)

prediction = 0
r(x)← sign(−maxy∈Y gy(x) + g⊥(x))
if r(x) = 0 then

h(x)← arg maxy∈Y gy(x)
prediction← h(x)

else
m←M(z) (expert query)
prediction← m

end
Return: prediction

Where the loss LCE used in algorithm is the following:

LCE(g, r, x, y,m) = − log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
− Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

Practically, integrating an expert decision maker into a machine learning model amounts to two modifications in training:
increasing the output size of the function class in consideration by an additional output unit representing deferral and training
with the loss LCE instead of the cross entropy loss. We show how to implement LCE in PyTorch below:

def d e f e r r a l _ l o s s _ L _ C E ( o u t p u t s , t a r g e t , e x p e r t , k _ c l a s s e s ) :
’ ’ ’
o u t p u t s : model o u t p u t s
t a r g e t : t a r g e t l a b e l s
e x p e r t : e x p e r t agreemen t l a b e l s f o r b a t c h
k _ c l a s s e s : c a r d i n a l i t y o f t a r g e t Y
’ ’ ’
b a t c h _ s i z e = o u t p u t s . s i z e ( ) [ 0 ]
d e f e r _ p o s i t i o n =
o u t p u t s = t o r c h . nn . f u n c t i o n a l . so f tmax ( o u t p u t s , dim =1)
l o s s = −e x p e r t * t o r c h . l og2 ( o u t p u t s [ range ( b a t c h _ s i z e ) , k _ c l a s s e s ] )

− t o r c h . l og2 ( o u t p u t s [ range ( b a t c h _ s i z e ) , l a b e l s ] )
re turn t o r c h . sum ( l o s s ) / b a t c h _ s i z e

B. Experimental Details and Results
All experiments were run on a Linux system with an NVIDIA Tesla K80 GPU on PyTorch 1.4.0.

B.1. CIFAR-10

Implementation Details. We employ the implementation in https://github.com/xternalz/WideResNet-
pytorch for the Wide Residual Networks. To train, we run SGD with an initial learning rate of 0.1, Nesterov momentum
at 0.9 and weight decay of 5e-4 with a cosine annealing learning rate schedule (Loshchilov & Hutter, 2016). We train for

https://github.com/xternalz/WideResNet-pytorch
https://github.com/xternalz/WideResNet-pytorch
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Figure 1. Varying training set size when training with expert k = 5 for Confidence baseline and our method L1
CE .

a total of 200 epochs for all experiments, at this point the network has perfectly fit the training set, we found that early
stopping based on a validation set did not make any difference and similarly training for more than 200 epochs also did not
hurt test accuracy.

Expert Accuracy. In Table 3 we show the accuracy of the expert on the deferred examples versus the classes the expert can
predict k. We can see that our method L.5CE has higher expert accuracy than all other baselines except at k = 1, 2 where
coverage is very high. This contrasts with Figure 2b that shows the classifier accuracy on non-deferred accuracy where
L.5CE had lower accuracy for each expert level compared to Confidence and L1

CE . Hence there is a clear trade-off between
choosing the hyper-parameter α < 1 and α = 1. For α < 1, the model will prefer to always defer to the expert if it is correct,
this is advantageous in this setup as the expert is perfect on a subset of the data and uniformly random on the other. However,
for α = 1, the model will compare the confidence of the expert and the model essentially performing the computation of the
Bayes rejector rB as shown by the consistency of the loss L1

CE ; note that for α 6= 1 the loss LCE is no longer consistent.

Table 1. Accuracy of the expert on deferred examples shown for the methods and baselines proposed with varying expert competence (k)
on CIFAR-10.

METHOD / EXPERT (K) 1 2 3 4 5 6 7 8 9 10

L1
CE 73.65 86.01 73.66 87.41 88.81 94.7 96.67 98.72 98.65 100

L.5
CE 86.44 90.96 92.65 91.67 93.71 96.32 97.61 98.77 99.24 100

CONFIDENCE 87.5 92.74 88.88 88.3 92.8 94.56 96.76 98.89 98.89 100
ORACLEREJECT 85.3 90.49 88.23 91.13 89.33 93.61 95.45 96.82 98.45 100

Increasing data size. Figure 4 plots system accuracy versus training set size when training with expert k = 5. We can see
when data is limited our approach massively improves on the baseline, for example with 2000 training points, Confidence
achieves 62.33% accuracy while our method achieves 70.12%, a 7.89 point increase. In table 4 we show the accuracy of the
classifier and the coverage of the system for our method compared to the baseline Confidence for expert k = 5. We can see
that when data is limited, our method retains high classification accuracy for the classifier versus the baseline. This is due in
fact to the low coverage of our method compared to Confidence, as data size grows the coverage our method increases as
now the classifier’s performance improves and the system can now safely defer to it more often. On the other hand, the
baseline remains at almost constant coverage, not adapting to growing data sizes.
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Table 2. Accuracy of the classifier on non-deferred examples shown for our method L1
CE and baseline Confidence with varying training

set size for expert k = 5 on CIFAR-10.

METHOD / DATA SIZE (THOUSANDS) 1 2 3 5 8 10 20 50

L1
CE (CLASSIFIER) 62.84 71.51 72.63 75.03 80.1 82.11 86.44 95.42

CONFIDENCE (CLASSIFIER) 50.31 59 66.3 70.12 80.33 78.67 87.01 92.45

L1
CE (COVERAGE) 25.7 35.87 40.42 49.62 46.38 46.51 50 71.35

CONFIDENCE (COVERAGE) 69.32 72.93 71.99 75.05 73.09 65.9 74.16 72.12

B.2. CIFAR-10H

Class-wise Accuracy of Expert. Table 5 shows the average accuracy of the synthetic CIFAR10H (Peterson et al., 2019)
expert on each of the 10 classes. We can see that the expert has very different accuracies for the classes which gives an
opportunity for an improvement.

