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Abstract

In this contribution, we augment the metric learn-

ing setting by introducing a parametric pseudo-

distance, trained jointly with the encoder. Sev-

eral interpretations are thus drawn for the learned

distance-like model’s output. We first show it ap-

proximates a likelihood ratio which can be used

for hypothesis tests, and that it further induces

a large divergence across the joint distributions

of pairs of examples from the same and from

different classes. Evaluation is performed under

the verification setting consisting of determining

whether sets of examples belong to the same class,

even if such classes are novel and were never pre-

sented to the model during training. Empirical

evaluation shows such method defines an end-to-

end approach for the verification problem, able to

attain better performance than simple scorers such

as those based on cosine similarity and further out-

performing widely used downstream classifiers.

We further observe training is much simplified

under the proposed approach compared to met-

ric learning with actual distances, requiring no

complex scheme to harvest pairs of examples.

1. Introduction

Learning useful representations from high-dimensional data

is one of the main goals of modern machine learning. How-

ever, doing so is generally a side effect of the solution of

a pre-defined task, e.g., while learning the decision sur-

face in a classification problem, inner layers of artificial

neural networks are shown to make salient cues of input

data which are discriminable. Moreover, in unsupervised
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settings, bottleneck layers of autoencoders as well as ap-

proximate posteriors from variational autoencoders have

all been shown to embed relevant properties of input data

which can be leveraged in downstream tasks. Rather than

employing a neural network to solve some task and hope

learned features are useful, approaches such as siamese net-

works (Bromley et al., 1994), which can be included in a

set of approaches commonly referred to as Metric Learning,

have been introduced with the goal of explicitly inducing

features holding desirable properties such as class separabil-

ity. In this setting, an encoder is trained so as to minimize

or maximize a distance measured across pairs of encoded

examples, depending on whether the examples within each

pair belong to the same class or not, provided that class

labels are available. Follow-up work leveraged this idea for

several applications (Hadsell et al., 2006; Hoffer & Ailon,

2015), which include, for instance, the verification problem

in biometrics, as is the case of FaceNet (Schroff et al., 2015)

and Deep-Speaker (Li et al., 2017), which are used for face

and speaker recognition, respectively. However, as pointed

out in recent work (Schroff et al., 2015; Shi et al., 2016;

Wu et al., 2017; Li et al., 2017; Zhang et al., 2018), careful

selection of training pairs is crucial to ensure a reasonable

sample complexity during training given that most triplets

of examples quickly reach the condition such that distances

measured between pairs from the same class are smaller than

those of the pairs from different classes. As such, devel-

oping efficient strategies for harvesting negative pairs with

small distances throughout training becomes primordial.

In this contribution, we are concerned with the metric learn-

ing setting briefly described above, and more specifically,

we turn our attention to its application to the verification

problem, i.e., that of comparing data pairs and determining

whether they belong to the same class. The verification

problem arises in applications where comparisons of two

small samples is required such as face/finger-print/voice

verification (Reynolds, 2002), image retrieval (Zhu et al.,

2016; Wu et al., 2017), and so on. At test time, inference

is often performed to answer two types of questions: (i)

Do two given examples belong to the same class? and (ii)

Does a test example belong to a specific claimed class? And

in both cases test examples might belong to classes never

presented to the model during training. Current verification
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approaches are usually comprised of several components

trained in a greedy manner (Kenny et al., 2013; Snyder et al.,

2018b), and an end-to-end approach is still lacking.

Euclidean spaces will not, in general, be suitable for repre-

senting any desired type of structure expressed in the data

(e.g. asymmetry (Pitis et al., 2020) or hierarchy (Nickel

& Kiela, 2017)). To avoid the need to select an adequate

distance given every new problem we are faced with, as

well as to deal with the training difficulties mentioned previ-

ously, we propose to augment the metric learning framework

and jointly train an encoder (which embeds raw data into

a lower dimensional space) and a (pseudo) distance model

tailored to the problem of interest. An end-to-end approach

for verification is then defined by employing such pseudo-

distance to compute similarity scores. Both models together,

parametrized by neural networks, define a (pseudo) met-

ric space in which inference can be performed efficiently

since now semantic properties of the data (e.g., discrepan-

cies across classes) are encoded by scores. While doing so,

we found several interpretations appear from such learned

pseudo-distance, and it can be further interpreted as a likeli-

hood ratio in a Neyman-Pearson hypothesis test, as well as

an approximate divergence measure between the joint dis-

tributions of positive (same classes) and negative (different

classes) pairs of examples. Moreover, even though we do

not enforce models to satisfy properties of an actual metric1,

we empirically observe such properties to appear.

Our contributions can be summarized as follows:

1. We propose an augmented metric learning framework

where an encoder and a (pseudo) distance are trained

jointly and define a (pseudo) metric space where infer-

ence can be done efficiently for verification.

