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A. Appendix
A.1. Persistent Homology Calculation Details

This section provides more details about the persistent ho-
mology calculation; it is more geared towards an expert
reader and aims for a concise description of all required
concepts.

Simplicial homology To understand persistent homology,
we first have to understand simplicial homology. Given a
simplicial complex K, i.e. a high-dimensional generalisation
of a graph, let Cd(K) denote the vector space generated
over Z2 whose elements are the d-simplices in K7. For
� = (v0, . . . , vd) 2 K, let @d : Cd(K) ! Cd�1(K) be the
boundary homomorphism defined by

@d(�) :=
dX

i=0

(v0, . . . , vi�1, vi+1, . . . , vd) (11)

for a single simplex and linearly extended to Cd(K). The
dth homology group Hd(K) of K is defined as the quotient
group Hd(K) := ker @d/ im @d+1. The rank of the dth ho-
mology group is known as the dth Betti number �d, i.e.
�d(K) := rankHd(K). The sequence of Betti numbers
�0, . . . ,�d of a d-dimensional simplicial complex is com-
monly used to distinguish between different manifolds. For
example, a 2-sphere inR3 has Betti numbers (1, 0, 1), while
a 2-torus in R3 has Betti numbers (1, 2, 1). Betti numbers
are of limited use for analysing real-world data sets, how-
ever, because their representation is too coarse and easily
affected by small changes in the underlying simplicial com-
plex. In an idealised, platonic setting, this does not pose a
problem, because one assumes that the triangulation of a
manifold is known a priori; for real-world data sets, how-
ever, we are typically dealing with point clouds and have no

knowledge of the underlying manifold, making the calcu-
lation of the “proper” simplicial complex nigh impossible.
These disadvantages prompted the development of persis-
tent homology.

Persistent homology Let ; = K0 ✓ K1 ✓ · · · ✓

Km�1 ✓ Km = K be a nested sequence of simplicial com-
plexes, called filtration. Filtrations can be defined based
on different functions; the Vietoris–Rips filtration that we
discuss in the paper, for example, is defined by a distance
function, such as the Euclidean distance between points of
a point cloud. Notice that we may still calculate the sim-
plicial homology of each Ki in the filtration. The filtration
provides more information, though: the family of boundary
operators @(·), together with the inclusion homomorphism,
induces a homomorphism between corresponding homology

7It is also possible to describe this calculation with coefficients
in other fields, but the case of Z2 is advantageous because it
simplifies the implementation of all operations.

groups of the filtration, i.e. f i,j
d : Hd(Ki) ! Hd(Kj). This

homomorphism yields a sequence of homology groups

0 = Hd(K0)
f0,1
d

��! Hd(K1)
f1,2
d

��! . . .

. . .
fm�2,m�1
d

�������! Hd(Km�1)
fm�1,m
d

�����! Hd(Km) = Hd(K)

for every dimension d. Given indices i  j, the dth
persis-

tent homology group is defined as

H
i,j
d := ker @d(Ki)/ (im @d+1(Kj) \ ker @d(Ki)) . (12)

It can be seen as the homology group that contains all ho-
mology classes created in Ki that are still present (“active”)
in Kj . We define the dth persistent Betti number to be the
rank of this group, i.e. �i,j

d := rankH
i,j
d , which generalises

the previous definition for simplicial homology. Persistent
homology results in a sequence of Betti numbers—instead
of a single number—that permits a fine-grained description
of topological activity. This activity is typically summarised
in a persistence diagram, thus replacing the indices i, j with
real numbers based on the function that was used to calcu-
late the filtration.

Persistence diagrams A filtration often has associated
values (or weights) w0  w1  · · ·  wm�1  wm, such
as the pairwise distances in a point cloud. These values
permit the calculation of topological feature descriptors
known as persistence diagrams: for each dimension d and
each pair i  j, one stores a pair (a, b) := (wi, wj) 2 R

2

with multiplicity

µ(d)
i,j :=

⇣
�i,j�1

d � �i,j
d

⌘
�

⇣
�i�1,j�1

d � �i�1,j
d

⌘
(13)

in a multiset (typically, µ(d)
i,j = 0 for many pairs). The pair

(a, b) represents a topological feature that was created at a
certain threshold a, and destroyed at another threshold b. In
the case of the Vietoris–Rips filtration and connected com-
ponents, we have a = 0 because all connected components
are present at the beginning of the filtration by definition.
Similarly, b will correspond to an edge used in the minimum
spanning tree of the data set. In general, the resulting set
of points is called the dth

persistence diagram Dd. Given
a point (a, b) 2 Dd, the quantity pers(x, y) := |a � b| is
referred to as its persistence.