Results. Table 6 shows full experimental results for the CIFAR-10H results.

Table 3. Accuracy of the CIFAR10H (Peterson et al., 2019) expert on each of the 10 classes

CLASS 1 2 3 4 5 6 7 8 9 10

ACCURACY 95.15 97.23 94.75 91.58 90.51 94.90 96.22 97.91 97.33 96.74

Table 4. Complete results of table 2 comparing our proposed approaches and baseline.

METHOD SYSTEM ACCURACY COVERAGE CLASSIFIER ACCURACY EXPERT ACCURACY

LCE IMPUTE 96.29±0.25 51.67±1.46 99.2 ± 0.08 93.18 ± 0.48
LCE 2-STEP 96.03±0.21 60.81±0.87 98.11 ± 0.22 92.77 ± 0.58
CONFIDENCE 95.09±0.40 79.48±5.93 96.09 ± 0.42 90.94 ± 1.34

B.3. CIFAR-100

We repeat the experiments described above on the CIFAR-100 dataset (Krizhevsky et al., 2009). A 28 layer WideResNet
achieves a 79.28 % test accuracy when training with data augmentation (random crops and flips). The simulated experts
also operate in a similar fashion, for k ∈ {10, 20, · · · , 100}, if the image is in the first k classes, the expert predicts the
correct label with probability 0.94 to simulate SOTA performance on CIFAR-100 with 93.8% test accuracy (Kolesnikov
et al., 2019), otherwise the expert predicts uniformly at random.

Results. In figure 5 we plot the accuracy of the combined algorithm and expert system versus k, the number of classes
the expert can predict. We can see that our method dominates the baseline over all k. Compared against the confidence
score baseline, the model trained with L1

CE outperforms it by a 1.60 difference in test accuracy for 30 ≤ k ≤ 90 on average
and otherwise performs on par. This gives again gives evidence for the efficacy of our method. In table 7 we show expert,
classifier and system accuracy along with coverage of both methods. Our approach L1

CE obtains both better expert and
classifier accuracy however gets lower coverage than Confidence.
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Figure 2. Comparison of the developed method L1
CE on CIFAR-100 versus the confidence baseline. k is the number of classes the expert

can predict

Table 5. Accuracy of the expert on deferred examples shown for the methods and baselines proposed with varying expert competence (k)
on CIFAR-100.

METHOD / EXPERT (K) 10 20 30 40 50 60 70 80 90 100

L1
CE (SYSTEM) 78.67 79.43 81.02 82.09 83.8 85.15 87.58 90.23 91.81 94.59

CONFIDENCE (SYSTEM) 78.48 79.37 79.67 80.75 81.92 83.67 85.15 88.63 90.31 94.74

L1
CE (COVERAGE) 89.19 82.44 84.79 71.66 74.52 65.72 62.23 59.37 52.15 49.07

CONFIDENCE (COVERAGE) 99.17 95.47 93.96 86.64 86.71 80.67 79.56 75.36 72.39 63.32

L1
CE (CLASSIFIER) 82.35 84.03 84.07 85.29 86.44 87.78 90.13 91.89 92.4 94.59

CONFIDENCE (CLASSIFIER) 78.99 80.66 81.79 84.75 84.62 87.30 88.75 90.97 92.07 94.97

L1
CE (EXPERT) 47.36 57.8 68.87 73.99 76.06 79.65 83.37 87.79 91.16 94.57

CONFIDENCE (EXPERT) 18.07 52.09 51.49 54.79 64.4 68.55 71.13 82.11 85.70 94.30

B.4. Hate Speech experiments

Implementation details. We train all models with Adam for 15 epochs and select the best performing model on the
validation set.

Results. Table 8 shows complete results of our method, baselines, expert and classifier. The performance of our method and
the baselines all achieve comparable results.
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Table 6. Detailed results for our method and baselines on the hate speech detection task (Davidson et al., 2017). sys: system accuracy,
class: classifier accuracy, disc: system discrimination, AAE-biased: Expert 2 that has higher error rate for AAE group, non-AAE biased:
Expert 3 that has higher error for non AAE tweets

METHOD/EXPERT FAIR AAE-BIASED

SYS CLASS DISC SYS CLASS DISC

L1
CE (OURS) 93.36 ± 0.16 95.60 ± 0.44 0.294 ±0.03 92.91 ± 0.17 94.67 ± 0.61 0.37 ± 0.06

CONFIDENCE 93.22 ±0.11 94.49 ± 0.12 0.45 ± 0.02 92.42 ± 0.40 94.56 ± 0.40 0.41 ± 0.02
ORACLE 93.57 ±0.11 94.87 ±0.22 0.32 ±0.02 93.22 ±0.11 94.49 ±0.12 0.449 ±0.024

EXPERT 89.76 – 0.031 84.28 – 0.071
CLASSIFIER 88.26 88.26 0.226 88.26 88.26 0.226

METHOD/EXPERT NON-AAE BIASED

SYS CLASS DISC

L1
CE (OURS) 90.42 ± 0.38 94.04 ±0.81 0.231 ±0.04

CONFIDENCE 90.60 ±0.13 93.68 V0.24 0.15 ±0.03
ORACLE 91.09 ± 0.12 92.57 ±0.15 0.15 ±0.02

EXPERT 80.4 – 0.084
CLASSIFIER 88.26 88.26 0.226

B.5. Baseline Implementation

Description of (Madras et al., 2018) approach. A different approach to our method, is to try directly to approximate the
system loss (1), this was the road taken by (Madras et al., 2018) in their differentiable model method. Let us introduce the
loss used in (Madras et al., 2018):