2. We show that the optimal distance model for any

fixed encoder yields the likelihood-ratio for a Neyman-

Pearson hypothesis test, and it further induces a high

Jensen-Shannon divergence between the joint distribu-

tions of positive and negative pairs.

3. The introduced setting is trained in an end-to-end fash-

ion, and inference can be performed with a single

forward pass, greatly simplifying current verification

pipelines which involve several sub-components.

4. Evaluation on large scale verification tasks provides

empirical evidence of the effectiveness in directly using

outputs of the learned pseudo-distance for inference,

outperforming commonly used downstream classifiers.

The remainder of this paper is organized as follows: met-

ric learning and the verification problem are discussed in

Section 2. The proposed method is presented in Section 3

along with our main guarantees, while empirical evaluation

is presented in Section 4. Discussion and final remarks as

well as future directions are presented in Section 5.

1Symmetry, identity of indiscernibles, and triangle inequality.

2. Background and related work

2.1. Distance Metric Learning

Being able to efficiently assess similarity across samples

from data under analysis is a long standing problem within

machine learning. Algorithms such as K-means, nearest-

neighbors classifiers, and kernel methods generally rely on

the selection of some similarity or distance measure able to

encode semantic relationships present in high-dimensional

data into real scores. Under this view, approaches com-

monly referred to as Distance Metric Learning, introduced

originally by Xing et al. (2003), try to learn a so-called Ma-

halanobis distance, which, given x, y ∈ R
n, will have the

form:
√

(x− y)⊺A(x− y), where A ∈ R
n×n is positive

semidefinite. Several extensions of that setting were then

introduced (Globerson & Roweis, 2006; Weinberger & Saul,

2009; Ying & Li, 2012).

Shalev-Shwartz et al. (2004), for instance, proposed an on-

line version of the algorithm in (Xing et al., 2003), while

an approach based on support vector machines was intro-

duced in (Schultz & Joachims, 2004) for learning A. Davis

et al. (2007) provided an information-theoretic approach to

solve for A by minimizing the divergence between Gaussian

distributions associated to the learned and the Euclidean dis-

tances, further showing such an approach to be equivalent

to low-rank kernel learning (Kulis et al., 2006). Similar

distances have also been used in other settings, such as sim-

ilarity scoring for contrastive learning (Oord et al., 2018;

Tian et al., 2019). Besides the Mahalanobis distance, other

forms of distance/similarity have been considered in recent

work. In (Lanckriet et al., 2004), for example, a kernel

matrix is directly learned, implicitly defining a similarity

function. In (Pitis et al., 2020), classes of neural networks

are proposed to define pseudo-distances which satisfy the

triangle inequality while not being necessarily symmetric.

For the particular case of Mahalanobis distance metric learn-

ing, one can show that ∃ W :
√

(x− y)⊺A(x− y) =
||Wx−Wy||2 (Shalev-Shwartz et al., 2004), which means

that there exists a linear projection of the data after which

the Euclidean distance will correspond to the Mahalanobis

distance on the original space. Chopra et al. (2005) substi-

tuted the linear projection by a learned non-linear encoder

E : RD → Rd so that ||E(x) − E(y)||2 yields a (non-

Mahalanobis) distance measure between raw data points

yielding useful properties. Follow-up work has extended

such idea to several applications (Schroff et al., 2015; Shi

et al., 2016; Li et al., 2017; Zhang et al., 2018). One extra

variation of ||Wx −Wy||2, besides the introduction of E ,

is to switch the Euclidean distance || · ||2 with an alternative

better suited for the task of interest. That is the case in

(Norouzi et al., 2012), where the Hamming distance is used

over data encoded to a binary space. In (Courty et al., 2018),

in turn, the encoder is trained so that Euclidean distances
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in the encoded space approximate Wasserstein divergences,

while Nickel & Kiela (2018) employ a hyperbolic distance

which is argued to be suitable for their particular use case.

Based on the covered literature, one can conclude that there

are two different directions aimed at achieving a similar

goal: learn to represent the data in a metric space where

distances yield efficient inference mechanisms for various

tasks. While one corresponds to learning a meaningful

distance or similarity from raw data, the other corresponds

to, given a fixed distance metric, finding an encoding process

yielding the desired metric space. Here, we propose an

alternative to perform both these tasks simultaneously, i.e.,

jointly learn both the encoder and distance. Close to such

an approach is the method discussed by Garcia & Vogiatzis

(2019) where, similarly to our setting, both encoder and

distance are trained, with the main differences lying in the

facts that our method is fully end-to-end2 while in their

case training happens separately. Moreover, training of the

distance model in that case is done by imitation learning of

cosine similarities.

