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Abstract
We study the problem of learning adversarially
robust halfspaces in the distribution-independent
setting. In the realizable setting, we provide nec-
essary and sufficient conditions on the adversarial
perturbation sets under which halfspaces are ef-
ficiently robustly learnable. In the presence of
random label noise, we give a simple computa-
tionally efficient algorithm for this problem with
respect to any `p-perturbation.

1. Introduction
Learning predictors that are robust to adversarial examples
remains a major challenge in machine learning. A line
of work has shown that predictors learned by deep neural
networks are not robust to adversarial examples (Szegedy
et al., 2014; Biggio et al., 2013; Goodfellow et al., 2015).
This has led to a long line of research studying different
aspects of robustness to adversarial examples.

In this paper, we consider the problem of distribution-
independent learning of halfspaces that are robust to ad-
versarial examples at test time, also referred to as robust
PAC learning of halfspaces. Halfspaces are binary predic-
tors of the form hw(x) = sign(〈w,x〉), where w ∈ Rd.

In adversarially robust PAC learning, given an instance
space X and label space Y = {±1}, we formalize an ad-
versary – that we would like to be robust against – as a
map U : X 7→ 2X , where U(x) ⊆ X represents the set of
perturbations (adversarial examples) that can be chosen by
the adversary at test time (i.e., we require that x ∈ U(x)).
For an unknown distribution D over X × Y , we observe m
i.i.d. samples S ∼ Dm, and our goal is to learn a predictor
ĥ : X 7→ Y that achieves small robust risk,

RU (ĥ;D) , E
(x,y)∼D

[
sup

z∈U(x)
1[ĥ(z) 6= y]

]
. (1)
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The information-theoretic aspects of adversarially robust
learning have been studied in recent work, see, e.g.,
(Schmidt et al., 2018; Cullina et al., 2018; Khim & Loh,
2018; Bubeck et al., 2019; Yin et al., 2019; Montasser et al.,
2019). This includes studying what learning rules should
be used for robust learning and how much training data is
needed to guarantee high robust accuracy. It is now known
that any hypothesis class H with finite VC dimension is
robustly learnable, though sometimes improper learning is
necessary and the sample complexity may be exponential in
the VC dimension (Montasser et al., 2019).

On the other hand, the computational aspects of adversari-
ally robust PAC learning are less understood. In this paper,
we take a first step towards studying this broad algorith-
mic question with a focus on the fundamental problem of
learning adversarially robust halfspaces.

A first question to ask is whether efficient PAC learning
implies efficient robust PAC learning, i.e., whether there
is a general reduction that solves the adversarially robust
learning problem. Recent work has provided strong evi-
dence that this is not the case. Specifically, (Bubeck et al.,
2019) showed that there exists a learning problem that can
be learned efficiently non-robustly, but is computationally
intractable to learn robustly (under plausible complexity-
theoretic assumptions). There is also more recent evidence
that suggests that this is also the case in the PAC model.
(Awasthi et al., 2019) showed that it is computationally in-
tractable to even weakly robustly learn degree-2 polynomial
threshold functions (PTFs) with `∞ perturbations in the
realizable setting, while PTFs of any constant degree are
known to be efficiently PAC learnable non-robustly in the
realizable setting. (Gourdeau et al., 2019) showed that there
are hypothesis classes that are hard to robustly PAC learn,
under the assumption that it is hard to non-robustly PAC
learn.

The aforementioned discussion suggests that when study-
ing robust PAC learning, we need to characterize which
types of perturbation sets U admit computationally efficient
robust PAC learners and under which noise assumptions.
In the agnostic PAC setting, it is known that even weak
(non-robust) learning of halfspaces is computationally in-
tractable (Feldman et al., 2006; Guruswami & Raghavendra,
2009; Diakonikolas et al., 2011; Daniely, 2016). For `2-
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perturbations, where U(x) = {z : ‖x− z‖2 ≤ γ}, it was
recently shown that the complexity of proper learning is ex-
ponential in 1/γ (Diakonikolas et al., 2019b). In this paper,
we focus on the realizable case and the (more challenging)
case of random label noise.

We can be more optimistic in the realizable setting. Halfs-
paces are efficiently PAC learnable non-robustly via Linear
Programming (Maass & Turán, 1994), and under the margin
assumption via the Perceptron algorithm (Rosenblatt, 1958).
But what can we say about robustly PAC learning halfs-
paces? Given a perturbation set U and under the assumption
that there is a halfspace hw that robustly separates the data,
can we efficiently learn a predictor with small robust risk?