L(h, r,M) = E(x,y)∼P,m∼M |(x,y) [(1− r(x, h(x)))l(y, h(x)) + r(x, h(x))l(y,m)] (1)

where h : X → ∆|Y|−1 (classifier), r : X ×∆|Y|−1 → {0, 1} (rejector) and the expert M : Z → ∆|Y|−1. (Madras et al.,
2018) considers only binary labels and uses the logistic loss for l(., .) and thus requires the expert to produce uncertainty
estimates for it’s predictions instead of only a label; we can extend this to the multiclass setting by using the cross entropy
loss for l. It is clear that the loss (11) is non-convex in r, hence to optimize it (Madras et al., 2018) estimates the gradient
through the Concrete relaxation (Maddison et al., 2016; Jang et al., 2016). However, in the code of (Madras et al., 2018)
found at https://github.com/dmadras/predict-responsibly, the authors replace r(x) by it’s estimated
probability from it’s model. (Madras et al., 2018) considers an additional parameter γdefer found in the code, however it
is not clear what effect this parameter has as we found it’s description in the paper did not match the code. In detail, let
r0, r1 : X → R and r(x) = arg maxi∈{0,1} ri, the loss (Madras et al., 2018) considers is:

L̃(h, r,M) = E(x,y)∼P,m∼M |(x,y)

[
exp(r0(x))

exp(r0(x)) + exp(r1(x))
l(y, h(x)) +

exp(r1(x))

exp(r0(x)) + exp(r1(x))
l(y,m)

]
(2)

All terms in loss (12) are on the same scale which is crucial for the model to train well. We explicitly have two functions r0
and r1 defining r even though r is binary; this is for ease of implementation.

Another key detail of (Madras et al., 2018) approach, is that the classifier is independently trained of the rejector by stopping
the gradient from r to backpropagate through h. This no longer allows h to adapt to the expert, h is trained with the cross
entropy loss on it’s own concurrently with r.

CIFAR-10 details. In our CIFAR-10 setup, the dataset S contains only the final prediction m of the expert M , thus to
compute l(y,m) we set l(y,m) = − log(1 − ε) if y = m and l(y,m) = − log( 1

|Y| ) if y 6= m (simulating a uniform
prediction in accordance with our expert behavior) with ε = 10−12. One could instead train a network to model the expert’s
prediction, we found this approach to fail as there is a big amount of noise in the labels caused by the expert’s random
behavior.

https://github.com/dmadras/predict-responsibly
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Results on CIFAR-10. For expert k < 8, we found that the (Madras et al., 2018) baseline to almost never defer to the
expert and when k = 8, 9 at the end of training (200 epochs) the rejector never defers but the optimal system is found in the
middle of training (∼100 epochs). The optimal systems achieve 46.27 and 40.22 coverage, 98.81 and 98.89 expert accuracy
on deferred examples and 89.38 and 89.40 classifier accuracy on non-deferred examples respectively for k = 8, 9. The
classifier alone for the optimal systems achieve ∼86 classification accuracy on all of the validation set for both experts,
notice that there is not much difference between the classification accuracy on all the data and non-deferred examples, while
for our method and other baselines there is a considerable increase. This indicates that the rejector is only looking at the
expert loss and ignoring the classifier

What is causing this behavior is that as the classifier h trains, it’s loss l(y, h(x)) eventually goes to 0, however the loss of
the expert l(y,m) is either 0 or equal to − log(0.1), hence the rejector will make the easier decision to never defer. At initial
epochs, we have a non-trivial rejector as the classifier h is still learning, and the coverage progressively grows till 100% over
training. Essentially, what (Madras et al., 2018) approach is trying to do is choosing between the lower cost between expert
and classifier: a cost-sensitive learning problem at it’s heart. Therefore, one can use the losses developed here to tackle
the problem better; we leave this to future investigations. Another potential fix is to learn the classifier and rejector on two
different data sets.

Table 7. System accuracy of our implementation of (Madras et al., 2018) and our method and baselines with varying expert competence
(k) on CIFAR-10.

METHOD / SYSTEM ACCURACY (K) 1 2 3 4 5 6 7 8 9 10

L.5
CE 90.92 91.01 91.94 92.69 93.66 96.03 97.11 98.25 99 100

L1
CE 90.41 91.00 91.47 92.42 93.4 95.06 96.49 97.30 97.70 100

CONFIDENCE 90.47 90.56 90.71 91.41 92.52 94.15 95.5 97.35 98.05 100
ORACLEREJECT 89.54 89.51 89.48 90.75 90.64 93.25 95.28 96.52 98.16 100
(MADRAS ET AL., 2018) 90.40 90.40 90.40 90.40 90.40 90.40 90.40 94.48 95.09 100

B.6. CheXpert Experiments

Task. CheXpert is a large chest radiograph dataset that contains over 224 thousand images of 65,240 patients automatically
labeled for the presence of 14 observations using radiology reports (Irvin et al., 2019). In addition to the automatically
labeled training set, (Irvin et al., 2019) make publicly accessible a validation set of 200 patients labeled by a consensus
of 3 radiologists and hide a further testing set of 500 patients labeled by 8 radiologists. We focus here on the detection of
only the 5 observations that make up the "competition tasks" (Irvin et al., 2019): Atelectasis, Cardiomegaly, Consolidation,
Edema, and Pleural Effusion. This is a multi-task problem, we have 5 separate binary tasks, we will learn to defer on an
individual task basis.