A.2. Proof of Theorem 1
Theorem 1. Let X be a point cloud of cardinality n
and X(m)

be one subsample of X of cardinality m, i.e.

X(m)
✓ X , sampled without replacement. We can bound

the probability of X(m)
exceeding a threshold in terms of

the bottleneck distance as

P
⇣
db

⇣
DX,DX(m)

⌘
>✏

⌘
 P

⇣
dH

⇣
X,X(m)

⌘
>2✏

⌘
, (14)
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Figure A.1. Empirical convergence rate (mean) of the Hausdorff
distance for a subsample of size m of 100 points in a d-dimensional
space, following a standard normal distribution.

where dH refers to the Hausdorff distance between the point

cloud and its subsample, i.e.

dH(X,Y ) := max{ sup
x2X

inf
y2Y

dist(x, y),

sup
y2Y

inf
x2X

dist(x, y)}
(15)

for a baseline distance dist(x, y) such as the Euclidean

distance.

Proof. The stability of persistent homology calculations
was proved by Chazal et al. (2014a) for finite metric spaces.
More precisely, given two metric spaces X and Y , we have

db

�
D

X ,DY
�
 2 dGH(X,Y ), (16)

where dGH(X,Y ) refers to the Gromov–Hausdorff dis-
tance (Burago et al., 2001, p. 254) of the two spaces. It
is defined as the infimum Hausdorff distance over all isomet-
ric embeddings of X and Y . This distance can be employed
for shape comparison (Chazal et al., 2009, Mémoli & Sapiro,
2004), but is hard to compute. In our case, with X = X
and Y = X(m), we consider both spaces to have the same
metric (for Y , we take the canonical restriction of the metric
from X to the subspace Y ). By definition of the Gromov–
Hausdorff distance, we thus have dGH(X,Y )  dH(X,Y ),
so Eq. 15 leads to

db

�
D

X ,DY
�
 2 dH(X,Y ), (17)

from which the original claim from Eq. 14 follows by taking
probabilities on both sides.

A.3. Empirical Convergence Rates of dH
�
X,X(m)

�

Figure A.1 depicts the mean of the convergence rate (mean)
of the Hausdorff distance for a subsample of size m of
100 points in a d-dimensional space, following a standard
normal distribution. We can see that the convergence rate
is roughly similar, but shown on different absolute levels

that depend on the ambient dimension. While bounding
the convergence rate of this expression is feasible (Chazal
et al., 2015a,b), it requires more involved assumptions on
the measures from which X and X(m) are sampled. Ad-
ditionally, we can give a simple bound using the diam-

eter diam(X) := sup{dist(x, y) | x, y 2 X}. We have
dH

�
X,X(m)

�
 diam(X) because the supremum is guar-

anteed to be an upper bound for the Hausdorff distance. This
worst-case bound does not account for the sample size (or
mini-batch size) m, though (see Theorem 2 for an expres-
sion that takes m into account).

A.4. Proof of Theorem 2

Prior to the proof we state two observations that arise from
our special setting of dealing with finite point clouds.
Observation 1. Since X(m)

✓ X , we have

supx02X(m) infx2X dist(x, x0
) = 0. Hence, the Hausdorff

distance simplifies to:

dH

⇣
X,X(m)

⌘
:= sup

x2X
inf

x02Xm
dist(x, x0

) (18)

In other words, we only have to consider a “one-sided” ex-

pression of the distance because the distance from the sub-

sample to the original point cloud is always zero.

Observation 2. Since our point clouds of interest are fi-

nite sets, the suprema and infima of the Hausdorff distance

coincide with the maxima and minima, which we will subse-

quently use for easier readability.

Hence, the computation of dH(X,X(m
) can be divided into

three steps.

1. Using the baseline distance dist(·, ·), we compute a
distance matrix A 2 Rn⇥m between all points in X
and X(m).

2. For each of the n points in X , we compute the minimal
distance to the m samples of X(m) by extracting the
minimal distance per row of A and gather all minimal
distances in � 2 Rn.

3. Finally, we return the maximal entry of � as
dH

�
X,X(m)

�
.

In the subsequent proof, we require an independence as-
sumption of the samples.