Just as empirical risk minimization (ERM) is central for
non-robust PAC learning, a core component of adversarially
robust learning is minimizing the robust empirical risk on a
dataset S,

ĥ ∈ RERMU (S) , argmin
h∈H

1

m

m∑
i=1

sup
z∈U(x)

1[h(z) 6= y].

In this paper, we provide necessary and sufficient conditions
on perturbation sets U , under which the robust empirical risk
minimization (RERM) problem is efficiently solvable in the
realizable setting. We show that an efficient separation ora-
cle for U yields an efficient solver for RERMU , while an ef-
ficient approximate separation oracle for U is necessary for
even computing the robust loss supz∈U(x) 1[hw(z) 6= y]
of a halfspace hw. In addition, we relax our realizabil-
ity assumption and show that under random classification
noise (Angluin & Laird, 1987), we can efficiently robustly
PAC learn halfspaces with respect to any `p perturbation.

Main Contributions Our main contributions can be sum-
marized as follows:

1. In the realizable setting, the class of halfspaces is effi-
ciently robustly PAC learnable with respect to U , given
an efficient separation oracle for U .

2. To even compute the robust risk with respect to U
efficiently, an efficient approximate separation oracle
for U is necessary.

3. In the random classification noise setting, the class of
halfspaces is efficiently robustly PAC learnable with
respect to any `p perturbation.

1.1. Related Work

Here we focus on the recent work that is most closely related
to the results of this paper. (Awasthi et al., 2019) studied the
tractability of RERM with respect to `∞ perturbations, ob-
taining efficient algorithms for halfspaces in the realizable
setting, but showing that RERM for degree-2 polynomial

threshold functions is computationally intractable (assum-
ing NP 6= RP). (Gourdeau et al., 2019) studied robust
learnability of hypothesis classes defined over {0, 1}n with
respect to hamming distance, and showed that monotone
conjunctions are robustly learnable when the adversary can
perturb only O(log n) bits, but are not robustly learnable
even under the uniform distribution when the adversary can
flip ω(log n) bits.

In this work, we take a more general approach, and instead
of considering specific perturbation sets, we provide meth-
ods in terms of oracle access to a separation oracle for the
perturbation set U , and aim to characterize which perturba-
tion sets U admit tractable RERM.

In the non-realizable setting, the only prior work we are
aware of is by (Diakonikolas et al., 2019b) who studied the
complexity of robustly learning halfspaces in the agnostic
setting under `2 perturbations.

2. Problem Setup
Let X = Rd be the instance space and Y = {±1} be
the label space. We consider halfspaces H = {x 7→
sign(〈w,x〉) : w ∈ Rd}.

The following definitions formalize the notion of adver-
sarially robust PAC learning in the realizable and random
classification noise settings:

Definition 2.1 (Realizable Robust PAC Learning). We say
H is robustly PAC learnable with respect to an adversary U
in the realizable setting, if there exists a learning algorithm
A : (X ×Y)∗ 7→ YX with sample complexity m : (0, 1)→
N such that: for any ε, δ ∈ (0, 1), for every data distribution
D over X × Y where there exists a predictor h∗ ∈ H with
zero robust risk, RU (h∗;D) = 0, with probability at least
1− δ over S ∼ Dm,

RU (A(S);D) ≤ ε.

Definition 2.2 (Robust PAC Learning with Random Classi-
fication Noise). Let h∗ ∈ H be an unknown halfspace.
Let Dx be an arbitrary distribution over X such that
RU (h∗;Dh∗) = 0, and η ≤ 0 < 1/2. A noisy exam-
ple oracle, EX(h∗,Dx, η) works as follows: Each time
EX(h∗,Dx, η) is invoked, it returns a labeled example
(x, y), where x ∼ Dx, y = h∗(x) with probability 1 − η
and y = −h∗(x) with probability η. Let D be the joint
distribution on (x, y) generated by the above oracle.

We say H is robustly PAC learnable with respect to an
adversary U in the random classification noise model, if
∃m(ε, δ, η) ∈ N ∪ {0} and a learning algorithm A : (X ×
Y)∗ 7→ YX , such that for every distribution D over X × Y
(generated as above by a noisy oracle), with probability at
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least 1− δ over S ∼ Dm,

RU (A(S);D) ≤ η + ε.

Sample Complexity of Robust Learning Denote by LUH
the robust loss class ofH,

LUH =

{
(x, y) 7→ sup

z∈U(x)
1[h(z) 6= y] : h ∈ H

}
.