Expert. We create a simulated expert as follows: if the chest X-ray contains support devices (the presence of support
devices is part of the label) then the expert is correct with probability p on all tasks independently and if the X-ray does not
contain support devices, then the expert is correct with probability q. We vary q ∈ {0.5, 0.7} and p ∈ {0.7, 0.8, 0.9, 1} to
obtain different experts, we let p ≥ q as one can think that a patient that has support devices might have a previous medical
history that the expert is aware of and can use as side-information.

Data. We use the downsampled resolution version of CheXpert (Irvin et al., 2019) and split the training data set with an
80-10-10 split on a patient basis for training, validation and testing respectively, no patients are shared among the splits.
Images are normalized and resized to be compatible with pre-trained ImageNet models, we use data augmentation in the
form of random resized crops, horizontal flips and random rotations of up to 15° while training.

Baselines. We implement two baselines: a threshold confidence baseline that learns a threshold to maximize system
AU-ROC on just the confidence of the classifier model to defer (ModelConfidence), this is the post-hoc thresholding method
in (Madras et al., 2018), and the Confidence baseline (Raghu et al., 2019a). We use temperature scaling (Guo et al., 2017) to
ensure calibration of all baselines on the validation set.

Model. Following (Irvin et al., 2019), we use the DenseNet121 architecture for our model with pre-trained weights on
ImageNet, the loss for the baseline models is the average of the binary cross entropy for each of the tasks. We train the
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Table 8. Average difference in AU-ROC across all coverage and difference between maximum achievable AU-ROC between our method
and the Confidence baseline for each of the 5 tasks and different toy expert probabilities p and q; each entry is (average difference ±
standard deviation; difference of maximums). The difference between our method and the ModelConfidence is roughly twice the values
noted in table 10, only at Expert (0.7, 0.7) does Confidence and ModelConfidence achieve the same performance since the expert has
uniform error over the domain.

EXPERT (p, q) CARDIOMEGALY EDEMA CONSOLIDATION ATELECTASIS PLEURAL EFFUSION

(0.5,0.7) 0.032±0.024; 0.002 0.015±0.012; 0.007 0.015±0.008; 0.007 0.017±0.009; 0.007 0.007±0.003 ;0.007
(0.5,0.9) 0.032±0.017; 0.014 0.026±0.016; 0.024 0.010±0.005; 0.015 0.016±0.008; 0.026 0.012±0.010; 0.004
(0.5,1) 0.022±0.012; 0.029 0.013±0.009; 0.019 0.007±0.008; 0.012 0.013±0.006; 0.020 0.010±0.008; 0.012
(0.7,0.7) 0.024±0.018; 0.005 0.011±0.009; 0.010 0.011±0.010; 0.009 0.006±0.006; 0.008 0.001±0.001; 0.003
(0.7,0.9) 0.032±0.020; 0.024 0.010±0.007; 0.010 0.007±0.007; 0.017 0.014±0.008; 0.017 0.010±0.006; 0.006
(0.7,1) 0.027±0.014; 0.042 0.016±0.010; 0.027 0.007±0.007; 0.019 0.013±0.007; 0.022 0.014±0.010; 0.027
(0.8,1) 0.017±0.009; 0.023 0.011±0.008; 0.012 0.001±0.004; 0.007 0.012±0.006; 0.009 0.010±0.006; 0.018

baseline models using Adam for 4 epochs. For our approach we train for 3 epochs using the cross entropy loss and then train
for one epoch using LαCE with α chosen to maximize the area under the receiver operating characteristic curve (AU-ROC)
of the combined system on the validation set for each of the 5 tasks (each task is treated separately). We also observe similar
results if we train for the first three epochs with L1

CE and then train for one epoch with a validated choice of α.

Experimental setup. In a clinical setting there might be a cost associated to querying a radiologist, this then imposes a
constraint on how often we can query the radiologist i.e. our model’s coverage (fraction of examples where algorithm
predicts). We constrain our method and the baselines to achieve c% coverage for c ∈ [100] to simulate the spectrum between
complete automation and none.
We achieve this for our method by first sorting the test set based on g⊥(x)−max(g0(x), g1(x)) := q(x) across all patients
x in the test set, then to achieve coverage c, we define τ = q(xc) where q(xc) is the c’th percentile of the outputs q(x), then
we let r(x) = 1 ⇐⇒ q(x) ≥ τ . The definition of τ ensures that we obtain exactly c% coverage.
For ModelConfidence we achieve this by letting q(x) = 1 − max(g0(x), g1(x)) (g is the result of a separate trained
model than the one for our method), this is the natural classifier’s probability of error from the softmax output, and for the
Confidence we let q(x) be the difference between the radiologists confidence and the classifier’s confidence.

Results. In Figure 6a we plot the overall system (expert and algorithm combined) AU-ROC for each desired coverage for the
methods and in Figure 6b we plot the overall system area under the precision-recall curve (AU-PR) versus the coverage; this
is for the expert with q = 0.7 and p = 1. We can see that the curve for our method dominates the baselines over the entire
coverage range for both AU-ROC and AU-PR, moreover the curves are concave and we can achieve higher performance by
combining expert and algorithm than using both separately. Our method is able to achieve a higher maximum AU-ROC
and AU-PR than both baselines: the difference between the maximum attainable AU-ROC of our method and Confidence
is 0.039, 0.026, 0.018, 0.022 and 0.027 respectively for each of the five tasks. There is a clear hierarchy between the
3 compared methods: our method dominates Confidence and Confidence in turn dominates ModelConfidence, in fact
ModelConfidence is a special case of the Confidence baseline, since the expert does not have uniform performance over the
domain there are clear gains in modeling the expert.

