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Abstract
Many clustering algorithms lead to cluster assign-
ments that are hard to explain, partially because
they depend on all the features of the data in a
complicated way. To improve interpretability, we
consider using a small decision tree to partition a
data set into clusters, so that clusters can be char-
acterized in a straightforward manner. We study
this problem from a theoretical viewpoint, measur-
ing cluster quality by the k-means and k-medians
objectives. In terms of negative results, we show
that popular top-down decision tree algorithms
may lead to clusterings with arbitrarily large cost,
and any clustering based on a tree with k leaves
must incur an Ω(log k) approximation factor com-
pared to the optimal clustering. On the positive
side, for two means/medians, we show that a sin-
gle threshold cut can achieve a constant factor ap-
proximation, and we give nearly-matching lower
bounds; for general k ≥ 2, we design an efficient
algorithm that leads to an O(k) approximation to
the optimal k-medians and an O(k2) approxima-
tion to the optimal k-means. Prior to our work, no
algorithms were known with provable guarantees
independent of dimension and input size.

1. Introduction
A central direction in machine learning is understanding the
reasoning behind decisions made by learned models (Lipton,
2018; Molnar, 2019; Murdoch et al., 2019). Prior work on
AI explainability focuses on the interpretation of a black-box
model, known as post-modeling explainability (Baehrens
et al., 2010; Deutch & Frost, 2019). While methods such as
LIME (Ribeiro et al., 2016) or Shapley explanations (Lund-
berg & Lee, 2017) have made progress in this direction, they
do not provide direct insight into the underlying data set,
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and the explanations depend heavily on the given model.
This has raised concerns about the applicability of current
solutions, leading researchers to consider more principled
approaches to interpretable methods (Rudin, 2019).

We address the challenge of developing machine learning
systems that are explainable by design, starting from an
unlabeled data set. Specifically, we consider pre-modeling
explainability in the context of clustering. A common use
of clustering is to identify patterns or discover structural
properties in a data set by quantizing the unlabeled points.
For instance, k-means clustering may be used to discover
coherent groups among a supermarket’s customers. While
there are many good clustering algorithms, the resulting
cluster assignments can be hard to understand because the
clusters may be determined using all the features of the data,
and there may be no concise way to explain the inclusion of
a particular point in a cluster. This limits the ability of users
to discern the commonalities between points within a cluster
or understand why points ended up in different clusters.

Our goal is to develop accurate, efficient clustering algo-
rithms with concise explanations of the cluster assignments.
There should be a simple procedure using a few features
to explain why any point belongs to its cluster. Small de-
cision trees have been identified as a canonical example of
an easily explainable model (Molnar, 2019; Murdoch et al.,
2019), and previous work on explainable clustering uses an
unsupervised decision tree (Bertsimas et al., 2018; Fraiman
et al., 2013; Geurts et al., 2007; Ghattas et al., 2017; Liu
et al., 2005). Each node of the binary tree iteratively parti-
tions the data by thresholding on a single feature. We focus
on finding k clusters, and hence, we use trees with k leaves.
Each leaf corresponds to a cluster, and the tree is as small
as possible. We refer to such a tree as a threshold tree.

There are many benefits of using a small threshold tree to
produce a clustering. Any cluster assignment is explained
by computing the thresholds along the root-to-leaf path.
By restricting to k leaves, we ensure that each such path
accesses at most k − 1 features, independent of the data
dimension. In general, a threshold tree provides an initial
quantization of the data set, which can be combined with
other methods for future learning tasks. While we consider
static data sets, new data points can be easily clustered by
using the tree, leading to explainable assignments.
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Figure 1: The optimal 5-means clustering (left) determines uses combinations of both features. The explainable clustering
(middle) uses axis-aligned rectangles summarized by the threshold tree (right). Because the clusters contain nearby points, a
small threshold tree makes very few mistakes and leads to a good approximation.

To analyze clustering quality, we consider the k-means and
k-medians objectives (MacQueen, 1967; Steinhaus, 1956).
The goal is to efficiently determine a set of k centers that
minimize either the squared `2 or the `1 distance, respec-
tively, of the input vectors to their closest center.

Figure 1 provides an example of standard and explainable k-
means clustering on the same data set. The left figure shows
an optimal 5-means clustering. The figure in the middle
shows an explainable 5-means clustering, determined by
the tree on the right. The tree has five leaf nodes, and
vectors are assigned to clusters based on the thresholds.
Geometrically, the tree defines a set of axis-aligned cuts that
determine the clusters. While the two clusterings are very
similar, using the threshold tree leads to easy explanations,
whereas using a standard k-means clustering algorithm leads
to more complicated clusters. The difference between the
two approaches becomes more evident in higher dimensions,
because standard algorithms will likely determine clusters
based on all of the feature values.

To reap the benefits of explainable clusters, we must ensure
that the data partition is a good approximation of the optimal
clustering. While many efficient algorithms have been devel-
oped for k-means/medians clustering, the resulting clusters
are often hard to interpret (Arthur & Vassilvitskii, 2007; Ka-
nungo et al., 2002; Ostrovsky et al., 2013; Shalev-Shwartz
& Ben-David, 2014). For example, Lloyd’s algorithm alter-
nates between determining the best center for the clusters
and reassigning points to the closest center (Lloyd, 1982).
The resulting set of centers depends in a complex way to
the other points in the data set. Therefore, the relationship
between a point and its nearest center may be the result
of an opaque combination of many feature values. This
issue persists even after dimension reduction or feature se-

lection, because a non-explainable clustering algorithm is
often invoked on the modified data set. As our focus is on
pre-modeling explanability, we aim for simple explanations
that use the original feature vectors.

Figure 1 depicts a situation where the optimal clustering is
approximated by one that is induced by a tree. But it is not
clear whether this is possible in general. Our first technical
challenge is to understand the price of explainability in the
context of clustering: that is, the multiplicative blowup in k-
means (or k-medians) cost that is inevitable if we force our
final clustering to have an interpretable form. The second
challenge is to actually find such a tree efficiently. This is
non-trivial because it requires a careful, rather than random
or exhaustive, choice of a subset of features. As we will see,
the analysis that is ultimately needed is quite novel even
given the vast existing literature on clustering.

1.1. Our contributions

We provide several new theoretical results on explainable
k-means and k-medians clustering. Our new algorithms and
lower bounds are summarized in Table 1.

Basic limitations. A partition into k clusters can be realized
by a binary threshold tree with k − 1 internal splits. This
uses at most k − 1 features, but is it possible to use even
fewer, say log k features? In Section 3, we demonstrate
a simple data set that requires Ω(k) features to achieve a
explainable clustering with bounded approximation ratio
compared to the optimal k-means/medians clustering. The
depth of the tree might need to be k − 1 in the worst case.

One idea for building a tree is to begin with a good k-
means (or k-medians) clustering, use it to label all the points,
and then apply a supervised decision tree algorithm that
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attempts to capture this labeling. In Section 3, we show that
standard decision tree algorithms, such as ID3, may produce
clusterings with arbitrarily high cost. Thus, existing splitting
criteria are not suitable for finding a low-cost clustering, and
other algorithms are needed.

New algorithms. On the positive side, we provide efficient
algorithms to find a small threshold tree that comes with
provable guarantees on the cost. We note that using a small
number of clusters is preferable for easy interpretations, and
therefore k is often relatively small. For the special case of
two clusters (k = 2), we show (Theorem 1) that a single
threshold cut provides a constant-factor approximation to
the optimal 2-medians/means clustering, with a closely-
matching lower bound (Theorem 2), and we provide an
efficient algorithm for finding the best cut. For general
k, we show how to approximate any clustering by using a
threshold tree with k leaves (Algorithm 1) . The main idea
is to minimize the number of mistakes made at each node in
the tree, where a mistake occurs when a threshold separates
a point from its original center. Overall, the cost of the
explainable clustering will be close to the original cost up to
a factor that depends on the tree depth (Theorem 3). In the
worst-case, we achieve an approximation factor of O(k2)
for k-means and O(k) for k-medians compared to the cost
of any clustering (e.g., the optimal cost). These results do
not depend on the dimension or input size, and hence, we
get a constant factor approximation when k is a constant.

Approximation lower bounds. Since our upper bounds
depend on k, it is natural to wonder whether it is possible to
achieve a constant-factor approximation, or whether the cost
of explainability grows with k. On the negative side, we
identify a data set such that any threshold tree with k leaves
must incur an Ω(log k)-approximation for both k-medians
and k-means (Theorem 4). For this data set, our algorithm
achieves a nearly matching bound for k-medians.

Table 1: Summary of our new lower and upper bounds on
approximating k-medians/means with explainable clusters.

k-medians k-means
k = 2 k > 2 k = 2 k > 2

Lower 2− 1
d Ω(log k) 3

(
1− 1

d

)2 Ω(log k)

Upper 2 O(k) 4 O(k2)

1.2. Related work

It is NP-hard to find the optimal k-means clustering (Aloise
et al., 2009; Dasgupta, 2008) or even a very close approx-
imation (Awasthi et al., 2015). Previous algorithms for
k-medians/means use iterative algorithms to produce a good
approximate clustering, but this leads to complicated clus-
ters that depend on subtle properties of the data set (Ag-
garwal et al., 2009; Arthur & Vassilvitskii, 2007; Kanungo

et al., 2002; Ostrovsky et al., 2013). Several papers have
considered the use of decision trees for explainable clus-
tering (Bertsimas et al., 2018; Fraiman et al., 2013; Geurts
et al., 2007; Ghattas et al., 2017; Liu et al., 2005). However,
all prior work on this topic is empirical, without any theoret-
ical analysis of quality compared to the optimal clustering.

One way to cluster based on few features is to use dimension-
ality reduction. Two main types of dimensionality reduction
methods have been investigated for k-medians/means. Work
on feature selection shows that it is possible to cluster based
on Θ(k) features and obtain a constant factor approxima-
tion for k-means/medians (Boutsidis et al., 2009; Cohen
et al., 2015). However, after selecting the features, these
methods employ existing approximation algorithms to find
a good clustering, and hence, the cluster assignments are not
explainable. Work on feature extraction shows that it is pos-
sible to use the Johnson-Lindenstrauss transform to Θ(log k)
dimensions, while preserving the clustering cost (Becchetti
et al., 2019; Makarychev et al., 2019). Again, this relies
on running a k-means/medians algorithm after projecting to
the low dimensional subspace. The resulting clusters are not
explainable, and moreover, the features are arbitrary linear
combinations of the original features.