Proof. Using Observations 1 and 2 we obtain a simplified
expression for the Hausdorff distance, i.e.

dH

⇣
X,X(m)

⌘
:= max

i,1in

✓
min

j,1jm
(aij)

◆
. (19)

The minimal distances of the first m rows of A are triv-
ially 0. Hence, the outer maximum is determined by the
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remaining n � m row minima {�i | m < i  n } with
�i = min

1jm
(aij). Those minima follow the distribution

F�(y) with

F�(y) = P(�i  y) = 1� P(�i > y) (20)

= 1� P

✓
min

1jm
aij > y

◆
(21)

= 1� P

0

@
\

j

aij > y

1

A (22)

= 1� (1� FD(y)m) = FD(y)m. (23)

Next, we consider Z := max1in �i. To evaluate the
density of Z, we first need to derive its distribution FZ :

FZ(z) = P(Z  z) = P

✓
max

m<in
�i  z

◆
(24)

= P

0

@
\

m<in

�i  z

1

A (25)

Next, we approximate Z by Z 0 by imposing i.i.d sampling of
the minimal distances �i from F�. This is an approximation
because in practice, the rows m+1 to n are not stochastically
independent because of the triangular inequality that holds
for metrics. However, assuming i.i.d., we arrive at

FZ0(z) = F�(z)
n�m. (26)

Since Z 0 has positive support its expectation can then be
evaluated as:

EZ0⇠FZ0 [Z
0
] =

+1Z

0

(1� FZ0(z)) dz (27)

=

+1Z

0

�
1� F�(z)

n�m
�
dz (28)

=

+1Z

0

⇣
1� FD(z)m(n�m)

⌘
dz (29)

�

+1Z

0

⇣
1� FD(z)(n�1)

⌘
dz (30)

The independence assumption leading to Z 0 results in over-

estimating the variance of the drawn minima �i. Thus, the
expected maximum of those minima, E[Z 0

], is overestimat-
ing the actual expectation of the maximum E[Z], which is
why Eq. 27 to Eq. 29 constitute an upper bound ofE[Z], and
equivalently, an upper bound ofE

⇥
dH(X,X(m)

)
⇤
. When in-

creasing m, E[dH(X,Xm
)] decreases monotonically since

for a particular m, we draw n�m samples from the minimal

distance distribution F�, and their maximum determines
the Hausdorff distance. In contrast, our preliminary upper
bound on the left-hand side of Eq. 29 forms a downwards-
facing parabola due to the quadratic form in the exponent.
This indicates that a tighter bound is achieved for m 6= n by
using the minimal subsample size of m = 1.

A.5. Synthetic Data Set

SPHERES consists of eleven high-dimensional 100-spheres
living in 101�dimensional space. Ten spheres of radius
r = 5 are each shifted in a random direction (by adding
the same Gaussian noise vector per sphere). To this end,
we draw ten d-dimensional Gaussian vectors following
N (0, I(10/

p
d)) for d = 101. Crucially, to add interest-

ing topological information to the data set, the ten spheres
are enclosed by an additional larger sphere of radius 5r. The
spheres were generated using the library scikit-tda.

A.6. Architectures and Hyperparameter Tuning

Architectures for synthetic data set For the syntheti-
cally generated data set, we use a simple multilayer per-
ceptron architecture consisting of two hidden layer with 32

neurons each both encoder and decoder and a bottleneck of
two neurons such that the sequence of hidden-layer neurons
is 32� 32� 2� 32� 32. ReLU non-linearities and batch
normalization were applied between the layers excluding
the output layer and the bottleneck layer. The networks were
fit using mean squared error loss.

Architectures for real world data sets For the MNIST,
FASHION-MNIST, and CIFAR-10 data sets, we use an
architecture inspired by DeepAE (Hinton & Salakhutdi-
nov, 2006). This architecture is composed of 3 layers of
hidden neurons of decreasing size (1000 � 500 � 250)
for the encoder part, a bottleneck of two neurons, and
a sequence of three layers of hidden neurons in decreas-
ing size (250 � 500 � 1000) for the decoder. In contrast
to the originally proposed architecture, we applied ReLU
non-linearities and batch normalization between the layers
as we observed faster and more stable training. For the
non-linearities of the final layer, we applied the tanh non-
linearity, such that the image of the activation matches the
range of input images scaled between �1 and 1. Also here,
we applied mean squared error loss.

All neural network architectures were fit using Adam and
weight-decay of 10�5.