This hierarchy continues to hold as we change the expert behavior as we vary the probabilities p and q, in Table 10 we show
for each of the 5 tasks the difference between the average AU-ROC across all coverages (average value of the curves shown
in Figure 6a) for our method and the Confidence baseline for different expert probabilities and the difference between the
maximum achievable AU-ROC. A positive average difference serves to show the degree of dominance of our method over
the Confidence baseline, note that the difference alone cannot imply dominance of the curves however dominance is still
observed. Our method improves on the baselines as the difference between q and p increases, this difference encodes the
non-uniformity of the expert behavior over the domain.
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(b) AU-PR vs coverage for expert q = 0.7, p = 1, maximum AU-PR is noted.

Figure 3. Plot of AU-ROC of the ROC curve (a) for each level of coverage (0 coverage means only the expert predicting and 1 coverage is
only the classifier predicting) and of the area under the precision-recall curve (AU-PR) (b) for each of the 5 tasks comparing our method
with the baselines on the training derived test set for the toy expert with q = 0.7, p = 1. We report the maximum AU-ROC and AU-PR
achieved on each task, error bars are standard deviations derived from 10 runs (averaging over the expert’s randomness).
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C. Deferred Proofs and Derivations
C.1. Section 4

C.1.1. BINARY SETTING

As we eluded to in the body of the paper, we can extend the losses introduced by (Cortes et al., 2016b) to our setting
for binary labels. Let Y = {−1,+1} and r, h : X → R where we defer if r(x) ≤ 0, for generality we assume
lexp(x, y,m) = max(c, Im 6=y) as this allows to treat rejection learning as an immediate special case. Following the
derivation in (Cortes et al., 2016b), let u→ φ(−u) and u→ ψ(−u) be two convex function upper bounding Iu≤0 and let
α, β > 0, then:

Lc(h, r, x, y,m) = Ih(x)y≤0Ir(x)>0 + max(c, Im6=y)Ir(x)≤0
≤ max

{
Imax{h(x)y,−r(x)}≤0,max(c, Im 6=y)Ir(x)≤0

}
(a)

≤ max
{
Iα

2 (h(x)y−r(x))≤0,max(c, Im 6=y)Iβr(x)≤0
}

(b)

≤ max{φ
(
−α
2

(h(x)y − r(x))

)
,max(c, Im6=y)ψ (−βr(x))} (3)

≤ φ
(
−α
2

(h(x)y − r(x))

)
+ max(c, Im 6=y)ψ (−βr(x)) (4)

step (a) is by noting that max(a, b) ≥ a+b
2 , step (b) since φ(u) and ψ(u) upper bound Iu≤0. Both the right hand sides of

equations (13) and (14) are convex functions of both h and r. When φ and ψ are both the exponential loss we obtain the
following loss with β(x, y,m) : X × Y2 → R+:

LSH(h, r, x, y,m) := exp
(α

2
(r(x)− h(x)y)

)
+ (c+ Im6=y) exp (−β(x, y,m)r(x))

we will see that it will be necessary that β is no longer constant for the loss to be consistent while in the standard case it
sufficed to have β constant (Cortes et al., 2016b). The following proposition shows that for an appropriate choice of β and α
we can make LSH consistent.

Proposition 1. Let c(x) = c − cP(Y 6= M |X = x) + P(Y 6= M |X = x), for α = 1 and β =
√

1−c(x)
c(x) ,

infh,r Ex,y,m[LSH(h, r, x, y,m)] is attained at (h∗SH , r
∗
SH) such that sign(hB) = sign(h∗SH) and sign(rB) =

sign(r∗SH).

Proof. Denote η(x) = P(Y = 1|X = x) and q(x, y) = P(M = 1|X = x, Y = y), we have:

inf
h,r

Ex,y,m[LSH(h, r, x, y,m)] = inf
h,r

ExEy|xEm|x,y[LSH(h, r, x, y,m)]

= Ex inf
h(x),r(x)

Ey|xEm|x,y[LSH(h(x), r(x), x, y,m)]

Now we will expand the inner expectation:

Ey|xEm|x,y[LSH(h(x), r(x), x, y,m)] (5)

= η(x)q(x, 1)(exp
(α

2
(r(x)− h(x))

)
+ c exp (−βr(x)))

+ (1− η(x))q(x,−1)(exp
(α

2
(r(x) + h(x))

)
+ (1) exp (−βr(x)))

+ η(x)(1− q(x, 1))(exp
(α

2
(r(x)− h(x))

)
+ (1) exp (−βr(x)))

+ (1− η(x))(1− q(x,−1))(exp
(α

2
(r(x) + h(x))

)
+ c exp (−βr(x)))

The Bayes optimal solution for our original loss in the binary setting is:

hB(x) = η(x)− 1

2

rB(x) = |η(x)− 1

2
| − (

1

2
− c− P(M 6= Y |X = x))
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Case 1: if η(x) = 0, writing v = r(x), u = h(x) then term (15) becomes:

q(x,−1)(exp
(α

2
(v + u)

)
+ 1 exp (−βv)) + (1− q(x,−1))(exp

(α
2

(v + u)
)

+ c exp (−βv))

then to minimize the above it is necessary that the optimal solutions are such that u∗ < 0, v∗ > 0 which agree with the sign
of the original Bayes solution.