2.2. The Verification Problem

Given data instances x ∈ X such that each x can be

associated to a class label y ∈ Y through a labeling

function f : X → Y , we define a trial as a pair

of sets of examples {Xi, Xj}, provided that f(xk
i ) =

f(xl
i) ∀ k, l ∈ {1, 2, ..., |Xi|}

2 and f(xk
j ) = f(xl

j) ∀ k, l ∈

{1, 2, ..., |Xj |}
2, so that we can assign class labels to such

sets Xm defining f(Xm) = f(xm) ∀ xm ∈ Xm. The

verification problem can be thus viewed as, given a trial

Ti,j = {Xi, Xj}, deciding whether f(Xi) = f(Xj), in

which case we refer to T as target trial, or f(Xi) 6= f(Xj)
and the trial will be called non-target.

The verification problem is illustrated in Figure 1. We cat-

egorize trials into two types in accordance to practical in-

stances of the verification problem: type I trials are those

such that Xi is referred to as enrollment sample, i.e., a set

of data points representing a given class such as a gallery of

face pictures from a given user in an access control appli-

cation, while Xj will correspond to a single example xtest

to be verified against the enrollment gallery. For the type II

case, Xi is simply a claim corresponding to the class against

which xtest will be verified. Classes corresponding to ex-

amples within test trials might have never been presented to

the model, and sets Xi and Xj are typically small (< 10).

Under the Neyman-Pearson approach (Neyman & Pearson,

1933), verification is seen as a hypothesis test, where H0

and H1 correspond to the hypothesis such that T is target

or otherwise, respectively (Jiang & Deng, 2001). The test is

2What authors refer to as end-to-end requires pretraining an
encoder in the metric learning setting with a standard distance.

Verification Reject

Accept

Non-target

Target

Xenroll , xtest

Claimed 
Class , xtest

Type I trial:

Type II trial:

Figure 1. The verification problem.

thus performed through the following likelihood ratio (LR):

LR =
p(T |H0)

p(T |H1)
, (1)

where p(T |H0) and p(T |H1) correspond to models of tar-

get, and non-target (or impostor) trials. The decision is

made by comparing LR with a threshold τ .

One can then explicitly approximate LR through generative

approaches (Deng & O’Shaughnessy, 2018), which is com-

monly done using Gaussian mixture models. In that case,

the denominator is usually defined as a universal background

model (GMM-UBM, Reynolds et al. (2000)), meaning that

it is trained on data from all available classes, while the

numerator is a fine-tuned model on enrollment data so that,

for trial {X1, X2}, LR will be:

LR =
pX1

(X2)

pUBM (X2)
=

pXEnroll
(xtest)

pUBM (xtest)
. (2)

Alternatively, Cumani et al. (2013) showed that discrimina-

tive settings, i.e., binary classifiers trained on top of data

pairs to determine whether they belong to the same class,

yielded likelihood ratios useful for verification. In their

case, a binary SVM was trained on pairs of i-vectors (Dehak

et al., 2010) for automatic speaker verification. We build

upon such discriminative setting, but with the difference

that we learn an encoding process along with the discrim-

inator (here represented as a distance model), and show it

to yield likelihood ratios required for verification through

contrastive estimation results. This is more general than

the result in (Cumani et al., 2013), which shows that there

exists a generative classifier associated to each discriminator

whose likelihood ratio matches the discriminator’s output,

requiring such classifier’s assumptions to hold.

We remark that current verification approaches are com-

posed of complex pipelines containing several components

(Dehak et al., 2010; Kenny et al., 2013; Snyder et al., 2018b),

including a pretrained data encoder, followed by a down-

stream classifier, such as probabilistic linear discriminant

analysis (PLDA) (Ioffe, 2006; Prince & Elder, 2007), and

score normalization (Auckenthaler et al., 2000), each con-

tributing practical issues (e.g., cohort selection) to the over-
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all system. This renders both training and testing of such

systems difficult. The approach proposed herein is a step

towards end-to-end verification, i.e., from data to scores via

a single forward pass, thus simplifying inference.

3. Learning pseudo metric spaces

We consider the setting where both an encoding mecha-

nism, as well as some type of similarity or distance across

data points are to be learned. Assume E : RD → R
d and

D : Rd ×R
d → (0, 1) are deterministic mappings which

will be referred to as encoder and distance model, respec-

tively, and will be both parametrized by neural networks.

Such entities resemble a metric-space, thus we will refer to

it as pseudo metric space. We empirically observed that in-

troducing distance properties in D, i.e., by constraining it to

be symmetric and enforcing it to satisfy the triangle inequal-

ity, did not result in improved performance, yet rendered

training unstable. However, since trained models are found

to approximately behave as an actual distance, we make use

of the analogy, but further provide alternative interpretations

of D’s outputs.