Hyperparameter tuning For hyperparameter tuning we
apply random sampling of hyperparameters using the
scikit-optimize library (scikit-optimize contributers,
2018) with 20 calls per method on all data sets. We select
the best model parameters in terms of KL0.1 on the vali-
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dation split and evaluate and report it on the test split. To
estimate performance means and standard deviations, we re-
peated the evaluation on an independent test split 5 times by
using the best parameters (as identified in the hyperparam-
eter search on the validation split) and refitting the models
by resampling the train-validation split.

Neural networks For the neural networks, we sample the
learning rate log-uniformly in the range [10

�4, 10�2
], the

batch size uniformly between [16, 128], and for our topo-
logical autoencoder method (TopoAE), we sample the reg-
ularisation strength � log-uniformly in the range [10

�1, 3].
Each model was allowed to train for at most 100 epochs and
we applied early stopping with patience = 10 based on the
validation loss.

Competitor methods For t-SNE, we sample the perplex-
ity uniformly in the range 5� 50 and the learning rate log-
uniformly in the range 10� 1000. For Isomap and UMAP,
the number of neighbors included in the computation was
varied between 15� 500. For UMAP, we additionally vary
the min_dist parameter uniformly between 0 and 1.

A.7. Measuring the Quality of Latent Representations

Next to the reconstruction error (if available; please see
the paper for a discussion on this), we use a variety of
NLDR metrics to assess the quality of our method. Our
primary interest concerns the quality of the latent space be-
cause, among others, it can be used to visualise the data set.
We initially considered classical quality metrics from non-
linear dimensionality reduction (NLDR) algorithms (see
Bibal & Frénay (2019), Gracia et al. (2014), van der Maaten
et al. (2009) for more in-depth descriptions), namely

(1) the root mean square error (`-RMSE) between the
distance matrix of the original space and the latent
space (as mentioned in the main text, this is not related
to the reconstruction error),

(2) the mean relative rank error (`-MRRE), which mea-
sures the changes in ranks of distances in the original
space and the latent space (Lee & Verleysen, 2009),

(3) the trustworthiness (`-Trust) measure (Venna & Kaski,
2006), which checks to what extent the k nearest neigh-
bours of a point are preserved when going from the
original space to the latent space, and

(4) the continuity (`-Cont) measure (Venna & Kaski, 2006),
which is defined analogously to `-Trust, but checks to
what extent neighbours are preserved when going from
the latent space to the original space.

All of these measures are defined based on comparisons of
the original space and the latent space; the reconstructed
space is not used here. As an additional measure, we cal-
culate the Kullback–Leibler divergence between density

distributions of the input space and the latent space. Specif-
ically, for a point cloud X with an associated distance
dist, we first use the distance to a measure density esti-
mator (Chazal et al., 2011, 2014b), defined as f�

X
(x) :=

P
y2X exp

⇣
���1

dist(x, y)2
⌘

, where � 2 R>0 repre-
sents a length scale parameter. For dist, we use the Eu-
clidean distance and normalise it between 0 and 1. Given �,
we evaluate KL� := KL

⇣
f�
X

k f�
Z
⌘

, which measures the
similarity between the two density distributions. Ideally, we
want the two distributions to be similar because this implies
that density estimates in a low-dimensional representation
are similar to the ones in the original space.

A.8. Assessing the Batch Size

As we used fixed architectures for the hyperparameter
search, the batch size remains the main determinant for
the runtime of TopoAE. In Figure A.2, we display trends
(linear fits) on how loss measures vary with batch size. Ad-
dtionally, we draw runtime estimates. As we applied early
stopping, for better comparability, we approximated the
epoch-wise runtime by dividing the execution time of a run
by its number of completed epochs. Interestingly, these
plots suggest that the runtime grows with decreasing batch
size (even though the topological computation is more costly
for larger batch sizes!). In these experiments, sticking to
0�dimensional topological features we conclude that the
benefit of using mini-batches for neural network training
still dominate the topological computations. The few steep
peaks most likely represent outliers (the corresponding runs
stopped after few epochs, which is why the effective runtime
could be overestimated).

For the loss measures, we see that reconstruction loss tends
to decrease with increasing batch size, while our topological
loss tends to increase with increasing batch size (despite nor-
malization). The second observation might be due to larger
batch size enabling more complex data point arrangements
and corresponding topologies.

A.9. Extending to Variational Autoencoders

In Figure A.3 we sketch a preliminary experiment, where
we apply our topological constraint to variational autoen-
coders for the SPHERES data set. Also here, we observe that
our constraint helps identifying the nesting structure of the
enclosing sphere.