Besides explainability, many other clustering variants have
received recent attention, such as fair clustering (Backurs
et al., 2019; Bera et al., 2019; Huang et al., 2019; Kleindess-
ner et al., 2019; Mahabadi & Vakilian, 2020; Schmidt et al.,
2019), online clustering (Bhaskara & Rwanpathirana, 2020;
Cohen-Addad et al., 2019; Hess & Sabato, 2019; Liberty
et al., 2016; Moshkovitz, 2019), and the use of same-cluster
queries (Ailon et al., 2018; Ashtiani et al., 2016; Huleihel
et al., 2019; Mazumdar & Saha, 2017).

2. Preliminaries
Throughout we use bold variables for vectors, and we use
non-bold for scalars such as feature values. Given a set of
points X = {x1, . . . ,xn} ⊆ Rd and an integer k the goal
of k-medians and k-means clustering is to partition X into
k subsets and minimize the distances of the points to the
centers of the clusters.

It is known that the optimal centers correspond to means or
medians of the clusters, respectively. Denoting the centers
as µ1, . . . ,µk, the aim of k-means is to find a clustering
that minimizes the following objective

cost2(µ1, . . . ,µk) =
∑
x∈X
‖x− c2(x)‖22 ,

where c2(x) = arg minµ∈{µ1,...,µk} ‖µ− x‖2.

Similarly, the goal of k-medians is to minimize

cost1(µ1, . . . ,µk) =
∑
x∈X
‖x− c1(x)‖1 ,
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where c1(x) = arg minµ∈{µ1,...,µk} ‖µ− x‖1.

As it will be clear from context whether we are talking about
k-medians or k-means, we often abuse notation and simply
write cost and c(x), and we let opt denote the optimal
clustering.

2.1. Clustering using threshold trees

Perhaps the simplest way to define two clusters is to use a
threshold cut, which partitions the data based on a threshold
for a single feature. More formally, the two clusters can
be written as Ĉθ,i = (Ĉ1, Ĉ2), which is defined using a
coordinate i and a threshold θ ∈ R in the following way.
For each input point x ∈ X , we place x = [x1, . . . , xd] in
the first cluster Ĉ1 if xi ≤ θ, and otherwise x ∈ Ĉ2. A
threshold cut can be used to explain 2-means or 2-medians
clustering because a single feature and threshold determines
the division of points into two clusters.

For k > 2 clusters, we consider iteratively using threshold
cuts as the basis for the cluster explanations. More precisely,
we construct a binary threshold tree. This tree is an un-
supervised variant of a decision tree. Each internal node
contains a single feature and threshold, which iteratively
partitions the data, leading to clusters determined by the vec-
tors that reach the leaves. We focus on trees with exactly k
leaves, one for each cluster {1, 2, . . . , k}, which also limits
the depth and total number of features to at most k − 1.

When clustering using such a tree, it is easy to understand
why x was assigned to its cluster: we may simply inspect the
threshold conditions on the root-to-leaf path for x. This also
ensures the number of conditions for the cluster assignment
is rather small, which is crucial for interpretability. Notice
that these tree-based explanations are especially useful in
high-dimensional space, when the number of clusters is
much smaller than the input dimension (k � d).

More formally, a threshold tree T with k leaves induces
a k-clustering of the data. If we denote these clusters as
Ĉj ⊆ X , the k-medians/means cost of the tree is defined as

cost1(T ) =

k∑
j=1

∑
x∈Ĉj

‖x−median(Ĉj)‖1

cost2(T ) =

k∑
j=1

∑
x∈Ĉj

‖x−mean(Ĉj)‖22

Our goal is to understand when it is possible to efficiently
produce a tree T such that cost(T ) is not too large compared
to the optimal k-medians/means cost. Specifically, we say
that an algorithm is an a-approximation, if the cost is at
most a times the optimal cost, i.e., if the algorithm returns
threshold tree T then we have cost(T ) ≤ a · cost(opt).

xi1 ≤ 0.5

ei1xi2 ≤ 0.5

ei2. . .

. . .xid ≤ 0.5

eid0

Figure 2: Optimal threshold tree for the data set in Rk−1

consisting of the k − 1 standard basis vectors and the all
zeros vector. Any optimal tree must use all k − 1 features
and have depth k − 1.

3. Motivating Examples
Using k − 1 features may be necessary. We start with a
simple but important bound showing that trees with depth
less than k (or fewer than k − 1 features) can be arbitrarily
worse than the optimal clustering. Consider the data set
consisting of the k−1 standard basis vectors e1, . . . , ek−1 ∈
Rk−1 along with the all zeros vector. As this data set has
k points, the optimal k-median/means cost is zero, putting
each point in its own cluster. Unfortunately, it is easy to see
that for this data, depth k−1 is necessary for clustering with
a threshold tree. Figure 2 depicts an optimal tree for this data
set. Shorter trees do not work because projecting onto any
k − 2 coordinates does not separate the data, as at least two
points will have all zeros in these coordinates. Therefore,
any tree with depth at most k − 2 will put two points in the
same cluster, leading to non-zero cost, whereas the optimal
cost is zero. In other words, for this data set, caterpillar trees
such as Figure 2 are necessary and sufficient for an optimal
clustering. This example also shows that Θ(k) features are
tight for feature selection (Cohen et al., 2015) and provides
a separation with feature extraction methods that use a linear
map to only a logarithmic number of dimensions (Becchetti
et al., 2019; Makarychev et al., 2019).

Standard top-down decision trees do not work A natu-
ral approach to building a threshold tree is to (1) find a
good k-medians or k-means clustering using a standard al-
gorithm, then (2) use it to label all the points, and finally (3)
apply a supervised decision tree learning procedure, such
as ID3 (Quinlan, 1986; 2014) to find a threshold tree that
agrees with these cluster labels as much as possible. ID3,
like other common decision tree algorithms, operates in a
greedy manner, where at each step it finds the best split in
terms of entropy or information gain. We will show that this
is not a suitable strategy for clustering and that the resulting
tree can have cost that is arbitrarily bad. In what follows,
denote by cost(ID3`) the cost of the decision tree with `
leaves returned by ID3 algorithm.

Figure 3 depicts a data set X ⊆ R2 partitioned into three
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Figure 3: Comparison between the first split of an entropy-
based decision tree (e.g. ID3) versus the optimal first thresh-
old. By placing the top two points in separate clusters,
the ID3 split results in a 3-means/medians clustering with
arbitrarily worse cost.

clusters X = X0 ·∪ X1 ·∪ X2. We define two centers
µ0 = (−2, 0) and µ1 = (2, 0) and for each i ∈ {0, 1}, we
define Xi as 500 i.i.d. points x ∼ N (µi, ε) for some small
ε > 0. Then, X2 = {(−2, v), (2, v)} where v →∞. With
high probability, we have that the optimal 3-means cluster-
ing is (X0,X1,X2), i.e. x ∈ X gets label y ∈ {0, 1, 2} such
that x ∈ Xy. The ID3 algorithm minimizes the entropy at
each step. In the first iteration, it splits between the two large
clusters. As a result (−2, v) and (2, v) will also be separated
from one another. Since ID33 outputs a tree with exactly
three leaves, one of the leaves must contain a point from X2

together with points from either X0 or X1, this means that
cost(ID33) = Ω(v) → ∞. Note that cost((X1,X2,X3))
does not depend on v, and hence, it is substantially smaller
than cost(ID33). Unlike ID3, the optimal threshold tree
first separates X2 from X0 ·∪ X1, and in the second split it
separates X0 and X1. In other words, putting the outliers in
a separate cluster is necessary for an optimal clustering. We
note that it is easy to extend this example to larger numbers
of clusters or when we allow ID3 to use more leaves.

4. Two Clusters Using a Single Threshold Cut
In this section, we consider the case of k = 2 clusters, and
we study how well a single threshold cut can approximate
the optimal partition into two clusters.

4.1. Algorithm for k = 2

We present an algorithm to efficiently minimize the cost us-
ing a single threshold cut. We begin by considering a single
feature i and determining the value of the best threshold
θ ∈ R for this feature. Then, we minimize over all features

i ∈ [d] to output the best threshold cut. We focus on the
2-means algorithm; the 2-medians case is similar.

For feature i, we first sort the input points according to
this feature, i.e., assume that the vectors are indexed as
x1
i ≤ . . . ≤ xni . Notice that when restricting to this feature,

there are only n− 1 possible partitions of the data set into
two non-empty clusters. In particular, we can calculate the
cost of all threshold cuts for the ith feature by scanning the
values in this feature from smallest to largest. Then, we
compute for each position p ∈ [n− 1]

cost(p) =

p∑
j=1

∥∥xj − µ1(p)
∥∥2

2
+

n∑
j=p+1

∥∥xj − µ2(p)
∥∥2

2
,

where we denote the optimal centers for these clusters as
µ1(p) = 1

p

∑p
j=1 x

j and µ2(p) = 1
n−p

∑n
j=p+1 x

j be-
cause these are the means of the first p and last n− p points,
respectively. Because there are O(nd) possible thresholds,
and naively computing the cost of each requires timeO(nd),
this would lead to a running time of O(n2d2). We can im-
prove the time to O(nd2 + nd log n) by using dynamic pro-
gramming. Pseudo-code for the algorithm and description
of the dynamic programming are in Appendix F.1.

4.2. Theoretical guarantees for k = 2

We prove that there always exists a threshold cut with low
cost. Since our algorithm from the previous section finds
the best cut, it achieves the guarantees of this theorem.

Theorem 1. For any data set X ⊆ Rd, there is a threshold
cut Ĉ such that the 2-medians cost satisfies

cost(Ĉ) ≤ 2 · cost(opt),

and there is a threshold cut Ĉ such that the 2-means cost
satisfies

cost(Ĉ) ≤ 4 · cost(opt),

where opt is the optimal 2-medians or means clustering.

The key idea of the analysis is to bound the cost of the
threshold clustering in terms of the number of points on
which it disagrees with an optimal clustering. Intuitively, if
any threshold cut must lead to a fairly different clustering,
then the cost of the optimal 2-medians/means clustering
must also be large.