It was shown by (Cullina et al., 2018) that for any set B ⊆ X
that is nonempty, closed, convex, and origin-symmetric, and
an adversary U that is defined as U(x) = x + B (e.g., `p-
balls), the VC dimension of the robust loss of halfspaces
vc(LUH) is at most the standard VC dimension vc(H) =
d + 1. Based on Vapnik’s “General Learning” (Vapnik,
1982), this implies that we have uniform convergence of
robust risk with m = O(d+log(1/δ)

ε2 ) samples. Formally, for
any ε, δ ∈ (0, 1) and any distribution D over X × Y , with
probability at least 1− δ over S ∼ Dm,

∀w ∈ Rd, |RU (hw;D)− RU (hw;S)| ≤ ε. (2)

In particular, this implies that for any adversary U that satis-
fies the conditions above,H is robustly PAC learnable w.r.t.
U by minimizing the robust empirical risk on S,

RERMU (S) = argmin
w∈Rd

1

m

m∑
i=1

sup
zi∈U(xi)

1[yi 〈w, zi〉 ≤ 0].

(3)

Thus, it remains to efficiently solve the RERMU problem.
We discuss necessary and sufficient conditions for solving
RERMU in the following section.

3. The Realizable Setting
In this section, we show necessary and sufficient condi-
tions for minimizing the robust empirical risk RERMU on
a dataset S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m in
the realizable setting, i.e. when the dataset S is robustly
separable with a halfspace hw∗ where w∗ ∈ Rd. In The-
orem 3.5, we show that an efficient separation oracle for
U yields an efficient solver for RERMU . While in Theo-
rem 3.10, we show that an efficient approximate separation
oracle for U is necessary for even computing the robust loss
supz∈U(x) 1[hw(z) 6= y] of a halfspace hw.

Note that the set of allowed perturbations U can be non-
convex, and so it might seem difficult to imagine being able
to solve the RERMU problem in full generality. But, it turns
out that for halfspaces it suffices to consider only convex
perturbation sets due to the following observation:

Observation 3.1. Given a halfspace w ∈ Rd and an ex-
ample (x, y) ∈ X × Y . If ∀z ∈ U(x), y 〈w, z〉 > 0,

then ∀z ∈ conv(U(x)), y 〈w, z〉 > 0. And if ∃z ∈
U(x), y 〈w, z〉 ≤ 0, then ∃z ∈ conv(U(x)), y 〈w, z〉 ≤ 0,
where conv(U(x)) denotes the convex-hull of U(x).

Observation 3.1 shows that for any dataset S that is robustly
separable w.r.t. U with a halfspace w∗, S is also robustly
separable w.r.t. the convex hull conv(U) using the same
halfspace w∗, where conv(U)(x) = conv(U(x)). Thus, in
the remainder of this section we only consider perturbation
sets U that are convex, i.e., for each x, U(x) is convex.

Definition 3.2. Denote by SEPU a separation oracle for U .
SEPU (x, z) takes as input x, z ∈ X and either:

• asserts that z ∈ U(x), or
• returns a separating hyperplane w ∈ Rd such that
〈w, z′〉 ≤ 〈w, z〉 for all z′ ∈ U(x).

Definition 3.3. For any η > 0, denote by SEPηU an ap-
proximate separation oracle for U . SEPηU takes as input
x, z ∈ X and either:

• asserts that z ∈ U(x)+η
def
=

{z : ∃z′ ∈ U(x) s.t. ‖z − z′‖2 ≤ η}, or
• returns a separating hyperplane w ∈ Rd such that
〈w, z′〉 ≤ 〈w, z〉 + η for all z′ ∈ U(x)−η

def
=

{z′ : B(z′, η) ⊆ U(x)}.

Definition 3.4. Denote by MEMU a membership oracle for
U . MEMU (x, z) takes as input x, z ∈ X and either:

• asserts that z ∈ U(x), or
• asserts that z /∈ U(x).

When discussing a separation or membership oracle for a
fixed convex set K, we overload notation and write SEPK ,
SEPηK , and MEMK (in this case only one argument is re-
quired).

3.1. An efficient separation oracle for U is sufficient to
solve RERMU efficiently

Let SolnUS = {w ∈ Rd : ∀(x, y) ∈ S, ∀z ∈
U(x), y 〈w, z〉 > 0} denote the set of valid solutions for
RERMU (S) (see Equation 3). Note that SolnUS is not empty
since we are considering the realizable setting. Although the
treatment we present here is for homogeneous halfspaces
(where a bias term is not needed), the results extend trivially
to the non-homogeneous case.

Below, we show that we can efficiently find a solution w ∈
SolnUS given access to a separation oracle for U , SEPU .

Theorem 3.5. Let U be an arbitrary convex adversary.
Given access to a separation oracle for U , SEPU that runs in
time poly(d, b). There is an algorithm that finds w ∈ SolnUS
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in poly(m, d, b) time where b is an upper bound on the bit
complexity of the valid solutions in SolnUS and the examples
and perturbations in S.