Case 2: if η(x) = 1, then term (15) becomes:

q(x, 1)(exp
(α

2
(v − u)

)
+ c exp (−βv)) + (1− q(x, 1))(exp

(α
2

(v − u)
)

+ (1) exp (−βv))

then to minimize the above it is necessary that the optimal solutions are such that u∗ > 0, v∗ > 0 which agree with the sign
of the original Bayes solution.

Case 3: η(x) ∈ (0, 1), for ease of notation denote the RHS of equation (15) as Lψ(u, v), note that Lψ(u, v) is a convex
function of both u and v and therefore to find the optimal solution it suffices to take the partial derivatives with respect to
each and set them to 0.

For u:

∂ψ(u, v)

∂u
= 0

⇐⇒ −η(x)
α

2
exp

(α
2

(v − u∗)
)

+ (1− η(x)) exp
(α

2
(v + u∗)

)
= 0

⇐⇒ −η(x)
α

2
exp

(
−α
2
u∗
)

+ (1− η(x))
α

2
exp

(α
2
u∗
)

= 0

⇐⇒ u∗ =
1

α
log(

η(x)

1− η(x)
)

we note that u∗ has the same sign as the minimizer of the exponential loss and hence has the same sign as hB(x).

Plugging u∗ and taking the derivative with respect to v:

∂ψ(u∗, v)

∂v
= 0

⇐⇒ η(x)
α

2
exp

(α
2

(v∗ − u∗)
)

+ (1− η(x)) exp
(α

2
(v∗ + u∗)

)
− βc(η(x)q(x, 1) + (1− η(x))(1− q(x,−1)) exp(−βv∗)
− (1− η(x))q(x,−1)β exp(−βv∗)− η(x)(1− q(x, 1))β exp(−βv∗) = 0

⇐⇒ η(x)
α

2
exp

(α
2

(v∗ − u∗)
)

+ (1− η(x)) exp
(α

2
(v∗ + u∗)

)
− β(c− cP(M 6= Y |X = x) + P(M 6= Y |X = x)) exp(−βv∗) = 0

Appealing to the proof of Theorem 1 in (Cortes et al., 2016a) we obtain that:

v∗ =
1

α/2 + β
log

(
c(x)β

α

√
1

η(x)(1− η(x))

)

Furthermore by the proof of Theorem 1 in (Cortes et al., 2016a), the sign of v∗ matches that of rB(x) if and only if:

β

α
=

√
1− c(x)

c(x)
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C.1.2. MULTICLASS SETTING

Proposition 1. L̃CE is convex and is a consistent loss function for L̃:

let g̃ = arg infg E
[
L̃CE(g, c)|X = x

]
, then: arg maxi∈[K+1] g̃i = arg mini∈[K+1] E[c(i)|X = x]

Proof. Writing the expected loss:

inf
g

Ex,c[L̃CE(g, x, c)] = inf
g

ExEc|xL̃CE(g, x, c)] = Ex inf
g(x)

Ec|xL̃CE(g(x), x, c)]

Now we will expand the inner expectation:

Ec|x[L̃CE(g(x), x, c)] = −
∑

y∈[K+1]

E[max
j
c(j)− c(y)|X = x] log

(
exp(gy(x)∑
k exp(gk(x))

)

The loss L̃CE is convex in the predictor, so it suffices to differentiate with respect to each gy for y ∈ Y⊥ and set to 0.

∂LCE
∂g∗y

= 0

⇐⇒ E[max
j
c(j)− c(y)|X = x]−

exp(g∗y(x)∑
k exp(gk(x))

∑
i∈[K+1]

E[max
j
c(j)− c(i)|X = x] = 0

⇐⇒
exp(g∗y(x)∑
k exp(gk(x))

=
E[maxj c(j)− c(y)|X = x]∑

i∈[K+1] E[maxj c(j)− c(i)|X = x]

From this we can deduce:

h(x) = arg max
y∈[K+1]

g∗y(x) = arg max
y∈[K+1]

exp(g∗y(x))∑
y∈[K+1] exp(g∗y(x))

= arg max
y∈[K+1]

E[maxj c(j)|X = x]− E[c(y)|X = x]∑
i∈[K+1] E[maxj c(j)− c(i)|X = x]

= arg min
y∈[K+1]

E[c(y)|X = x] = h̃B(x)

Proposition 2. The minimizers of the loss L0−1 (3) are defined point-wise for all x ∈ X as:

hB(x) = arg max
y∈Y

ηy(x)

rB(x) = Imaxy∈Y ηy(x)≤P(Y=M |X=x) (6)

Proof. When we don’t defer, the loss incurred by the model is the misclassification loss in the standard multiclass setting
and hence by standard arguments (Friedman et al., 2001) we can define hB point-wise regardless of r:

hB(x) = arg inf
h

Ey[Ih6=y] = arg max
y∈Y

ηy(x)

Now for the rejector, we should only defer if the expected loss of having the expert predict is less than the error of the
classifier hB defined above, define rB : X → {0,+1} as:

rB(x) = IE[IM 6=Y |X=x]≤E[IhB(x)6=Y |X=x]

= IP(Y 6=M)≤(1−maxy∈Y ηy(x))

= IP(Y=M)≥maxy∈Y ηy(x)
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Theorem 2. The loss LCE is a convex upper bound of L0−1 and is consistent:
infh,r Ex,y,m[LCE(h, r, x, y,m)] is attained at (h∗CE , r

∗
CE) such that hB(x) = h∗CE(x) and rB(x) = r∗CE(x) for all

x ∈ X .

Proof. The fact that LCE is convex is immediate as Im=y ≥ 0 and the cross entropy loss is convex.