We note that it is possible to prove a slightly weaker bound
by using the midpoint (for each feature) between the centers.
When there are t changes, using the midpoint shows that
cost(opt) is at least t times half of the distance between the
two centers. In other words, this argument only captures
half of the cost. Using Hall’s theorem, we show that each
change corresponds to a pair in the matching, and each
such pair contributes to cost(opt) the distance between the
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centers (not half as before). This improves the bound by a
factor of two. The proof for 2-means is in Appendix D.

Notation. We denote the optimal clusters as C1 and C2

with optimal centers µ1 and µ2. Notice that we can
assume µ1

i ≤ µ2
i for each coordinate i because negat-

ing the ith coordinate for all points in the dataset does
not change the 2-medians/means cost. Assume that a
single threshold partitions X into Ĉ1, Ĉ2 such that t =
min(|C1∆Ĉ1|, |C1∆Ĉ2|). We refer to these t points as
changes, and we assume that t is the minimum possible over
all threshold cuts.

If C1, C2 is an optimal 2-medians clustering, then we prove
that the cost of Ĉ1, Ĉ2 is at most twice the optimal 2-
medians cost. Similarly, if C1, C2 is an optimal 2-means
clustering, then we prove that the cost of Ĉ1, Ĉ2 is at most
four times the optimal 2-means cost. We simply need that
the threshold cut Ĉ = (Ĉ1, Ĉ2) minimizes the number of
changes t compared to the optimal clusters.

We begin with a structural claim regarding the best threshold
cut. This will allow us to obtain a tighter bound on the
optimal 2-medians/means cost, compared to the general
k > 2 case, in terms of the necessary number of changes.
We utilize Hall’s theorem on perfect matchings.

Proposition 1 (Hall’s Theorem). Let (P,Q) be a bipartite
graph. If all subsets P ′ ⊆ P have at least |P ′| neighbors in
Q, then there is a matching of size |P |.
Lemma 1. Let C1 and C2 be the optimal clustering of
X ⊆ Rd, and assume that any threshold cut requires t
changes. For each i ∈ [d], there are t disjoint pairs of
vectors (pj ,qj) in X such that pj ∈ C1 and qj ∈ C2 and
qji ≤ p

j
i for every j ∈ [t].

Proof. Let µ1 and µ2 be the centers for the optimal clusters
C1 and C2. Focus on index i ∈ [d], and assume without
loss of generality that µ1

i ≤ µ2
i . The t pairs correspond to a

matching the following bipartite graph (P,Q). Let Q = C2

and define P ⊆ C1 as the t points in C1 with largest value
in their ith coordinate. Connect p ∈ P and q ∈ Q by an
edge if only if qi ≤ pi. By construction, a matching with t
edges implies our claim. By Hall’s theorem, we just need to
prove that P ′ ⊆ P has at least |P ′| neighbors.

Index P = {p1, . . . ,pt} by ascending value of ith coordi-
nate, p1

i ≤ · · · ≤ pti. Now, notice that vertices in P have
nested neighborhoods: for all j > j′, the neighborhood of
pj
′

is a subset of the neighborhood of pj . It suffices to
prove that pj has at least j neighbors, because this implies
that any subset P ′ ⊆ P has at least |P ′| neighbors, guaran-
teeing a matching of size |P | = t. Indeed, if |P ′| = b then
we know that pj ∈ P ′ for some j ≥ b, implying that P ′ has
at least j ≥ b = |P ′| neighbors.

Assume for contradiction that pj has at most j−1 neighbors.

We argue that the threshold cut xi ≤ pji has fewer than t
changes, which contradicts the fact that all threshold cuts
must make at least t changes. By our assumption, there are
at most j − 1 points that are smaller than pji and belong to
the second cluster. By the definition of P , there are exactly
t− j points with a larger ith coordinate than pji in the first
cluster. Therefore, the threshold cut xi ≤ pji makes at most
(t− j) + (j − 1) < t changes, a contradiction.

Proof for 2-medians. Suppose µ1,µ2 are optimal 2-
medians centers for clusters C1 and C2, and that the thresh-
old cut Ĉ makes t changes, which is the minimum possible.
Applying Lemma 4 (see Appendix B) in the special case of
k = 2 implies that

cost(Ĉ) ≤ cost(opt) + t
∥∥µ1 − µ2

∥∥
1
.

We simply need to prove that t
∥∥µ1 − µ2

∥∥
1
≤ cost(opt).

Applying Lemma 1 for each coordinate i ∈ [d] guarantees t
pairs of vectors (p1,q1), . . . , (pt,qt) with the following
properties. Each pji corresponds to the ith coordinate of
some point in C1 and qji corresponds to the ith coordinate
of some point in C2. Furthermore, for each coordinate, the t
pairs correspond to 2t distinct points in X . Finally, we can
assume without loss of generality that µ1

i ≤ µ2
i and qji ≤ p

j
i ,

which implies that

cost(opt) ≥
d∑
i=1

t∑
j=1

|µ2
i − q

j
i |+ |p

j
i − µ

1
i |

≥
d∑
i=1

t∑
j=1

(µ2
i − q

j
i ) + (pji − µ

1
i )

≥
d∑
i=1

t∑
j=1

(µ2
i − q

j
i ) + (qji − p

j
i ) + (pji − µ

1
i )

= t ·
d∑
i=1

(µ2
i − µ1

i ) = t
∥∥µ2 − µ1

∥∥
1
.

4.3. Lower bounds for k = 2

We next show that optimal clustering is not, in general,
realizable with a single threshold cut, except in a small
number of dimensions (e.g., d = 1). Our lower bounds
on the approximation ratio increase with the dimension,
approaching two for 2-medians or three for 2-means.

The two lower bounds are based on a data set X ⊆ Rd
consisting of 2d points, split into two optimal clusters each
with d points. The first cluster contains the d vectors of
the form 1− ei, where ei is the ith coordinate vector and
1 is the all-ones vector. The second cluster contains their
negations, −1 + ei. Due to the zero-valued coordinate
in each vector, any threshold cut must separate at least one
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vector from its optimal center. In the case of 2-medians, each
incorrect cluster assignment incurs a cost of 2d. The optimal
cost is roughly 2d, while the threshold cost is roughly 4d
(correct assignments contribute ≈ 2d, plus 2d from the
error), leading to an approximation ratio of nearly two. A
similar result holds for 2-means. The proof of these two
lower bounds is in Appendix E.

Theorem 2. For any integer d ≥ 1, define data set X ⊆ Rd
as above. Any threshold cut Ĉ must have 2-medians cost

cost(Ĉ) ≥
(

2− 1

d

)
· cost(opt)

and 2-means cost

cost(Ĉ) ≥ 3

(
1− 1

d

)2

· cost(opt),

where opt is the optimal 2-medians or means clustering.

5. Threshold Trees with k > 2 Leaves
We provide an efficient algorithm to produce a thresh-
old tree with k leaves that constitutes an approximate
k-medians or k-means clustering of a data set X . Our
algorithm, Iterative Mistake Minimization (IMM), starts
with a reference set of cluster centers, for instance from a
polynomial-time constant-factor approximation algorithm
for k-medians/means (Aggarwal et al., 2009), or from a
domain-specific clustering heuristic. These centers may
use all the features and produce complicated clusters in the
d-dimensional space.

We then begin the process of finding an explainable ap-
proximation to this reference clustering, in the form of a
threshold tree with k leaves, whose internal splits are based
on single features. The way we do this is almost identical
for k-medians and k-means, and the analysis is also nearly
the same. Our algorithm is deterministic and its run time is
only O(kdn log n), after finding the initial centers.

As discussed in Section 3, existing decision tree algorithms
use greedy criteria that are not suitable for our tree-building
process. However, we show that an alternative greedy
criterion—minimizing the number of mistakes at each split
(the number of points separated from their corresponding
cluster center)—leads to a favorable approximation ratio to
the optimal k-medians or k-means cost.

5.1. Our algorithm

Algorithm 1 takes as input a data set X ⊆ Rd. The first step
is to obtain a reference set of k centers {µ1, . . . ,µk}, for
instance from a standard clustering algorithm. We assign
each data point xj the label yj of its closest center. We
then call the build tree procedure, which looks for a
tree-induced clustering that fits these labels.

Algorithm 1 ITERATIVE MISTAKE MINIMIZATION

Input :x1, . . . ,xn – vectors in Rd
k – number of clusters

Output :root of the threshold tree

1 µ1, . . .µk ← k-Means(x1, . . . ,xn, k)
2 foreach j ∈ [1, . . . , n] do
3 yj ← arg min1≤`≤k‖x

j − µ`‖
4 end
5 return build tree({xj}nj=1, {y

j}nj=1, {µ
j}kj=1)

1 build tree({xj}mj=1, {y
j}mj=1, {µ

j}kj=1):
2 if {yj}mj=1 is homogeneous then
3 leaf.cluster ← y1

4 return leaf
5 end
6 foreach i ∈ [1, . . . , d] do
7 `i ← min1≤j≤m µy

j

i

8 ri ← max1≤j≤m µy
j

i

9 end

10 i, θ ← arg mini,`i≤θ<ri
∑m
j=1 mistake(xj ,µy

j
, i, θ)

11 M← {j | mistake(xj ,µy
j
, i, θ) = 1}mj=1

12 L← {j | (xji ≤ θ) ∧ (j 6∈ M)}mj=1

13 R← {j | (xji > θ) ∧ (j 6∈ M)}mj=1

14 node.condition← “xi ≤ θ”
15 node.lt← build tree({xj}j∈L, {yj}j∈L, {µj}kj=1)

16 node.rt← build tree({xj}j∈R, {yj}j∈R, {µj}kj=1)

17 return node

1 mistake(x,µ, i, θ):
2 return (xi ≤ θ) 6= (µi ≤ θ) ? 1 : 0

The tree is built top-down, using binary splits. Each node
u of the tree can be associated with the portion of the input
space that passes through that node, a hyper-rectangular
region cell(u) ⊆ Rd. If this cell contains two or more
of the centers µj , then it needs to be split. We do so by
picking the feature i ∈ [d] and threshold value θ ∈ R such
that the resulting split xi ≤ θ sends at least one center to
each side and moreover produces the fewest mistakes: that
is, separates the fewest points in X ∩ cell(u) from their
corresponding centers in {µj : 1 ≤ j ≤ k} ∩ cell(u). We
do not count points whose centers lie outside cell(u), since
they are associated with mistakes in earlier splits. Figure 4
in Appendix A shows a step-by-step example.