Note that the polynomial dependence on b in the runtime
is unavoidable even in standard non-robust ERM for half-
spaces, unless we can solve linear programs in strongly
polynomial time, which is currently an open problem.

Theorem 3.5 implies that for a broad family of perturbation
sets U , halfspacesH are efficiently robustly PAC learnable
with respect to U in the realizable setting, as we show in the
following corollary:

Corollary 3.6. Let U : X 7→ 2X be an adversary such
that U(x) = x + B where B is nonempty, closed, convex,
and origin-symmetric. Then, given access to an efficient
separation oracle SEPU that runs in time poly(d, b), H is
robustly PAC learnable w.r.t. U in the realizable setting in
time poly(d, b, 1/ε, log(1/δ)).

Proof. This follows from the uniform convergence guaran-
tee for the robust risk of halfspaces (see Equation (2)) and
Theorem 3.5.

This covers many types of perturbation sets that are con-
sidered in practice. For example, U could be perturbations
of distance at most γ w.r.t. some norm ‖·‖, such as the `∞
norm considered in many applications: U(x) = {z ∈ X :
‖x−z‖∞ ≤ γ}. In addition, Theorem 3.5 also implies that
we can solve the RERM problem for other natural perturba-
tion sets such as translations and rotations in images (see,
e.g., (Engstrom et al., 2019)), and perhaps mixtures of per-
turbations of different types (see, e.g., (Kang et al., 2019)),
as long we have access to efficient separation oracles for
these sets.

Benefits of handling general perturbation sets U: One
important implication of Theorem 3.5 that highlights the
importance of having a treatment that considers general
perturbation sets (and not just `p perturbations for exam-
ple) is the following: for any efficiently computable fea-
ture map ϕ : Rr → Rd, we can efficiently solve the ro-
bust empirical risk problem over the induced halfspaces
Hϕ =

{
x 7→ sign(〈w, ϕ(x)〉) : w ∈ Rd

}
, as long as we

have access to an efficient separation oracle for the image of
the perturbationsϕ(U(x)). Observe that in generalϕ(U(x))
maybe non-convex and complicated even if U(x) is convex,
however Observation 3.1 combined with the realizability as-
sumption imply that it suffices to have an efficient separation
oracle for the convex-hull conv(ϕ(U(x))).

Before we proceed with the proof of Theorem 3.5, we state
the following requirements and guarantees for the Ellipsoid
method which will be useful for us in the remainder of the
section:

Lemma 3.7 (see, e.g., Theorem 2.4 in (Bubeck et al., 2015)).
LetK ⊆ Rd be a convex set, and SEPK a separation oracle
for K. Then, the Ellipsoid method using O(d2b) oracle
queries to SEPK , will find a w ∈ K, or assert that K is
empty. Furthermore, the total runtime is O(d4b).

The proof of Theorem 3.5 relies on two key lemmas. First,
we show that efficient robust certification yields an effi-
cient solver for the RERM problem. Given a halfspace
w ∈ Rd and an example (x, y) ∈ Rd × Y , efficient ro-
bust certification means that there is an algorithm that can
efficiently either: (a) assert that w is robust on U(x), i.e.
∀z ∈ U(x), y 〈w, z〉 > 0, or (b) return a perturbation
z ∈ U(x) such that y 〈w, z〉 ≤ 0.

Lemma 3.8. Let CERTU (w, (x, y)) be a procedure that
either: (a) Asserts that w is robust on U(x), i.e., ∀z ∈
U(x), y 〈w, z〉 > 0, or (b) Finds a perturbation z ∈ U(x)
such that y 〈w, z〉 ≤ 0. If CERTU (w, (x,y)) can be solved
in poly(d, b) time, then there is an algorithm that finds w ∈
SolnUS in poly(m, d, b) time.

Proof. Observe that SolnUS is a convex set since

w1,w2 ∈ SolnUS ⇒ ∀(x, y) ∈ S,∀z ∈ U(x), y 〈w1, z〉 > 0

and y 〈w2, z〉 > 0

⇒ ∀α ∈ [0, 1],∀(x, y) ∈ S, ∀z ∈ U(x),

y 〈αw1 + (1− α)w2, z〉 > 0

⇒ ∀α ∈ [0, 1], αw1 + (1− α)w2 ∈ SolnUS .