Data samples are such that x ∈ X ⊂ R
D, and z = E(x)

represents embedded data in R
d. It will be usually the case

that D ≫ d. Once more, each data example can be fur-

ther assigned to one of L class labels through a labeling

function f : X → {1, ..., L}. Moreover, we define positive

and negative pairs of examples denoted by + or − super-

scripts such that x+ = {xi, xj} =⇒ f(xi) = f(xj),
as well as x− = {xi, xj} =⇒ f(xi) 6= f(xj). The

same notation is employed in the embedding space so that

z+ = E(x+) = {E(xi), E(xj)} =⇒ f(xi) = f(xj), and

z− = E(x−) = {E(xi), E(xj)} =⇒ f(xi) 6= f(xj). We

will denote the sets of all possible positive and negative pairs

by X+ and X−, respectively, and further define a probabil-

ity distribution p over X which, along with f , will yield p+

and p− over X+ and X−. Similarly to the setting in (Hjelm

et al., 2018), which introduces a discriminator over pairs of

samples, we are interested in E∗ and D∗ such that:

E∗,D∗ ∈ argmin
E,D

− Ex+∼p+ log(D ◦E(x+))

− Ex−∼p− log(1−D ◦E(x−)),
(3)

and ◦ indicates composition so that D ◦E(x+) = D(E(x+)).
Such problem is separable in the parameters of E and D and

iterative solution strategies might include either alternate

or simultaneous updates. We found the latter to converge

faster in terms of wall-clock time and both approaches reach

similar performance. We thus perform simultaneous updates

while training.

The problem stated in (3) corresponds to finding E and D
which will ensure that semantically close or distant samples,

as defined through f , will preserve such properties in terms

of distance in the new space, while doing so in lower di-

mension. We stress the fact that class labels define which

samples should be close together or far apart, which means

that the same underlying data can yield different pseudo-

metric spaces if different semantic properties are used to

define class labels. For example, if one considers that, for a

given set of speech recordings, class labels are equivalent

to speaker identities, recordings from the same speaker are

expected to be clustered together in the embedding space,

while different results can be achieved if class labels are

assigned corresponding to spoken language, acoustic condi-

tions, and so on.

3.1. Different interpretations for D

Besides the view of D as a distance-like object defining a

metric-like space {E(X ),D}, here we discuss some other

possible interpretations of its outputs. We start by justifying

the choice of the training objective defined in (3) by showing

it to yield the likelihood ratio of particular trials of type I

corresponding to a single enrollment example against a

single test example, i.e. T = {xenroll, xtest}. In both of the

next two propositions, proofs directly reuse results from the

contrastive estimation and generative adversarial networks

literature (Gutmann & Hyvärinen, 2010; Goodfellow et al.,

2014) to show D can be used for verification.

Proposition 1. The optimal D for any fixed E yields a

simple transformation of the likelihood ratio stated in Eq. 1

for trials of the type T = {xenroll, xtest}.

Proof. We first define p+z and p−z , which correspond to the

counterparts of p+ and p− induced by E in the embedding
space. Now consider the loss L defined in Eq. 3:

L = −E
z+∼p

+
z
log(D(z+))− E

z−∼p
−

z
log(1−D(z−))

=−

∫

Z+

p
+

z (z
+) log(D(z+))−

∫

Z−

p
−

z (z
−) log(1−D(z−))

=−

∫

Z′

p
+

z (z
′) log(D(z′)) + p

−

z (z
′) log(1−D(z′)), (4)

where Z ′ corresponds to Z+∪Z− or equivalently E(X+)∪
E(X−). Since D(z′) ∈ (0, 1) ∀ z′ ∈ Z ′, above integrand

p+z (z
′) log(D(z′)) + p−z (z

′) log(1−D(z′)), provided that

the set from which we pick candidate solutions is rich

enough, has its maximum at:

D∗(z′) =
p+z (z

′)

p+z (z′) + p−z (z′)
,

=
1

1 +
(

p
+
z (z′)

p
−

z (z′)

)−1 . (5)

The last step above is of course only valid for z′ ∈
supp(p+z ). Nevertheless, D∗(z′) is in any case mean-

ingful for verification. In fact, as will be discussed in
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Proposition 2, the optimal encoder is the one that in-

duces supp(p+z ) ∩ supp(p−z ) = ∅. Considering trial

T = {xenroll, xtest}, we can write the ratio
p+
z
(z′)

p
−

z (z′)
as:

p+z (z
′)

p−z (z′)
=

p+z (E(xenroll), E(xtest))

p−z (E(xenroll), E(xtest))
:=

p(T |H0)

p(T |H1)
.� (6)

Proposition 1 indicates that the discussed setting can be used

in an end-to-end fashion to yield verification decision rules

against a threshold τ for trials of a specific type.

The following lemma will be necessary for the next result:

Lemma 1. If supp(p+z ) ∩ supp(p−z ) = ∅, any positive

threshold 0 < τ < ∞ yields optimal decision rules for

trials T = {xenroll, xtest}.

Proof. We prove the lemma by inspecting the decision rule

under the considered assumptions in the two possible test

cases: if T is non-target =⇒
p+
z
(E(xenroll),E(xtest))

p
−

z (E(xenroll),E(xtest))
= 0 <

τ . If T is target =⇒
p+
z
(E(xenroll),E(xtest))

p
−

z (E(xenroll),E(xtest))
→ ∞ > τ ,

completing the proof. �

We now proceed and use the optimal discriminator into L,

which yields the following result for the optimal encoder:

Proposition 2. Minimizing L yields optimal decision rules

for any positive threshold.