We find the optimal split (i, θ) by searching over all pairs
efficiently using dynamic programming. We then add this
node to the tree, and discard the mistakes (the points that
got split from their centers) before recursing on the left and
right children. We terminate at a leaf node whenever all
points have the same label (i.e., the subset of the data is
homogeneous). Because there were k different labels to
begin with, the resulting tree has exactly k leaves.

We next describe how to speed-up the algorithm using dy-
namic programming. In Section 5.2, we provide the main
ideas for analyzing the IMM approximation guarantees.

Time analysis of the tree-building algorithm. We sketch
how to execute the algorithm in time O(kdn log n) for an
n-point data set. At each step of the top-down procedure,



Explainable k-Means and k-Medians Clustering

we find a coordinate and threshold pair that minimizes the
mistakes at this node (line 10 in build tree procedure).
We use dynamic programming to avoid recomputing the
cost from scratch for each potential threshold. For each
coordinate i ∈ [d], we first sort the data points and centers.
Then, we iterate over the possible thresholds. We claim that
each internal node can be processed in time O(dn log n).
The key observation is that each point will affect the number
of mistakes at most two times. Indeed, when the threshold
moves, either a data point or a center moves to the other side
of the threshold. Since we know the number of mistakes
from the previous threshold, we efficiently count the new
mistakes as follows. If a single data point changes sides,
then the number of mistakes changes by at most one. If a
center switches sides, which happens at most once, then we
can update the mistakes for this center. Overall, each data
point affects the mistakes at most twice (once when chang-
ing sides, and once when its center changes sides). Thus, the
running time for each internal node is O(dn log n). As the
tree has k− 1 internal nodes, the total time is O(kdn log n).

5.2. Approximation guarantee for the IMM algorithm

Our main theoretical result of this section is the following.

Theorem 3. Suppose that IMM takes centers µ1, . . . ,µk

and returns a tree T of depth H . Then,

1. The k-medians cost is at most

cost(T ) ≤ (2H + 1) · cost(µ1, . . . ,µk)

2. The k-means cost is at most

cost(T ) ≤ (8Hk + 2) · cost(µ1, . . . ,µk)

In particular, IMM achieves worst case approximation fac-
tors of O(k) and O(k2) using any O(1) approximation to
k-means or k-medians, respectively.

We state the theorem in terms of the depth of the tree to
highlight that the approximation guarantee may depend on
the structure of the input data. If the optimal clusters can
be easily identified by a small number of salient features,
then the tree may have depth O(log k). In the next section
we provide a lower bound showing that an Ω(log k) approx-
imation factor is necessary for k-medians and k-means. For
this data set, our algorithm produces a threshold tree with
depth O(log k), and therefore, the analysis is tight for k-
medians. We leave it as an intriguing open question whether
the bound can be improved for k-means.

The proof of the approximation bound rests upon a simple
characterization of the excess clustering cost induced by
the tree. For any internal node u of the final tree T , let
cell(u) ⊆ Rd denote the region of the input space that ends

up in that node, and let B(u) be the bounding box of the
centers that lie in this node, {µj : 1 ≤ j ≤ k} ∩ cell(u).
We will be interested in the diameter of this bounding box,
measured either by `1 or squared `2 norm, and denoted
diam1(B(u)) and diam2

2(B(u)), respectively.

Lemma 2. If IMM takes centers µ1, . . . ,µk and returns a
tree T that incurs tu mistakes at node u ∈ T , then

1. The k-medians cost of T satisfies

cost(T ) ≤ cost(µ1, . . . ,µk) +
∑
u∈T

tudiam1(B(u))

2. The k-means cost of T satisfies

cost(T ) ≤ 2cost(µ1, . . . ,µk)+2
∑
u∈T

tudiam2
2(B(u))

A detailed proof is given in Appendix B. Briefly, any point x
that ends up in a different leaf from its correct center µj

incurs some extra cost. To bound this, consider the inter-
nal node u at which x is separated from µj . Node u also
contains the center µi that ultimately ends up in the same
leaf as x. For k-medians, the excess cost for x can then be
bounded by ‖µi − µj‖1 ≤ diam1(B(u)). The argument
for k-means is similar.

These
∑
u tudiam(B(u)) terms can in turn be bounded in

terms of the cost of the reference clustering.

Lemma 3. If IMM takes centers µ1, . . . ,µk and returns a
tree T of depth H that makes tu mistakes at node u ∈ T ,

1. The k-medians cost satisfies∑
u∈T

tudiam1(B(u)) ≤ 2H · cost(µ1, . . . ,µk).

2. The k-means cost satisfies∑
u∈T

tudiam2
2(B(u)) ≤ 4Hk · cost(µ1, . . . ,µk).

The proof for this lemma is significantly more complicated,
and it contains the main new techniques in our analysis. We
provide a sketch of the proof; full details are in Appendix B.

The core challenge is that we aim to lower bound the cost of
the given centers using only information about the number
of mistakes at each internal node. Moreover, the IMM algo-
rithm only minimizes the number of mistakes, and not the
cost of each mistake. Therefore, we must show that if every
axis-aligned cut in B(u) separates at least tu points x from
their centers, then there must be a considerable distance
between the points in cell(u) and their centers.
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To prove this, we analyze the structure of points in each cell.
Specifically, we consider the single-coordinate projection
of points in the box B(u), and we order the centers in B(u)
from smallest to largest for the analysis. If there are k′

centers in node u, we consider the partition of B(u) into
2(k′ − 1) disjoint segments, splitting at the centers and at
the midpoints between consecutive centers. Since tu is the
minimum number of mistakes, we must in particular have
at least tu mistakes from the threshold cut at each midpoint.
We argue that each of these segments is covered at least tu
times by a certain set of intervals. Specifically, we consider
the intervals between mistake points and their true centers,
and we say that an interval covers a segment if the segment
is contained in the interval. This allows us to capture the
cost of mistakes at different distance scales. For example, if
a point is very far from its true center, then it covers many
disjoint segments, and we show that it also implies a large
contribution to the cost. Claim 2 in Appendix B provides
our main covering result, and we use this to argue that the
cost of the given centers can be lower bounded in terms
of the distance between consecutive centers in B(u). For
k-medians, we can directly derive a lower bound on the cost
in terms of the `1 diameter diam1(B(u)). For k-means,
however, we employ Cauchy-Schwarz, which incurs an
extra factor of k in the bound with diam2

2(B(u)). Overall,
we sum these bounds over the height H of the tree, leading
to the claimed upper bounds in the above lemma.

5.3. Approximation lower bound

To complement our upper bounds, we show that a thresh-
old tree with k leaves cannot, in general, yield better than
an Ω(log k) approximation to the optimal k-medians or k-
means clustering.

Theorem 4. For any k ≥ 2, there exists a data set with k
clusters such that any threshold tree T with k leaves must
have k-medians and k-means cost at least

cost(T ) ≥ Ω(log k) · cost(opt),

where opt is the optimal k-medians or means clustering.

The data set is produced by first picking k random centers
from the hypercube {−1, 1}d, for large enough d, and then
using each of these to produce a cluster consisting of the d
points that can be obtained by replacing one coordinate of
the center by zero. Thus the clusters have size d and radius
O(1). To prove the lower bound, we use ideas from the study
of pseudo-random binary vectors, showing that projecting
the centers to any subset of m . log2 k coordinates take on
all 2m possible values, with each occurring roughly equally
often. Then, we show that (i) the threshold tree must be
essentially a complete binary tree with depth Ω(log2 k) to
achieve a clustering with low cost, and (ii) any such tree
incurs a cost of Ω(log k) times more than the optimal for

this data set (for both k-medians and k-means). The proof
of Theorem 4 appears in Appendix C.

It would be interesting to improve our upper bounds on
explainable clustering for well-separated data. Our lower
bound of Ω(log k) utilizes clusters with diameter O(1) and
separation Ω(d), where the hardness stems from the random-
ness of the centers. In this case, the approximation factor
Θ(log k) is tight because our upper bound proof actually
provides a bound in terms of the tree depth (which is about
log k, see Appendix C.5). Therefore, an open question is
whether a Θ(log k) approximation is possible for any well-
separated clusters (e.g., mixture of Gaussians with separated
means and small variance).

6. Conclusion
In this paper we discuss the capabilities and limitations
of explainable clusters. For the special case of two clus-
ters (k = 2), we provide nearly matching upper and lower
bounds for a single threshold cut. For general k > 2, we
present the IMM algorithm that achieves an O(H) approx-
imation for k-medians and an O(Hk) approximation for
k-means when the threshold tree has depth H and k leaves.
We complement our upper bounds with a lower bound show-
ing that any threshold tree with k leaves must have cost at
least Ω(log k) more than the optimal for certain data sets.
Our theoretical results provide the first approximation guar-
antees on the quality of explainable unsupervised learning
in the context of clustering. Our work makes progress to-
ward the larger goal of explainable AI methods with precise
objectives and provable guarantees.

An immediate open direction is to improve our results for k
clusters, either on the upper or lower bound side. One op-
tion is to use larger threshold trees with more than k leaves
(or allowing more than k clusters). It is also an important
goal to identify natural properties of the data that enable
explainable, accurate clusters. Beyond k-medians/means,
it would be interesting to develop other clustering methods
using a small number of features (e.g., hierarchical cluster-
ing). Finally, we believe our algorithms would be useful in
practice, as they are efficient and easily implementable.
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A. IMM example
Figure 4 depicts the operation of Algorithm 1.

(a) Optimal 5-means clusters

(b) 1st split: 1 single mistake caused
by this split (1 total mistake)

(c) 2nd split: 2 mistakes caused by
this split (3 total mistakes)

(d) 3rd split: 12 mistakes caused by
this split (15 total mistakes)

(e) 4th split: 0 mistakes caused by this
split (15 total mistakes)

Figure 4: Figure 4(a) presents the optimal 5-means clustering. Figures 4(b)–4(e) depict the four splits of the IMM
algorithm. The first split separates between cluster 1 and the rest, with a single mistake (marked as a red cross). Next, the
IMM separates cluster 3 with 2 additional mistakes. The third split separates cluster 2, and this time the minimal number of
mistakes is 12 for this split. Eventually, clusters 0 and 4 are separated without any mistakes.