A.10. Topological Distance Calculations

To assess the topological fidelity of the resulting latent
spaces, we calculate several topological distances between
the test data set (full dimensionality) and the latent spaces
obtained from each method (two dimensions). More pre-
cisely, we calculate (i) the 1

st Wasserstein distance (W1),
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(a) F-MNIST (b) MNIST (c) CIFAR-10 (d) SPHERES

Figure A.2. A scatterplot of batch sizes verses three measures of interest: Topological Loss, Reconstruction Loss, and KL0.1, our objective
for the hyperparameter search. Additionally, we draw per-epoch runtime estimates.

(a) VAE (b) TopoVAE

Figure A.3. A depiction of latent spaces obtained for the SPHERES
data set with variational autoencoders (VAEs). Here, VAE repre-
sents a standard MLP-based VAE, whereas TopoVAE represents
the same architecture plus our topological constraint.

(ii) the 2
nd Wasserstein distance (W2), and (iii) the bot-

tleneck distance (W1) between the persistence diagrams
obtained from the test data set of the SPHERES data and
their resulting 2D latent representations. Even though
our loss function is not optimising this distance, we ob-
serve in Table A.1 that the topological distance of our
method (“TopoAE”) is always the lowest among all the
methods. In particular, it is always smaller than the topo-
logical distance of the latent space of the autoencoder archi-
tecture; this is true for all distance measures, even though
W1, for example, is known to be susceptible to outliers.
Said experiment serves as a simple “sanity check” as it
demonstrates that the changes induced by our method are
beneficial in that they reduce the topological distance of the
latent space to the original data set. For a proper comparison
of topological features between the two sets of spaces, a
more involved approach would be required, though.

A.11. Alternative Loss Formulations

Our choice of loss function was motivated by the observa-
tion that only aligning the persistence diagrams between
mini-batches of X and Z can lead to degenerate or “mean-
ingless” latent spaces. As a simple example (see Figure A.4
for a visualisation), imagine three non-collinear points in the
input space and the triangle they are forming. Now assume

Method W1 W2 W1

Isomap 4.32±0.037 0.477±0.0045 0.165±0.00096
PCA 4.42±0.053 0.476±0.0046 0.158±0.00108
t-SNE 4.38±0.038 0.478±0.0045 0.164±0.00094
UMAP 4.47±0.042 0.478±0.0045 0.160±0.00092
AE 3.99±0.037 0.469±0.0053 0.154±0.00128

TopoAE 3.73±0.076 0.459±0.0055 0.152±0.00268

Table A.1. Topological distances between the test data set and the
corresponding latent space. We used subsamples of size m = 500
and 10 repetitions (obtaining a mean and a standard deviation).

A
B

C

d1

d3 d2

(a) X

A

B
C

d2
d3

d1

(b) Z

Figure A.4. An undesirable configuration of the latent space of
three non-collinear points, resulting in equal persistence diagrams
for X and Z . Pairwise distances are shown as dotted lines. We
prevent this by not explicitly minimising the distances between
persistence diagrams but by including persistence pairings.

that the latent space consists of the same triangle (in terms
of its side lengths) but with permuted labels. A loss term of
the form

L
0
:=

��AX
⇥
⇡X

⇤
�AZ

⇥
⇡Z

⇤��2 (31)

only measures the distance between persistence dia-
grams (which would be zero in this situation) and would not
be able to penalise such a configuration.
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(a) PCA (b) Isomap (c) t-SNE

(d) UMAP (e) AE (f) TopoPCA

(g) TopoAE

Figure A.5. A depiction of all latent spaces obtained for the SPHERES data set. TopoAE used a batch size of 28. This is an enlarged
version of the figure shown in Section 5.2.



Topological Autoencoders

(a) PCA (b) t-SNE (c) UMAP

(d) AE (e) TopoPCA (f) TopoAE

Figure A.6. Latent representations of the FASHION-MNIST data set. TopoAE used a batch size of 95. This is a larger extension of the
figure shown in Section 5.2.
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(a) PCA (b) t-SNE (c) UMAP

(d) AE (e) TopoPCA (f) TopoAE

Figure A.7. Latent representations of the MNIST data set. TopoAE used a batch size of 126. This is a larger extension of the figure
shown in Section 5.2.
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(a) PCA (b) t-SNE (c) UMAP

(d) AE (e) TopoPCA (f) TopoAE

Figure A.8. Latent representations of the CIFAR-10 data set. TopoAE used a batch size of 82. This is a larger extension of the figure
shown in Section 5.2.
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