Proof. We plug D∗ into L so that for any z′ we obtain:

L =− Ez′∼p
+
z
log

( p+z (z
′)

p+z (z′) + p−z (z′)

)

− Ez′∼p
−

z
log

( p−z (z
′)

p+z (z′) + p−z (z′)

)

=−KL
(

p+z ||p
+
z + p−z

)

−KL
(

p−z ||p
+
z + p−z

)

= log 4− 2JSD(p+z ||p
−
z ).

(7)

L is therefore minimized (L∗ = 0) iff E yields supp(p+z ) ∩
supp(p−z ) = ∅, which results in optimal decision rules for

any positive threshold, invoking lemma 1, and assuming

such encoders are available in the set one searches over. �

We thus showed the proposed training scheme to be conve-

nient for 2-sample tests under small sample regimes, such as

in the case of verification, given that: (i) the distance model

is also a discriminator which approximates the likelihood

ratio of the joint distributions over positive and negative

pairs3, and the encoder will be such that it induces a high

divergence across such distributions, rendering their ratio

amenable to decision making even in cases where verified

samples are as small as single enrollment and test examples.

3The joint distribution over negative pairs is simply the product
of marginals: p−(xi, xj) = p(xi)p(xj).

On a speculative note, we provide yet another view of D
by defining the kernel function K = D. If we assume K to

satisfy Mercer’s condition (which won’t likely be the case

within our setting since K will not be symmetric nor positive

semidefinite), we can invoke Mercer’s theorem and state that

there is a feature map to a Hilbert space where verification

can be performed through inner products. Training in the

described setting could be viewed such that minimizing L
becomes equivalent to building such a Hilbert space where

classes can be distinguished by directly scoring data points

one against the other. We hypothesize that constraining

K to sets where Mercer’s condition does hold might yield

an effective approach for the problems we consider herein,

which we intend to investigate in future work.

3.2. Training

We now describe the procedure we adopt to minimize L
as well as some practical design decisions made based on

empirical results. Both E and D are implemented as neu-

ral networks. In our experiments, E will be convolutional

(2-d for images and 1-d for audio) while D is a stack of

fully-connected layers which take as input concatenated

embeddings of pairs of examples. Training is carried out

with standard minibatch stochastic gradient descent with

momentum. We perform simultaneous update steps for E
and D since we observed that to be faster than alternate

updates, while yielding the same performance. Standard

regularization strategies such as weight decay and label

smoothing (Szegedy et al., 2016) are also employed. We

empirically found that employing an auxiliary multi-class

classification loss significantly accelerates training. Since

our approach requires labels to determine which pairs of

examples are positive or negative, we make further use of

the labels to compute such auxiliary loss, which will be indi-

cated by LCE . To allow for computation of LCE , we project

z = E(x) onto the simplex ∆L−1 using a fully-connected

layer. Minimization is then performed on the sum of the

two losses, i.e., we solve E ,D ∈ argmin L′ = L+ LCE ,

where the CE subscript in LCE indicates the multi-class

cross-entropy loss.

All hyperparameters are selected with a random search over

a pre-defined grid. For the particular case of the auxiliary

loss LCE , besides the standard cross-entropy, we also ran

experiments considering one of its so-called large margin

variations. We particularly evaluated models trained with

the additive margin softmax approach (Wang et al., 2018).

The choice between the two types of auxiliary losses (stan-

dard or large margin) was a further hyperparameter and the

decision was based on the random search over the two op-

tions. The grid used for hyperparameters selection along

with the values chosen for each evaluation are presented in

the appendix. A pseudocode describing our training proce-

dure is presented in Algorithm 1.
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Algorithm 1 Training procedure.

E ,D = InitializeModels()
repeat

x, y = SampleMinibatch()
z = E(x)
z+ = GetAllPositivePairs(z, y)
z− = GetAllNegativePairs(z, y)
y′ = ProjectOntoSimplex(z)
L′ = L(z+, z−,D) + LCE(y

′, y)
E ,D = UpdateRule(E ,D,L′)

until Maximum number of iterations reached

return E ,D

Table 1. Evaluation of models trained under the proposed approach

on image data.
Scoring EER 1-AUC

Cifar-10

Triplet Cosine 3.80% 0.98%

Proposed

E2E 3.43% 0.60%

Cosine 3.56% 1.03%

Cosine + E2E 3.42% 0.80%

Mini-ImageNet

(Validation)

Triplet Cosine 28.91% 21.58%

Proposed

E2E 28.64% 21.01%

Cosine 30.66% 23.70%

Cosine + E2E 28.49% 20.90%

Mini-ImageNet

(Test)

Triplet Cosine 29.68% 22.56%

Proposed

E2E 29.26% 22.04%

Cosine 32.97% 27.34%

Cosine + E2E 29.32% 22.24%

4. Evaluation

We proceed to evaluation of the described framework and

do so with four sets of experiments. In the first part of

our evaluation, we run proof-of-concept experiments and

make use of standard image datasets to simulate verification

settings. We report results on all trials created for the test

sets of Cifar-10 and Mini-ImageNet. In the former, the

same 10 classes of examples appear for both train and test

partitions, in what we refer to as closed-set verification. For

the case of Mini-ImageNet, since that dataset was designed

for few-shot learning applications, we have an open-set

evaluation for verification since there are 64, 16, and 20

disjoint classes of training, validation, and test examples.