B. Upper Bound: Threshold Tree with k leaves
We prove Theorem 3 regarding the approximation ratio of the IMM algorithm. The proof proceeds in three main steps.
First, we rewrite the cost of IMM in terms of the minimum number of mistakes made between the output clustering and the
clustering based on the given centers. Second, we provide a lemma that relates the cost of any clustering to the number of
changes required by a threshold clustering. Finally, we put these two together to show that the output cost is at most an
O(H) factor larger than the k-medians cost and at most an O(Hk) factor larger than the k-means cost, respectively, where
H is the depth of the IMM tree, and the cost is relative to cost(µ1, . . . ,µk). In particular, when IMM starts with a constant
factor approximation to the optimal centers, it achieves cost O(H · cost(opt1)) for k-medians or O(Hk · cost(opt2)) for
k-means.

Notation and Preliminaries. Let T be the IMM tree that is built using the given centers µ1, . . . ,µk. Each node u in the
tree corresponds to a value θu ∈ R and a coordinate i ∈ [d]. The tree T defines a partition of X into k clusters Ĉ1, . . . , Ĉk
based on the points that reach the k leaves in T , where we index the clusters so that leaf j contains the centers µj and µ̂j ,
where µ̂j is the mean of Ĉj for k-means and the median of Ĉj for k-medians. This provides a bijection between old and
new centers (and clusters). Recall that the map c : X → {µ1, . . . ,µk} associates each point to its nearest center (i.e., c(x)
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corresponds to the cluster assignment given by the centers {µ1, . . . ,µk}).

For a node u ∈ T , we let Xu denote the surviving data set vectors at node u ∈ T based on the thresholds from the root to u.
We also define Ju ⊆ [k] be the set of surviving centers at node u from the set {µ1, . . . ,µk}, where these centers satisfy the
thresholds from the root to u. Define µL,u and µR,u to be the maximal (smallest and largest) coordinate-wise values of the
centers in Ju, that is, for i ∈ [d], we set

µL,ui = min
j∈Ju

µji , and µR,ui = max
j∈Ju

µji .

In other words, using the previous notation and recalling that B(u) = {µ1, . . . ,µk} ∩ cell(u), we have that

diam1(B(u)) = ‖µL,u − µR,u‖1 and diam2
2(B(u)) = ‖µL,u − µR,u‖22.

Recall that tu for node u ∈ T denotes the number of mistakes incurred during the threshold cut defined by u, where a
point x is a mistake at node u if x reaches u, it was not a mistake before, and exactly one of the following two events occurs:

{c(x)i ≤ θu and xi > θu} or {c(x)i > θu and xi ≤ θu}.

Let X = X cor ∪Xmis be a partition of the input data set into two parts, where x is in X cor if it reaches the same leaf node in
T as its center c(x), and otherwise, x is in Xmis. In other words, Xmis contains all points x ∈ X that are a mistake at any
node u in T , and the rest of the points are in X cor.

We also need a standard inequality to analyze the k-means cost.

Claim 1. For any a1, . . . , am ∈ R, it holds that
∑k
i=1 a

2
i ≥ 1

k

(∑k
i=1 ai

)2

.

Proof. Denote by a the vector (a1, . . . , am) and by b the vector (1/
√
k, . . . , 1/

√
k). By the Cauchy–Schwarz inequality

1
k

(∑k
i=1 ai

)2

= 〈a, b〉2 ≤
∑k
i=1 a

2
i

We also need two facts, which state the optimal center for a cluster corresponds to mean or median of the points in the
cluster, respectively.

Fact 1. For any set of points S = {x1, . . . ,xn} ⊆ Rd, the optimal center under the `22 cost is the mean µ = 1
n

∑
x∈S x.

Fact 2. For any set of points S = {x1, . . . ,xn} ⊆ Rd, the optimal center µ under the `1 cost is the median µi =
median(x1

i , . . . , x
n
i ) for i ∈ [d].

The proofs of these facts can be found in standard texts (Schütze et al., 2008).

B.1. Proof of Theorem 3

To prove the theorem, we state two lemmas that aid in analyzing the cost of the given clustering versus the IMM clustering.
These lemmas are simply a restatement of Lemmas 2 and 3, this time using the new notation. The theorem will follow from
these lemmas, and we will prove the lemmas in the proceeding subsections. We start with the lemma relating the number of
mistakes tu at each node u and the distance between µL,u and µR,u to the cost incurred by the given centers.

Lemma 4. If IMM takes centers µ1, . . . ,µk and returns a tree T of depth H that incurs tu mistakes at node u ∈ T , then

1. The k-medians cost of the IMM tree satisfies

cost(T ) ≤ cost(µ1, . . . ,µk) +
∑
u∈T

tu‖µL,u − µR,u‖1

2. The k-means cost of the IMM tree satisfies

cost(T ) ≤ 2 · cost(µ1, . . . ,µk) + 2 ·
∑
u∈T

tu‖µL,u − µR,u‖22
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We next bound the cost of the given centers in the terms of the number of mistakes in the tree. The key idea is that if there
must be many mistakes at each node, then the cost of the given centers must actually be fairly large.
Lemma 5. If IMM takes centers µ1, . . . ,µk and returns a tree T of depth H that incurs tu mistakes at node u ∈ T , then

1. The k-medians cost satisfies ∑
u∈T

tu‖µL,u − µR,u‖1 ≤ 2H · cost(µ1, . . . ,µk).

2. The k-means cost satisfies ∑
u∈T

tu‖µL,u − µR,u‖22 ≤ 4Hk · cost(µ1, . . . ,µk).

Combining these two lemmas immediately implies Theorem 3.

B.2. Proof of Lemma 4

We begin with the k-medians proof (the k-means proof will be similar). Notice that the cost can only increase when
measuring the distance to the (suboptimal) center µj instead of the (optimal) center µ̂j for cluster Ĉj , and hence,

cost(T ) =

k∑
j=1

∑
x∈Ĉj

‖x− µ̂j‖1 ≤
k∑
j=1

∑
x∈Ĉj

‖x− µj‖1.

We can rewrite this sum using the partition X cor and Xmis of X , using the fact that whenever x ∈ X cor, then the distance is
computed with respect to the true center c(x),

k∑
j=1

∑
x∈Ĉj

‖x− µj‖1 =

k∑
j=1

∑
x∈X cor∩Ĉj

‖x− µj‖1 +

k∑
j=1

∑
x∈Xmis∩Ĉj

‖x− µj‖1

=
∑

x∈X cor

‖x− c(x)‖1 +

k∑
j=1

∑
x∈Xmis∩Ĉj

‖x− µj‖1

Starting with the above cost bound, and using the triangle inequality, we see

cost(T ) ≤
∑

x∈X cor

‖x− c(x)‖1 +

k∑
j=1

∑
x∈Xmis∩Ĉj

‖x− µj‖1

≤
∑

x∈X cor

‖x− c(x)‖1 +

k∑
j=1

∑
x∈Xmis∩Ĉj

(‖x− c(x)‖1 + ‖c(x)− µj‖1)

= cost(µ1, . . . ,µk) +

k∑
j=1

∑
x∈Xmis∩Ĉj

‖c(x)− µj‖1

To control the second term in the final line, we must bound the cost of the mistakes. We decompose Xmis based on the node
u where x ∈ Xmis is first separated from its true center c(x) due to the threshold at node u. To this end, consider some point
x ∈ Xmis ∩ Ĉj , where its distance is measured to the incorrect center µj 6= c(x). Both centers c(x) and µj have survived
until node u in the threshold tree T , and hence, both vectors are part of the definitions of µL,u and µR,u. In particular, we
can use the upper bound

‖c(x)− µj‖1 ≤ ‖µL,u − µR,u‖1.
There are tu points in Xmis caused by the threshold at node u, and we have that

k∑
j=1

∑
x∈Xmis∩Ĉj

‖c(x)− µj‖1 ≤
∑
u∈T

tu · ‖µL,u − µR,u‖1.
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Therefore, we have, as desired

cost(T ) ≤ cost(µ1, . . . ,µk) +

k∑
j=1

∑
x∈Xmis∩Ĉj

‖x− µj‖1

≤ cost(µ1, . . . ,µk) +
∑
u∈T

tu‖µL,u − µR,u‖1.

The analysis for k-means is essentially same, except we incur a factor of two by using Claim 1 instead of the triangle
inequality:

cost(T ) ≤
∑

x∈X cor

‖x− c(x)‖22 + 2

k∑
j=1

∑
x∈Xmis∩Ĉj

(‖x− c(x)‖22 + ‖c(x)− µj‖22)

≤ 2 · cost(µ1, . . . ,µk) + 2 ·
k∑
j=1

∑
x∈Xmis∩Ĉj

‖c(x)− µj‖22

≤ 2 · cost(µ1, . . . ,µk) + 2 ·
∑
u∈T

tu‖µL,u − µR,u‖22

B.3. Proof of Lemma 5

To prove this lemma, we bound the cost at each node u of tree in terms of the mistakes made at this node. For this lemma,
we define X cor

u to be the set of points in X that reach node u in T along with their center c(x). We note that X cor
u differs

from X cor ∩ Xu because a point x ∈ X cor
u may not make it to X cor if there is a mistake later on (i.e., X cor is the union of

X cor
u only over leaf nodes).

Lemma 6. For any node u ∈ T , we have that∑
x∈X cor

u

‖x− c(x)‖1 ≥
tu
2
· ‖µL,u − µR,u‖1.

and ∑
x∈X cor

u

‖x− c(x)‖22 ≥
tu
4k
· ‖µL,u − µR,u‖22.

Proof. Fix a coordinate i ∈ [d] and a node u ∈ T . To simplify notation, we let z1 ≤ · · · ≤ zk′ denote the sorted values of
ith coordinate of the k′ ≤ k centers that survive until node u (so that z1 = µL,ui and zk′ = µR,ui ). Observe that for each
x ∈ X cor

u , the center c(x) must have survived until node u, and hence, c(x)i equals one of the values zj for j ∈ [k′].

We need one crucial definition for the proof, which allows us to relate the cost in coordinate i to the distances between z1

and zk′ . For consecutive values (j, j + 1), we say that the pair (j, j + 1) is covered by x if either

• The segment [zj ,
zj+zj+1

2 ) is contained in the segment [xi, c(x)i], or

• The segment [
zj+zj+1

2 , zj+1) is contained in the segment [xi, c(x)i].

We prove the following claim, which will allow us to relate the cost in the ith coordinate to value zk′ − z1 by decomposing
this value into the distance between consecutive centers.