Now we show that LCE is an upper bound of L0−1:

L0−1(h, r, x, y,m) = Ih(x)6=yIr(x)=0 + Im 6=yIr(x)=1

(a)

≤ − log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
− Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(7)

To justify inequality (a), consider first if r(x) = 0, then if Ih(x)6=y = 1 we know that exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

≤ 1
2 giving

− log
(

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

)
≥ 1, moreover all the terms in the RHS of (a) are always positive.

On the other hand if r(x) = 1, then again exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

≤ 1
2 as we decided to reject and since also giving

− log
(

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

)
≥ 1. Finally note that L0−1(h, r, x, y,m) ≤ 1.

We will now show that the optimal rejector minimizing the upper bound (17) is in fact consistent.

Denote qm(x, y) = P(M = m|X = x, Y = y) and ηy(x) = P(Y = y|X = x), we have:

inf
h,r

Ex,y,m[LCE(h, r, x, y,m)] = inf
h,r

ExEy|xEm|x,y[LCE(h, r, x, y,m)]

= Ex inf
h(x),r(x)

Ey|xEm|x,y[LCE(h(x), r(x), x, y,m)]

Let us expand the inner expectation:

Ey|xEm|x,y[LCE(h(x), r(x), x, y,m)]

= Ey|x

[
− log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
−
∑
m∈Y

Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)]

= −
∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

−
∑
y∈Y

ηy(x)
∑
m∈Y

qm(x, y)Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(a)
= −

∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
−
∑
y∈Y

ηy(x)qy(m, y) log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(b)
= −

∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

− P(Y = M |X = x) log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(8)

In step (a) all terms that differed on y and m disappear, in step (b) we have:∑
y∈Y

ηy(x)qy(m, y) =
∑
y∈Y

P(M = y, Y = y|X = x) = P(Y = M |X = x)

For ease of notation denote the RHS of equation (18) as LCE(g1, · · · , g|Y|, g⊥), note that it is a a convex function, hence
we will take the partial derivatives with respect to each argument and set them to 0.
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For any g⊥, and for i ∈ Y we have :

∂LCE(g∗1 , · · · , g|Y|∗ , g⊥)

∂g∗i
= 0

⇐⇒ exp(g∗i (x))∑
y′∈Ỹ exp(g∗y′(x))

=
ηi(x)

1 + P(Y = M |X = x)
(9)

The optimal h∗ for any g⊥ should satisfy equation (19) for every i ∈ Y , however since exponential is an increasing function
we get that the optimal h∗ in fact agrees with the Bayes solution as:

arg max
y∈Y

g∗y(X) = arg max
y∈Y

exp(g∗y(x))∑
y∈Y exp(g∗y(x)) + exp(g⊥(x))

= arg max
y∈Y

ηy(x)

1 + P(Y = M |X = x)
= hB(x)

Plugging h∗ and taking the derivative with respect to the optimal g∗⊥:

∂LCE(g∗1 , · · · , g∗|Y|, g
∗
⊥)

∂g∗⊥
= 0

⇐⇒ exp(g∗⊥(x))∑
y′∈Y exp(g∗y′(x))

=
P(Y = M |X = x)

1 + P(Y = M |X = x)

Note note that r∗(x) = 1 only if P(Y = M |X = x) ≥ maxy∈Y ηy(x) which agrees with rB(x)

C.2. Section 5

Proposition 3. Lmix is not a consistent surrogate loss function for L (3).

Proof. Looking at the Bayes solution of Lmix, denote qm(x, y) = P(M = m|X = x, Y = y), we have:

inf
h,r

Ex,y,m[Lmix(h, r, x, y,m)] = Ex inf
h(x),r(x)

Ey|xEm|x,y[Lmix(h(x), r(x), x, y,m)]

Let us expand the inner expectation:

Ey|xEm|x,y[Lmix(h(x), r(x), x, y,m)] = (10)

−
∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y exp(gy′(x))

)
exp(r0(x))∑

i∈{0,1} exp(ri(x))
+ P(Y 6= M |X = x)

exp(r1(x))∑
i∈{0,1} exp(ri(x))

Denote the RHS of (20) by Lmix(g1, · · · , g|Y|, r0, r1), it is a convex function in gi for all i ∈ Y , consider any r0, r1, we
have :

∂Lmix(g∗1 , · · · , g|Y|∗ , r0, r1)

∂g∗i
= 0 ⇐⇒ exp(g∗i (x))∑

y′∈Y exp(g∗y′(x))
= ηi(x) (11)

Since the optimal h∗ for any r0, r1 does not depend on the form of r0 and r1 we conclude that (21) gives the optimal choice
of h. We now need to find the optimal choice of r0(x) and r1(x) to minimize Lmix(g∗1 , · · · , g|Y|∗ , r0, r1) which takes the
following form:

Lmix(g∗1 , · · · , g|Y|∗ , r0, r1) = H(hB(x))
exp(r0(x))∑

i∈{0,1} exp(ri(x))
+ P(Y 6= M |X = x)

exp(r1(x))∑
i∈{0,1} exp(ri(x))



Consistent Estimators for Learning to Defer to an Expert

where H(X) is the Shannon entropy of the random variable X , here by H(hB(x)) we refer to the entropy of the probabilistic
form of hB(x) according to (21) . Clearly the optimal r∗0 and r∗1 have the following behavior for a given x ∈ X :{

r0(x) =∞, r1(x) = −∞ if H(hB(x)) < P(Y 6= M |X = x)

r0(x) = −∞, r1(x) =∞ if H(hB(x)) ≥ P(Y 6= M |X = x)

This does not have the form of rB(x), as this rejector compares the entropy of hB(x) instead of it’s confidence to the
probability of error of the expert which will not always be in accordance.