We then move on to a large scale realistic evaluation. To this

end, we make use of the recently introduced VoxCeleb cor-

pus (Nagrani et al., 2017; Chung et al., 2018), corresponding

to audio recordings of interviews taken from youtube videos,

which means there’s no control over the acoustic conditions

present in the data. Moreover, while most of the corpus

corresponds to speech in English, other languages are also

present, so that test recordings are from different speakers

relative to the train data, and potentially also from different

languages and acoustic environments. We specifically em-

ploy the second release of the corpus so that training data is

composed of recordings from 5994 speakers while three test

sets are available: (i) VoxCeleb1 Test set, which is made up

of utterances from 40 speakers, (ii) VoxCeleb1-E, i.e., the

complete first release of the data containing 1251 speakers,

and (iii) VoxCeleb1-H, corresponding to a sub-set of the

trials in VoxCeleb1-E so that non-target trials are designed

to be hard to discriminate by using the meta-data to match

factors such as nationality and gender of the speakers. We

then report experiments performed to observe whether D’s

outputs present properties of actual distances, and finally

check the influence of D’s architecture on final performance.

Our main baselines for proof-of-concept experiments cor-

respond to the same encoders as in the evaluation of our

proposed approach, while D is dropped and replaced by the

Euclidean distance. In those cases however, in order to get

the most challenging baselines, we perform online selection

of hard negatives. Our baselines closely follow the setting

described in (Monteiro et al., 2019). All such baselines are

referred to as triplet in the tables with results as a refer-

ence to the training loss in those cases. Unless specified,

all models, baseline or otherwise, are trained from scratch,

and the same computation budget is used for training and

hyperparameter search for all models we trained.

Performance is assessed in terms of the difference to 1 of

the area under the operating curve, indicated by 1-AUC in

the tables, and also in terms of equal error rate (EER). EER

indicates the operating point (i.e. threshold selection) at

which the miss and false alarm rates are equal. Both metrics

are better when closer to 0. We consider different strate-

gies to score test trials. Both cosine similarity and PLDA

are considered in some cases, and when the output of D
is directly used as a score we then indicate it by E2E in a

reference to end-to-end4. We further remark that cosine sim-

ilarity can also be used to score trials in our proposed setting,

and we observed some performance gains when applying

simple sum fusion of the two available scores. Additional

implementation details are included in the appendix.

4.1. Cifar-10 and Mini-ImageNet

The encoder for evaluation on both Cifar-10 and Mini-

ImageNet was implemented as a ResNet-18 (He et al., 2016).

Results are reported in Table 1.

Results indicate the proposed scheme indeed yields effective

inference strategies under the verification setting compared

to traditional metric learning approaches, while using a more

simplified training scheme since: (i) no sort of approach for

harvesting hard negative pairs (e.g., (Schroff et al., 2015;

Wu et al., 2017)) is needed in our case, and those are usually

expensive, (ii) the method does not require large batch sizes,

4Scoring trials with cosine similarity can be also seen as end-
to-end.
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Figure 2. MNIST embeddings on a 2-dimensional space. Each

color represents test examples corresponding to a digit from 0 to 9.

and (iii) we employ a simple loss with no hyperparameters

that have to be tuned, as opposed to margin-based triplet or

contrastive losses. We further highlight that the encoders

trained with the proposed approach have the possibility for

trials to be further scored with cosine similarities, which

yields a performance improvement in some cases when

combined with D’s output

4.2. Large-scale verification with VoxCeleb

We now proceed and evaluate the proposed scheme in a

more challenging scenario corresponding to realistic audio

data for speaker verification. To do so, we implement E as

the well-known time-delay architecture (Waibel et al., 1989)

employed within the x-vector setting, showed to be effective

in summarizing speech into speaker- and spoken language-

dependent representations (Snyder et al., 2018b;a). The

model consists of a sequence of dilated 1-dimensional con-

volutions across the temporal dimension, followed by a time

pooling layer, which simply concatenates element-wise first-

and second-order statistics over time. Statistics are finally

projected into an output vector through fully-connected lay-

ers. Speech is represented as 30 mel-frequency cepstral co-

efficients obtained with a short-time Fourier transform using

a 25ms Hamming window with 60% overlap. All the data is

downsampled to 16kHz beforehand. An energy-based voice

activity detector is employed to filter out non-speech frames.