Claim 2. For each j = 1, 2, . . . , k′ − 1, the pair (j, j + 1) is covered by at least tu points x ∈ X cor
u .

Proof. Suppose for contradiction that this does not hold. We argue that we can find a threshold value for coordinate i that
makes fewer than tu mistakes. To see this, assume that (j, j + 1) is covered by fewer than tu points x ∈ Xu. In particular,
setting the threshold to be zj+zj+1

2 separates fewer than tu points x from their centers c(x). This implies that there are fewer
than tu mistakes at node u, which is a contradiction because the IMM algorithm chooses the coordinate and threshold pair
that minimizes the number of mistakes.
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Now this claim suffices to prove Lemma 6. The only challenge is that we must string together the covering points x to get a
bound on zk′ − z1.

We start with the k-medians proof. Using the above claim, we can lower bound the contribution of coordinate i to the cost of
the given centers. Notice that the values z1 ≤ · · · ≤ zk′ partition the interval between z1 = µL,ui and zk′ = µR,ui . Thus,
each time x covers a pair (j, j + 1), there must be a contribution of zj+1−zj

2 to the cost |xi − c(x)i|. Because each pair is
covered at least tu times by Claim 2, we conclude that

∑
x∈X cor

u

|xi − c(x)i| ≥ tu
k′−1∑
j=1

(
zj+1 − zj

2

)
=
tu
2

(zk′ − z1).

To relate the bound to µL,u and µR,u, we note that the above argument holds for each coordinate i ∈ [d], and we have that∑
x∈X cor

u

‖x− c(x)‖1 =
∑
i∈[d]

∑
x∈X cor

u

|xi − c(x)i| ≥
tu
2
· ‖µL,u − µR,u‖1.

For the k-means proof, we apply the same argument as above, this time using Claim 1 to bound the sum of squared values as

∑
x∈X cor

u

|xi − c(x)i|2 ≥ tu
k′−1∑
j=1

(
zj+1 − zj

2

)2

≥ tu
k

k′−1∑
j=1

(
zj+1 − zj

2

)2

=
tu
4k

(zk′ − z1)2,

and therefore, summing over coordinates i ∈ [d], we have∑
x∈X cor

u

‖x− c(x)‖22 =
∑
i∈[d]

∑
x∈X cor

u

|xi − c(x)i|2 ≥
tu
4k
· ‖µL,u − µR,u‖22.

Proof of Lemma 5. We start with the k-medians proof. The factor of H arises because the same points x ∈ X can appear in
at most H sets X cor

u because H is the depth of the tree. More precisely, using Lemma 6 for each node u, we have that

H · cost(µ1, . . . ,µk) ≥
∑
u∈T

∑
x∈X cor

u

‖x− c(x)‖1 ≥
∑
u∈T

tu
2
‖µL,u − µR,u‖1.

Applying the same steps for the k-means cost, we have that

H · cost(µ1, . . . ,µk) ≥
∑
u∈T

∑
x∈X cor

u

‖x− c(x)‖22 ≥
∑
u∈T

tu
4k
‖µL,u − µR,u‖22.

C. Lower Bound: Threshold Tree with k leaves
In this section we show that any threshold tree with k leaves must be an Ω(log k)-approximation, under the k-means and
k-medians cost. We will show a data set that will cause many mistakes. This data set consists of k clusters where any two
clusters are very far from each other while inside any cluster the points differ by at most two features. Each cluster is created
by first taking a codeword and then changing one feature at a time to 0. The consequence of this process is that for every
feature there are many points that globally are very different yet locally all equal to 0.

The proof of the lower bound has a few steps:

1. In Section C.1 we show that there is a code such that (i) every two points are far apart, and (ii) when inspecting any
O(log k) features, many codewords are consistent with this local view. From thiscode we construct our data set with
dk points and cost(opt) = O(dk).



Explainable k-Means and k-Medians Clustering

2. In Section C.2 we prove that the clusters induced by the threshold tree T are similar to the original clusters, except for
at most k points in each cluster. These points will cause cost(T ) to be large.

3. In Section C.3 we uncover a few properties of any threshold tree created by an O(log k)-approximation algorithm: up
until level O(log k) the tree has to be complete and no feature is used more than once.

4. In Section C.4 we put together all the claims and show that each level causes Ω(k log k) mistakes, each with a cost of
Ω(d), thus cost(T ) = Ω(kd log k) which proves the lower bound of Ω(log k)-approximation.

Data set construction. We first take k codewords v1, . . . ,vk ∈ {+1,−1}d that have the properties described in Claim 3.
From each codeword v we create d data points, X v, each time by changing exactly one feature to 0. In total we have dk
points in the data set, X = ∪iX vi . The cost of the clustering that cluster together all points that belong to the same vector
vi is O(dk), as the cost of each point is Θ(1). Thus, cost(opt) ≤ O(dk).

C.1. The data set

Proposition 2 (Hoeffding’s inequality). Let X1, ..., Xn be independent random variables, where for each i, Xi ∈ [0, 1].
Define the random variable X =

∑n
i=1Xi. Then, for any t ≥ 0,

Pr(|X − E[X]| ≥ t) ≤ 2e−
2t2

n .

Claim 3. For any k ≥ 3, there are k points C ⊆ {±1}d that have the following properties for any ε ≥ ln(k)√
k

:

1. d = k3

2. for every c 6= c′ ∈ C their distance is linear, i.e., |{i : ci 6= c′i}| ≥ d/4.

3. for every ` ≤ ln(k)
50 indexes in [d], and every assignment to these indexes, the number of points in C that has these

assignment is at least k(1/2` − ε)

Proof. Take k random points in {±1}d. We will show that the probability that all properties hold is bigger than 0 and this
will prove our claim using the probabilistic method.

To prove the second property, we use Hoeffding’s inequality and union bound. We can bound the probability that any two
points in C agree by more than 3d/4 coordinates by 2k2e−d/8 < 1− e−1 for k ≥ 3.

To prove the third property we again use Hoeffding’s inequality and union bound. This time though we have k random
variables, one for each point. There are

(
d
`

)
possible ` coordinates, and there are 2` possible assignments to these coordinates.

For specific ` coordinates and an assignment to these coordinates the expected number of points in C that has the specific
assignment is k/2`. By Hoeffding’s inequality, the probability that we deviate by εk is less than e−ε

2k. The probability that
the last property does not hold is bounded by(

d

`

)
2`+1e−2ε2k ≤ e` ln d+2`+1−2ε2k.

Thus for ε ≥ ln(k)√
k
, the last term is smaller than e−1.

C.2. The cluster created by a threshold tree

Claim 4. For any threshold tree T with at most k leaves, and for any codeword v, the leaf containing v also contains at
least d− k points of X v.

Proof. There are at most k ≥ 3 leaves in T , thus in the root to leaf path of the codeword v there are at most k − 1 features.
Hence, all data points in X v that agree on this features must reach the same leaf and be in the same cluster. There are at
least d− k such points in X v.
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Claim 5. If there are α points from X v1

and β points from X v2

, v1 6= v2, that are in the same cluster in T , then their
contribution to cost(T ) is at least 1

4 min(α, β)d. The claim holds both under the `1 cost and the `2 squared cost.

Proof. Denote the center that contains α points from X v1

and β points from X v2

by µ. Without loss of generality α ≤ β.
We can disjointly match α points from the two different clusters (x1,y1), . . . , (xα,yα), which means that their contribution
to cost(T ) is at least

α∑
j=1

∥∥xj − µ
∥∥2

2
+
∥∥µ− yj

∥∥2

2
≥

α∑
j=1

1

2

∥∥xj − yj
∥∥2

2
≥ 1

2
· α ·

(
d

4
− 2

)
· 4 ≥ dα

4
,

where the first inequality follows Claim 1, the second inequality follows from Claim 3 and the fact that if two codewords are
different by at least d/4 features, then the points differ by at least d/4− 2 features, each contributing a cost of 4, the third
inequality follows from the fact that d = k3 ≥ 16 for k ≥ 3. Similarly for the `1 cost

α∑
j=1

∥∥xj − µ
∥∥

1
+

α∑
j=1

∥∥µ− yj
∥∥

1
≥
∥∥xj − yj

∥∥
1
≥ α ·

(
d

4
− 2

)
· 2 ≥ dα

4
.

C.3. The threshold tree

The next two claims prove that if a feature is used twice or the tree is not complete until level ln(k)
50 , then the clustering tree

T cannot be an O(log k)-approximation because it shows that cost(T ) ' d2 � log k · cost(opt).

Claim 6. Fix a threshold tree T with k ≥ 3 leaves. If there is a feature that is used twice on the same root-to-leaf path in T ,
then

cost(T ) ≥ d(d− k)

4
.

Proof. The proof is composed of two steps, first we show that if a feature is used twice then there is leaf that it is unreachable
by a codeword. Then we will show that this implies that two codewords share the same cluster, and thus cost(T ) is high.

Assume that the there are two nodes in T , both of them use the same feature i, one with threshold θ and the other with
threshold θ′. If θ = θ′ then there is a leaf that is not reachable. Otherwise, the two thresholds divide the line into three parts,
and since the codewords have only two values, there is a leaf unreachable by any codeword. Summing up these two cases,
there is a leaf that is not reached by any codeword.

From the pigeonhole principle there are two codewords that share the same cluster which is a contradiction using Claims 4
and 5.

Claim 7. If threshold T contains a leaf at depth less than ln k
50 , then

cost(T ) ≥ d(d− k)

4
.

The claim is true both under the k-means and the k-medians cost.

Proof. Assume T is not complete until level log k
50 . So there is a leaf at a level smaller than log k

50 . By the construction of the
data set, there are at least ( 1

2`
− ε)k > 1 codewords that reach this leaf. The claim follows from Claims 4 and 5.

C.4. Proof of Theorem 4

Assume by contradiction that T is an O(log k)-approximation. From Claim 4 we deduce that for each codeword v, at least
d− k points from X v will be in the same cluster. From Claim 5 and the assumption that T is O(log k)-approximation we
get that each d− k such points must be in its own cluster, this cluster will be called the main cluster of X v.

The only values that features can get in the data set are +1,−1 or 0. Thus, we can assume, without loss of generality, that
each threshold is either 0.5 or −0.5. Focus on some node in T at level ` with feature i and threshold θ. If θ = 0.5, then for
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all codewords v with vi = 1 the point in X v with vi will be separated for its main cluster. From the construction of the
data set, there are at least ( 1

2`
− ε)k such points. Similarly for θ = −0.5, we can show that there are at least ( 1

2`
− ε)k such

points. From Claim 6, we deduce that these mistakes are disjoint.