Theorem 2. For any expert M and data distribution P over X × Y , let 0 < δ < 1
2 , then with probability at least 1− δ, the

following holds for the empirical minimizers (ĥ∗, r̂∗):

L0−1(ĥ∗, r̂∗) ≤ L0−1(h∗, r∗) + Rn(H) + Rn(R) + RnP(M 6=Y )/2(R)

+ 2

√
log ( 2

δ )

2n
+

P(M 6= Y )

2
exp

(
−nP(M 6= Y )

8

)

Proof. Let LH,R be the family of functions defined as LH,R = {(x, y,m) → L(h, r, x, y,m);h ∈ H, r ∈ R} with
L(h, r, x, y,m) := Ih(x)6=yIr(x)=−1 + Im 6=yIr(x)=1. Let Rn(LH,R) be the Rademacher complexity of LH,R, then since
L(h, r, x, y,m) ∈ [0, 1], by the standard Rademacher complexity bound (Theorem 3.3 in (Mohri et al., 2018)), with
probability at least 1− δ/2 we have:

L0−1(ĥ∗, r̂∗) ≤ LS0−1(ĥ∗, r̂∗) + 2Rn(LH,R) +

√
log (2

δ )

2n

We will now relate the complexity of LH,R to the individual classes:

Rn(LH,R) = Eε[ sup
(h,r)∈H×R

1

m

m∑
i=1

εiIh(xi)6=yiIr(xi)=−1 + εiImi 6=yiIr(xi)=1]

(a)

≤ Eε

[
sup

(h,r)∈H×R

1

m

m∑
i=1

εiIh(xi)6=yiIr(xi)=−1

]

+ Eε

[
sup

(h,r)∈H×R

1

m

m∑
i=1

εiImi 6=yiIr(xi)=1

]
(b)

≤ Eε

[
sup

(h,r)∈H×R

1

m

m∑
i=1

εiIh(xi) 6=yi

]
+ Eε

[
sup

(h,r)∈H×R

1

m

m∑
i=1

εiIr(xi)=−1

]

+ Eε

[
sup

(h,r)∈H×R

1

m

m∑
i=1

εiImi 6=yiIr(xi)=1

]

≤ 1

2
Rn(H) +

1

2
Rn(R) + Eε

[
sup

(h,r)∈H×R

1

m

m∑
i=1

εiImi 6=yiIr(xi)=1

]
(12)

step (a) follows as the supremum is a subadditive function , step (b) is the application of Lemma 2 in (DeSalvo et al.,
2015) to Eε

[
sup(h,r)∈H×R

1
m

∑m
i=1 εiIh(xi)6=yiIr(xi)=−1

]
which says that the Rademacher complexity of a product of two

indicators functions is upper bounded by the sum of the complexities of each class, now we will take a closer look at the last
term in the RHS of inequality (22). Denote nSm =

∑
j∈S Iyj 6=mj and define the random variable Sm = {i : yi 6= mi}, we
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have that nSm ∼ Binomial(n,P(M 6= Y )) and E[nSm|Sm] = nP(M 6= Y ), hence:

E

[
sup

(h,r)∈H×R

1

m

m∑
i=1

εiImi 6=yiIr(xi)=1

]

= E

 sup
(h,r)∈H×R

1

m

m∑
i=1 s.t. yi 6=mi

εiIr(xi)=1


= E

nSm
m

sup
(h,r)∈H×R

1

nSm

nSm∑
i=1

εiIr(xi)=1

 (by relabeling)

(a)
= E

Eε

nSm
m

sup
(h,r)∈H×R

1

nSm

nSm∑
i=1

εiIr(xi)=1|Sm


(b)
= E

[
nSm
m

R̂Sm(R)

]
(c)
= P(nSm <

nP(A)

2
)E
[
nSm
m

R̂Sm(R)|nSm <
nP(A)

2

]
+ P(nSm ≥

nP(A)

2
)E
[
nSm
m

R̂Sm(R)|nSm ≥
nP(A)

2

]
(d)

≤ P(M 6= Y )

2
exp

(
−nP(M 6= Y )

8

)
+ RnP(M 6=Y )/2(R)

In step (a) we conditioned on the dataset Sm, in step (b) we used the definition of the empirical Rademacher complexity
R̂Sm(R) on Sm, step (c) we introduce the event A = {M 6= Y }, step (d) follows from a Chernoff bound on nSm and since
the Rademacher complexity is bounded by 1 and is non-increasing with respect to sample size.

We can now proceed with inequality (22):

Rn(LH,R)
(a)

≤ 1

2
Rn(H) +

1

2
Rn(R) +

P(M 6= Y )

2
exp

(
−nP(M 6= Y )

8

)
+ RnP(M 6=Y )/2(R)

step (a) follows as the Rademacher complexity of indicator functions based on a certain class is equal to half the Rademacher
complexity of the class (Mohri et al., 2018).

The final step is to note by Hoeffding’s inequality we have with probability at least 1− δ/2:

LS(h∗, r∗) ≤ L(h∗, r∗) +

√
log (2

δ )

2n

Now since (ĥ∗, ĥ∗) are the empirical minimizers we have that LS(ĥ∗, r̂∗) ≤ LS(h∗, r∗), collecting all the inequalities we
obtain the following generalization bound with probability at least 1− δ:

L(ĥ∗, r̂∗) ≤ L(h∗, r∗) + Rn(H) + Rn(R) + 2

√
log (2

δ )

2n

+
P(M 6= Y )

2
exp

(
−nP(M 6= Y )

8

)
+ RnP(M 6=Y )/2(R)
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