We augment the data by creating noisy versions of training

recordings using exactly the same approach as in (Snyder

et al., 2018b). Model architecture and feature extraction

details are included in the appendix.

We compared our models with a set of published results as

well as the results provided by the popular Kaldi recipe5,

considering scoring using cosine similarity or PLDA. For

the Kaldi baseline, we found the same model as ours to

yield relatively weak performance. As such, we decided

to search over possible architectures in order to make it a

5Kaldi recipe: https://github.com/kaldi-asr/

kaldi/tree/master/egs/voxceleb

stronger baseline. We thus report the best model we could

find which has the same structure as ours, i.e., it is made

up of convolutions over time followed by temporal pooling

and fully-connected layers, while the convolutional stack is

deeper, which makes the comparison unfair in their favor.

We further evaluated our models using PLDA by running

just the part of the same Kaldi recipe corresponding to the

training of that downstream classifier on top of represen-

tations obtained from our encoder. Results are reported

in Table 2 and support our claim that the proposed frame-

work can be directly used in an end-to-end fashion. It is

further observed that it outperformed standard downstream

classifiers, such as PLDA, by a significant difference while

not requiring any complex training procedure, as common

metric learning approaches usually do. We employ simple

random selection of training pairs. Ablation results are also

reported, in which case we dropped the auxiliary loss LCE

and trained the same E and D using the same budget in terms

of number of iterations, showing that having the auxiliary

loss improves performance in the considered evaluation.

Table 2. Evaluation of models trained under the proposed approach

on VoxCeleb.
Scoring Training set EER

VoxCeleb1 Test set

Nagrani et al. (2017) PLDA VoxCeleb1 8.80%

Cai et al. (2018) Cosine VoxCeleb1 4.40%

Okabe et al. (2018) Cosine VoxCeleb1 3.85%

Hajibabaei & Dai (2018) Cosine VoxCeleb1 4.30%

Ravanelli & Bengio (2019) Cosine VoxCeleb1 5.80%

Chung et al. (2018) Cosine VoxCeleb2 3.95%

Xie et al. (2019) Cosine VoxCeleb2 3.22%

Hajavi & Etemad (2019) Cosine VoxCeleb2 4.26%

Xiang et al. (2019) Cosine VoxCeleb2 2.69%

Kaldi recipe5 PLDA VoxCeleb2 2.51%

Proposed Cosine VoxCeleb2 4.97%

Proposed E2E VoxCeleb2 2.51%

Proposed Cosine + E2E VoxCeleb2 2.51%

Proposed PLDA VoxCeleb2 3.75%

Ablation (−LCE) E2E VoxCeleb2 3.44%

VoxCeleb1-E

Chung et al. (2018) Cosine VoxCeleb2 4.42%

Xie et al. (2019) Cosine VoxCeleb2 3.13%

Xiang et al. (2019) Cosine VoxCeleb2 2.76%

Kaldi recipe5 PLDA VoxCeleb2 2.60%

Proposed Cosine VoxCeleb2 4.77%

Proposed E2E VoxCeleb2 2.57%

Proposed Cosine + E2E VoxCeleb2 2.53%

Proposed PLDA VoxCeleb2 3.61%

Ablation (−LCE) E2E VoxCeleb2 3.70%

VoxCeleb1-H

Chung et al. (2018) Cosine VoxCeleb2 7.33%

Xie et al. (2019) Cosine VoxCeleb2 5.06%

Xiang et al. (2019) Cosine VoxCeleb2 4.73%

Kaldi recipe5 PLDA VoxCeleb2 4.62%

Proposed Cosine VoxCeleb2 8.61%

Proposed E2E VoxCeleb2 4.73%

Proposed Cosine + E2E VoxCeleb2 4.69%

Proposed PLDA VoxCeleb2 5.98%

Ablation (−LCE) E2E VoxCeleb2 7.76%
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(a) Distance to itself - Cifar-10. (b) Symmetry - Cifar-10. (c) Triangle inequality - Cifar-10.

(d) Distance to itself - VoxCeleb. (e) Symmetry - VoxCeleb. (f) Triangle inequality - VoxCeleb.

Figure 3. Evaluation of properties given by outputs of D′ = 1−D.