Applying Claim 7, there are 2`−1 nodes at each level up until level log k
50 . Hence, total number of mistakes, i.e., points that

will not go with their codeword, can be lower bounded by the following using ε = ln(k)√
k

and large enough k:

log k
50∑
`=1

2`−1

(
1

2`
− ε
)
k ≥ k log k

200
.

Thus, from Claim 4 we can lower bound the cost of T :

cost(T ) ≥ kd log k

200
= Ω(log k)cost(opt)

C.5. IMM Upper Bound for this dataset

We sketch the proof that the IMM algorithm produces a tree of depth O(log k) for the above dataset construction with high
probability. In particular, the upper bound from Theorem 3 is tight for k-medians up to the leading constant for this dataset.

The analysis will follow the standard bound on the maximum clique size in a random graph. Consider fixing any ` = 3 log2 k
coordinates to ±1. When the set of k centers C is chosen uniformly at random from {±1}d and d = k3, we show that
with high probability there are at most ` centers consistent with these values. When IMM builds the tree, it always chooses
a threshold that reduces the number of centers in the children of the current node, and hence, it never splits on the same
feature twice. Moreover, it stops the recursion when there is a single center in a leaf. Therefore, after 3 log2 k thresholds,
the remaining depth of the tree is at most 3 log2 k, and hence, the total depth of the tree is at most 6 log2 k as well.

More formally, let σ ∈ {±1}` be any sign pattern, and let CI,σ be set of centers having pattern σ when projected onto
coordinates I ⊆ [d] with |I| = `. Then, using the standard upper bound on the binomial coefficient, we have

Pr
[
|CI,σ| ≥ `

]
≤ Pr

[
|CI,σ| = `

]
≤ E

[
|{I : |CI,σ| = `}|

]
=

(
d

`

)
2−`

2

≤
(
de

`

)`
2−`

2

=

(
k3e

2``

)`
.

Therefore, plugging in 2` = k3, we see that this probability is at most (e/`)`. Taking a union bound over the 2` possible
settings of σ ∈ {±1}` shows that the probability that there are ` centers consistent with any σ tends to zero as k increases.

D. Upper Bound Proof for 2-Means

In this section we show that there is a threshold cut Ĉ such that the 2-means cost satisfies cost(Ĉ) ≤ 4 · cost(opt).

Suppose µ1,µ2 are optimal 2-means centers for the clustersC1 andC2. Let t = min(|C1∆Ĉ1|, |C1∆Ĉ2|) be the minimum
number of changes for any threshold cut Ĉ1, Ĉ2, and define Xmis to the set of t points in the symmetric difference, where
X = X cor ∪ Xmis and X cor ∩ Xmis = ∅.

We could just use the same proof idea as in the 2-medians case that first applies Lemma 4 and then use the matching result,
Lemma 1. This will lead to an analysis of 6 approximation, instead of 4. The reason is that we apply twice Claim 1, which
is not tight. A proof that improves that approximation to 4 require us to apply Claim 1 only once.

Using the same argument as in the proof of Lemma 4, we have

cost(Ĉ) ≤
2∑
j=1

∑
x∈X cor∩Ĉj

‖x− µj‖22 +

2∑
j=1

∑
x∈Xmis∩Ĉj

‖x− µj‖22

=
∑

x∈X cor

‖x− c(x)‖22 +
∑

x∈Xmis∩Ĉ1

‖x− µ1‖22 +
∑

x∈Xmis∩Ĉ2

‖x− µ2‖22

≤ cost(opt) +
∑

x∈Xmis∩Ĉ1

‖x− µ1‖22 +
∑

x∈Xmis∩Ĉ2

‖x− µ2‖22 (1)
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The goal now is to bound the latter two terms using cost(opt). This term measures the distance of each x ∈ Xmis from the
“other” center, i.e., not c(x).

Claim 8.

cost(opt) ≥ 1

3

∑
x∈Xmis∩Ĉ1

‖x− µ1‖22 +
1

3

∑
x∈Xmis∩Ĉ2

‖x− µ2‖22

Using Claim 8, together with Inequality (1) we have

cost(Ĉ) ≤ cost(opt) + 3 · cost(opt) = 4 · cost(opt),

and this completes the proof.

Proof of Claim 8. Denote the t points in Xmis by Xmis = {r1, . . . , rt}. Assume that the first ` points are in the first optimal
cluster, r1, . . . , r` ∈ C1, and the rest are in the second cluster, r`+1, . . . , rt ∈ C2.

Applying Lemma 1 for each coordinate i ∈ [d] guarantees t pairs of vectors (p1,q1), . . . , (pt,qt) with the following
properties. Each pji corresponds to the ith coordinate of some point in C1 and qji corresponds to the ith coordinate of some
point in C2. Furthermore, for each coordinate, the t pairs correspond to 2t distinct points in X . Finally, we can assume
without loss of generality that µ1

i ≤ µ2
i and qji ≤ p

j
i .

For each point rj in the first ` points in Xmis, if rji ≥ p
j
i then we can replace pj with rj , thus we can assume without loss of

generality that pji ≥ r
j
i .

We next want to show that cost(opt) is lower bounded by a function of t. There will be two cases depending on whether
pji ≤ µ2

i or not. The harder case is the first where the improvement of the approximation from 6 to 4 arises. Instead of
first bounding the distance between rj and its new center using the distance to its original center and then accounting for∥∥µ1 − µ2

∥∥2

2
, we directly account for the distance between rj and its new center.

Case 1: if pji ≤ µ2
i , then Claim 1 implies that

(µ2
i − q

j
i )

2 + (pji − µ
1
i )

2 + (µ1
i − r

j
i )

2 ≥ 1

3
(µ2
i − q

j
i + pji − µ

1
i + µ1

i − r
j
i )

2

=
1

3
((µ2

i − q
j
i ) + (pji − r

j
i ))

2 ≥ 1

3
(µ2
i − r

j
i )

2,

where the last inequality follows from the fact that qji ≤ pji and rji ≤ pji , which implies that (µ2
i − q

j
i ) + (pji − r

j
i ) ≥

µ2
i − r

j
i ≥ 0, which means ((µ2

i − q
j
i ) + (pji − r

j
i ))

2 ≥ (µ2
i − r

j
i )

2.

Case 2: if µ2
i ≤ p

j
i , then again Claim 1 implies that

(pji − µ
1
i )

2 + (µ1
i − r

j
i )

2 ≥ (µ2
i − µ1

i )
2 + (µ1

i − r
j
i )

2

≥ 1

2
(µ2
i − µ1

i + µ1
i − r

j
i )

2 =
1

2
(µ2
i − r

j
i )

2,

where in the first inequality we use (pji − µ1
i )

2 ≥ (µ2
i − µ1

i )
2.

The two cases imply that for 1 ≤ j ≤ `

(µ2
i − q

j
i )

2 + (pji − µ
1
i )

2 + (µ1
i − r

j
i )

2 ≥ 1

3
(µ2
i − r

j
i )

2.

Similarly for each point rj in the last t− ` points in Xmis, we have

(µ2
i − q

j
i )

2 + (pji − µ
1
i )

2 + (µ2
i − r

j
i )

2 ≥ 1

3
(µ1
i − r

j
i )

2.
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cost(opt) ≥
d∑
i=1

∑̀
j=1

(µ2
i − q

j
i )

2 + (pji − µ
1
i )

2 + (µ1
i − r

j
i )

2

+

d∑
i=1

t∑
j=`+1

(µ2
i − q

j
i )

2 + (pji − µ
1
i )

2 + (µ2
i − r

j
i )

2

≥ 1

3

∑̀
j=1

d∑
i=1

(µ2
i − r

j
i )

2 +
1

3

t∑
j=`+1

d∑
i=1

(µ1
i − r

j
i )

2

=
1

3

∑̀
j=1

∥∥rj − µ2
∥∥2

2
+

1

3

t∑
j=`+1

∥∥rj − µ1
∥∥2

2

=
1

3

∑
x∈Xmis∩Ĉ1

‖x− µ1‖22 +
1

3

∑
x∈Xmis∩Ĉ2

‖x− µ2‖22

E. Lower bounds for two clusters
Without loss of generality we can assume that d ≥ 2. We use the following dataset for both 2-medians and 2-means. It
consists of 2d points, partitioned into two clusters of size d, which are the points with Hamming distance exactly one from
the vector with all 1 entries and the vector with all −1 entries:

Optimal Cluster 1 Optimal Cluster 2
(0,−1,−1,−1 . . . ,−1) (0, 1, 1, 1 . . . , 1)
(−1, 0,−1,−1 . . . ,−1) (1, 0, 1, 1 . . . , 1)
(−1,−1, 0,−1 . . . ,−1) (1, 1, 0, 1 . . . , 1)

...
...

(−1,−1,−1,−1 . . . , 0) (1, 1, 1, 1 . . . , 0)

Let Ĉ = (Ĉ1, Ĉ2) be the best threshold cut.

2-medians lower bound. The cost of the cluster with centers (1, . . . , 1) and (−1, . . . ,−1) is 2d, as each point is
responsible for a cost of 1. Thus, cost(opt) ≤ 2d.

There is a coordinate i and a threshold θ that defines the cut Ĉ. For any coordinate i, there are only three possible values:
−1, 0, 1. Thus θ is either in (−1, 0) or in (0, 1). Without loss of generality, assume that θ ∈ (−1, 0) and i = 1. Thus, the
cut is composed of two clusters: one of size d− 1 and the other of size d+ 1, in the following way:

Cluster Ĉ1 Cluster Ĉ2

(−1, 0,−1,−1 . . . ,−1) (1, 0, 1, 1 . . . , 1)
(−1,−1, 0,−1 . . . ,−1) (1, 1, 0, 1 . . . , 1)

...
...