4.3. Checking for distance properties in D

We now empirically evaluate how D behaves in terms of

properties of distances or metrics such as symmetry, for

instance. We start by plotting embeddings from E and do so

by training an encoder on MNIST under the proposed set-

ting (without the auxiliary loss LCE in this case) so that its

outputs are given by z ∈ R
2. We then plot the embeddings

of the complete MNIST’s test set on Fig. 2, where the raw

embeddings in R
2 are directly displayed in the plot. Inter-

estingly, classes are reasonably clustered in the Euclidean

space even if such behavior was never enforced during train-

ing. We proceed and directly check for distance properties

in D′ = 1−D. For the test set of Cifar-10 as well as for Vox-

Celeb1 Test set, we plot histograms of (i) the distance to

itself for all test examples, (ii) a symmetry measure given by

the absolute difference of the outputs of D′ measured in the

two directions for all possible test pairs, and (iii) a measure

of how much D′ satisfies the triangle inequality, which we

do by measuring max[D′(b, c) − (D′(a, b) + D′(a, c)), 0]
for a random sample taken from all possible triplets of exam-

ples {a, b, c}. Proper metrics should have all such quantities

equal 0. In Figures 3-a to 3-f, it can be seen that once more,

even if any particular behavior is enforced over D at its

training phase, resulting models approximately behave as

proper metrics. We thus hypothesize the relatively easier

training observed in our setting, in the sense that it works

without complicated schemes for selection of negative pairs,

is due to the not so constrained distances induced by D.

4.4. Varying the depth of D for verification on

ImageNet

We performed closed-set verification on the full ImageNet

with distance models of increasing depths (1 to 5) to ver-

ify whether our setting is stable with respect to some of

the introduced hyperparameters. With this experiment, we

specifically intend to assess how difficult it would be in

practice to find a good architecture for the distance model.

Our models are compared against encoders with the same

architecture, but trained using a standard metric learning

approach, i.e the same training scheme as that employed for

baselines reported in Table 1.

For this case, the encoder E is implemented as the convolu-

tional stack of a ResNet-50 followed by a fully-connected

layer used to project the output representations to the desired

dimensionality, and we employ an embedding dimension

of 128 across all reported models. D is once more imple-

mented as a stack of fully-connected layers in which case

we set the sizes of all hidden layers to 256. Training is per-

formed such that the parameters of the convolutional portion

of E are initialized from a pretrained model for multi-class

classification on ImageNet, and this approach is used for

both our models as well as the baseline. We then perform

stochastic gradient descent on the combined loss discussed

in Section 3 using the standard multi-class cross entropy as

auxiliary loss. Moreover, given the large number of classes

in ImageNet compared to commonly used batch sizes, in

order to be able to always find positive pairs throughout
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Figure 4. Verification on all trials created by pairing all test examples of ImageNet. Results indicate that defining the architecture of the

distance model is not difficult in practice given that models of varying depths yield a relatively small performance range.

training, minibatches are constructed using the same strat-

egy as that employed for experiments with VoxCeleb, i.e.

we ensure at least 5 examples per class appear in each mini-

batch. The learning rate is set to 0.001 and is reduced by

a factor of 0.1 every 10 epochs. Training is carried out for

50 epochs. Evaluation is performed over trials obtained

from building all possible pairs of examples from the test

partition of ImageNet. Results are reported in Figures 4-a

and 4-b in terms of EER and the area over the operating

curve (1-AUC), respectively. Scoring for the case of base-

line encoders is performed with cosine similarity between

encoded examples from test trials. While standard metric

learning encoders make for strong baselines, all evaluated

distance models are able to perform on pair (depth=1) or

better than (depth>1) such models.

The results discussed herein provide empirical evidence for

the claim that tuning the hyperparameters we introduced

in comparison to previous settings, i.e. the architecture of

the distance model, is not so challenging in that we achieve

reasonably stable performance for verification on ImageNet

when varying the depth of the distance model. Yet another

empirical finding supporting that claim consists of the fact

that similar architectures of the distance model were found

to work well across all the datasets/domains we evaluated

on. We specifically found that distance models with 3 or 4

hidden layers with 256 units each work well across datasets,

which we believe might be a reasonable starting point for

extending the approach we discussed to other datasets.

5. Conclusion

We introduced an end-to-end setting particularly tailored to

perform small sample 2-sample tests and compare data pairs

to determine whether they belong to the same class. Several

interpretations of such framework are provided, including

joint encoder and distance metric learning, as well as con-

trastive estimation over data pairs. We used contrastive

estimation results to show the solutions of the posed prob-

lem yield optimal decision rules under verification settings,

resulting in correct decisions for any choice of threshold. In

terms of practical contributions, the proposed method sim-

plifies both the training under the metric learning framework,

as it does not require any scheme to select negative pairs of

examples, and also simplifies verification pipelines, which

are usually made up of several individual components, each

one contributing specific challenges at training and testing

phases. Our models can be used in an end-to-end fashion by

using D’s outputs to score test trials yielding strong perfor-

mance even in large scale and realistic open-set conditions

where test classes are different from those seen at train time6.

The proposed approach can be extended to any setting re-

lying on distances to do inference such as image retrieval,

prototypical networks (Snell et al., 2017), and clustering.

Similarly to extensions of GANs (Nowozin et al., 2016;

Arjovsky et al., 2017), variations of our approach where

E maximizes other types of divergences instead of Jensen-

Shannon’s might also be a relevant future research direction,

requiring corresponding decision rules to be defined.
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