(−1,−1,−1,−1 . . . , 0) (1, 1, 1, 1 . . . , 0)
(0, 1, 1, 1 . . . , 1)

(0,−1,−1,−1 . . . ,−1)

Using Fact 2, an optimal center of the first cluster is all −1, and the optimal center for the second cluster is all 1. The cost of
the first cluster is d− 1, as each point costs 1. The cost of the second cluster is composed of two terms d for all points that
include 1 in at least one coordinate and the cost of point (0,−1, . . . ,−1) is 2(d− 1) + 1. So the total cost is 4d− 2. Thus
cost(Ĉ) ≥ (2− 1/d)cost(opt).
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2-means lower bound. Focus on the clustering with centers ((d−1)/d, . . . , (d−1)/d) and (−(d−1)/d, . . . ,−(d−1)/d). The
cost of each point in the data is composed of (1) one coordinate with value zero, and the cost of this coordinate is
((d−1)/d)

2 (2) d− 1 coordinates each with cost 1/d2. Thus, each point has a cost of (d−1)2/d2 + d−1/d2. Thus, the total cost is
2(d−1)2+2(d−1)

d = 2(d− 1). This implies that cost(opt) ≤ 2(d− 1).

Assume without loss of generality that Ĉ is defined using coordinate i = 1 and threshold −0.5. The resulting clus-
ters Ĉ1 and Ĉ2 are as in the case of 2-medians. The optimal centers are (see Fact 1):

(
−1,−d−2

d−1 , . . . ,−
d−2
d−1

)
and(

d−1
d+1 ,

d−2
d+1 , . . . ,

d−2
d+1

)
. We want to lower bound cost(Ĉ). We start with the cost of the first cluster, i.e. Ĉ1. To do so for

each point in Ĉ1, we will evaluate the contribution of each coordinate to the cost (1) the first coordinate adds 0 to the cost

(2) the coordinate with value 0, adds
(
d−2
d−1

)2

to the cost (3) the rest of the d− 2 coordinates adds 1/(d−1)2. Thus, each point

in Ĉ1 adds to the cost
(
d−2
d−1

)2

+ d−2
(d−1)2 = d−2

d−1 . Since Ĉ1 contains d− 1 points, its total cost is d− 2.

Moving on to evaluating the cost of Ĉ2, the cost of the point (0,−1, . . . ,−1) is composed of two terms (1) the first

coordinate adds
(
d−1
d+1

)2

to the cost (2) each of the other d− 1 coordinates adds
(

1 + d−2
d+1

)2

to the cost. Thus, this point
adds (

d− 1

d+ 1

)2

+ (d− 1)

(
1 +

d− 2

d+ 1

)2

=
(d− 1)d(4d− 3)

(d+ 1)2
.

Similarly, the point (0, 1, . . . , 1) adds to the cost(
d− 1

d+ 1

)2

+ (d− 1)

(
1− d− 2

d+ 1

)2

=
(d− 1)(d+ 8)

(d+ 1)2
.

Finally, each of the d− 1 remaining points in Ĉ2 adds to the cost(
1− d− 1

d+ 1

)2

+

(
d− 2

d+ 1

)2

+ (d− 1)

(
1− d− 2

d− 1

)2

=
d2 + 5d− 1

(d+ 1)2

Thus, the cost of Ĉ2 is
(d− 1)(5d2 + 3d+ 7)

(d+ 1)2

Summing up the costs of Ĉ1 and Ĉ2, for d ≥ 2

cost(Ĉ) ≥ (d− 2) +
(d− 1)(5d2 + 3d+ 7)

(d+ 1)2
≥ 6(d− 1)

(
1− 1

d

)2

≥ 3

(
1− 1

d

)2

· cost(opt)

F. Efficient Implementations
F.1. The 2-means case

The psudo-code for finding the best threshold for k = 2 depicted in Algorithm 2.

In time O(d) we can calculate cost(p + 1) and the new centers by using the value cost(p) and the previous centers.
Throughout the computation we save in memory

1. Two vectors sp =
∑p
j=1 x

j and rp =
∑n
j=p+1 x

j .

2. Scalar u =
∑n
j=1

∥∥xj∥∥2

2

We also make use of the identity:

cost(p) = u− 1

p
‖sp‖22 −

1

n− p
‖rp‖22 .
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Algorithm 2 OPTIMAL THRESHOLD FOR 2-MEANS

Input :x1, . . . ,xn – vectors in Rd
Output :i – Coordinate

θ – Threshold

1 best cost←∞
2 best coordinate← NULL
3 best threshold← NULL

4 u←
∑n
j=1

∥∥xj∥∥2
2

5 foreach i ∈ [1, . . . , d] do
6 s← zeros(d)

7 r←
∑n
j=1 xj

8 X ← sorted(x1, . . . ,xn by coordinate i)
9 foreach xj ∈ X do

10 s← s + xj

11 r← r− xj

12 cost← u− 1
j ‖s‖

2
2 −

1
n−j ‖r‖

2
2

13 if cost < best cost and xji 6= xj+1
i then

14 best cost← cost
15 best coordinate← i

16 best threshold← xji
17 end
18 end
19 end
20 return best coordinate, best threshold

This identity is correct because

cost(p) =

p∑
j=1

∥∥xj − µ1(p)
∥∥2

2
+

n∑
j=p+1

∥∥xj − µ2(p)
∥∥2

2

=

p∑
j=1

∥∥xj∥∥2

2
− 2

p∑
j=1

〈xj ,µ1(p)〉+

p∑
j=1

∥∥µ1(p)
∥∥2

2
+

n∑
j=p+1

∥∥xj∥∥2

2
− 2

n∑
j=p+1

〈xj ,µ2(p)〉+

n∑
j=p+1

∥∥µ2(p)
∥∥2

2

=

n∑
j=1

∥∥xj∥∥2

2
− 2〈

p∑
j=1

xj ,µ1(p)〉+
1

p

∥∥∥∥∥∥
p∑
j=1

xj

∥∥∥∥∥∥
2

2

−

2〈
n∑

j=p+1

xj ,µ2(p)〉+
1

n− p

∥∥∥∥∥∥
n∑

j=p+1

xj

∥∥∥∥∥∥
2

2

=

n∑
j=1

∥∥xj∥∥2

2
− 2

p
〈sp, sp〉+

1

p
‖sp‖22 −

2

n− p
〈rp, rp〉+

1

n− p
‖rp‖22

= u− 1

p
‖sp‖22 −

1

n− p
‖rp‖22

By invoking this identity, we can quickly compute the cost of placing the first p points in cluster one and the last n − p
points in cluster two. Each such partition can be achieved by using a threshold θ between xpi and xp+1

i . Our algorithm
computes these costs for each feature i ∈ [d]. Then, we output the feature i and threshold θ that minimizes the cost. This
guarantees that we find the best possible threshold cut.

Overall, Algorithm 2 iterates over the d features, and for each feature it sorts the n vectors according to their values in the
current feature. Next, the algorithm iterates over the n vectors and for each potential threshold, it calculates the cost by
evaluating the inner product of two d-dimensional vectors. Overall its runtime complexity is O

(
nd2 + nd log n

)
.
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F.2. The 2-medians case

The high level idea of a finding an optimal 2-medians cut is similar to the 2-means algorithm. The algorithm goes over all
possible thresholds. For each threshold, it finds the optimal centers and calculates the cost accordingly. Then, it outputs the
threshold cut that minimizes the 2-medians cost.

Algorithm 3 OPTIMAL THRESHOLD FOR 2-MEDIANS

Input :x1, . . . ,xn – vectors in Rd
Output :i – Coordinate

θ – Threshold

1 best cost←∞
2 best coordinate← NULL
3 best threshold← NULL
4 foreach i ∈ [1, . . . , d] do
5 µ2(0)← median(x1, . . .xn)

6 cost←
∑n
j=1

∥∥xj − µ2(0)
∥∥
1

7 X ← sorted(x1, . . . ,xn by coordinate i)
8 foreach j ∈ [1, . . . , n− 1] do
9 µ1(j)← median(x1, . . .xj)

10 µ2(j)← median(xj+1, . . .xn)

11 cost← cost +
∥∥xj − µ1(j)

∥∥
1
−
∥∥xj − µ2(j − 1)

∥∥
1

12 if cost < best cost and xji 6= xj+1
i then

13 best cost← cost
14 best coordinate← i

15 best threshold← xji
16 end
17 end
18 end
19 return best coordinate, best threshold

Updating cost. To update the cost we need to show how to express cost(p + 1) in terms of cost(p). We know that
cost(p+ 1) is equal to

cost(p+ 1) =
∑
x∈C1

∥∥x− µ1(p+ 1)
∥∥

1
+
∑
x∈C2

∥∥x− µ2(p+ 1)
∥∥

1
.

For every feature i ∈ [d], there are n− 1 thresholds to consider. After sorting by this feature, we can consider all splits into
C1 and C2, where C1 contains the p smallest points, and C2 contains the n− p largest points. We increase p from p = 1
to p = n − 1, computing the clusters and cost at each step. If p is odd then the median of C1 (i.e., the optimal center of
C1) does not change compared to p− 1. The only contribution to the cost is the point x that moved from C2 to C1. If p is
even, then at each coordinate there are two cases, depending on whether the median changes or not. If it changes, then let
∆ denote the change in cost of the points in C1 that are smaller than the median. By symmetry, the change in the cost of
the points that are larger is −∆. Thus, the change of the cost is balanced by the points that are larger and smaller than the
median. Similar reasoning holds for the other cluster C2. Therefore, we conclude that moving x from C2 to C1 changes
the cost by exactly

∥∥x− µ1(p+ 1)
∥∥

1
−
∥∥x− µ2(p)

∥∥
1
. Thus, we have the following connection between cost(p+ 1) and

cost(p):
cost(p+ 1) = cost(p) +

∥∥x− µ1(p+ 1)
∥∥

1
−
∥∥x− µ2(p)

∥∥
1
.

Updating centers. For each p, the cost update relies on efficient calculations of the centers µ1(p) and µ2(p+ 1). The
centers µ1(p),µ2(p) are the medians of the clusters at the pth threshold. Note that moving from the pth thresold to the
(p+ 1)th will only change the clusters by moving one vector from one cluster to the other. We can determine the changes
efficiently by using d arrays, one for each coordinate. Each array will contain (pointers to) the input vectors X sorted by
their ith feature value. As we move the threshold along a single coordinate, we can read off the partition into two clusters,
and we can compute the median of each cluster by considering the midpoint in the sorted list.

Overall, this procedure computes the cost of each threshold, while also determining the partition into two clusters and their
centers (medians). The time is O(nd log n) to sort by each feature, and O(nd2) to compute cost(p) for each p ∈ [n] and
each feature. Therefore, the total time for the 2-medians algorithm is O(nd2 + nd log n).
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