Our goal is to find a w ∈ SolnUS . Let CERTU (w, (x, y)) be
an efficient robust certifier that runs in poly(d, b) time. We
will use CERTU (w, (x, y)) to implement a separation ora-
cle for SolnUS denoted SEPSolnUS

. Given a halfspace w ∈ Rd,
we simply check if w is robustly correct on all datapoints by
running CERTU (w, (xi, yi)) on each (xi, yi) ∈ S. If there
is a point (xi, yi) ∈ S where w is not robustly correct, then
we get a perturbation zi ∈ U(xi) where yi 〈w, zi〉 ≤ 0,
and we return −yizi as a separating hyperplane. Otherwise,
we know that w is robustly correct on all datapoints, and
we just assert that w ∈ SolnUS .

Once we have a separation oracle SEPSolnUS
, we can use the

Ellipsoid method (see Lemma 3.7) to solve the RERMU (S)
problem. More specifically, with a query complexity of
O(d2b) to SEPSolnUS

and overall runtime of poly(m, d, b)

(this depends on runtime of CERTU (w, (x, y))), the Ellip-
soid method will return a w ∈ SolnUS .

Next, we show that we can do efficient robust certification
when given access to an efficient separation oracle for U ,
SEPU .
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Lemma 3.9. If we have an efficient separation oracle SEPU
that runs in poly(d, b) time. Then, we can efficiently solve
CERTU (w, (x, y)) in poly(d, b) time.

Proof. Given a halfspace w ∈ Rd and (x, y) ∈ Rd × Y ,
we want to either: (a) assert that w is robust on U(x),
i.e. ∀z ∈ U(x), y 〈w, z〉 > 0, or (b) find a perturbation
z ∈ U(x) such that y 〈w, z〉 ≤ 0. Let M(w, y) = {z′ ∈
X : y 〈w, z′〉 ≤ 0} be the set of all points that w mis-
labels. Observe that by definition M(w, y) is convex, and
therefore U(x) ∩M(w, y) is also convex. We argue that
having an efficient separation oracle for U(x) ∩M(w, y)
suffices to solve our robust certification problem. Because
if U(x) ∩ M(w, y) is not empty, then by definition, we
can find a perturbation z ∈ U(x) such that y 〈w, z〉 ≤ 0
with a separation oracle SEPU(x)∩M(w,y) and the Ellipsoid
method (see Lemma 3.7). If U(x)∩M(w, y) is empty, then
by definition, w is robustly correct on U(x), and the Ellip-
soid method will terminate and assert that U(x) ∩M(w, y)
is empty.

Thus, it remains to implement SEPU(x)∩M(w,y). Given
a point z ∈ Rd, we simply ask the separation oracle for
U(x) by calling SEPU (x, z) and the separation oracle for
M(w, y) by checking if y 〈w, z〉 ≤ 0. If z /∈ U(x)
the we get a separating hyperplane c from SEPU and we
can use it separate z from U(x) ∩ M(w, y). Similarly,
if z /∈ M(w, y), by definition, 〈yw, z〉 > 0 and so
we can use yw as a separating hyperplane to separate z
from U(x) ∩M(w, y). The overall runtime of this sepa-
ration oracle is poly(d, b), and so we can efficiently solve
CERTU (w, (x, y)) in poly(d, b) time using the Ellipsoid
method (Lemma 3.7).

We are now ready to proceed with the proof of Theorem 3.5.

Proof of Theorem 3.5. We want to efficiently solve
RERMU (S). Given that we have a separation oracle for U ,
SEPU that runs in poly(d, b). By Lemma 3.9, we get an
efficient robust certification procedure CERTU (w, (x, y)).
Then, by Lemma 3.8, we get an efficient solver for RERMU .
In particular, the runtime complexity is poly(m, d, b).

3.2. An efficient approximate separation oracle for U is
necessary for computing the robust loss

Our efficient algorithm for RERMU requires a separation
oracle for U . We now show that even efficiently computing
the robust loss of a halfspace (w, b0) ∈ Rd × R on an
example (x, y) ∈ Rd ×Y requires an efficient approximate
separation oracle for U .

Theorem 3.10. Given a halfspace w ∈ Rd and an example
(x, y) ∈ Rd×Y , let EVALU ((w, b0), (x, y)) be a procedure
that computes the robust loss supz∈U(x) 1[y(〈w, z〉+b0) ≤

0] in poly(d, b) time, then for any γ > 0, we can implement
an efficient γ-approximate separation oracle SEPγU (x, z) in
poly(d, b, log(1/γ), log(R)) time, where U(x) ⊆ B(0, R).

Proof. Let γ > 0. We will describe how to implement a
γ-approximate separation oracle for U denoted SEPγU (x, z).
Fix the first argument to an arbitrary x ∈ X . Upon receiv-
ing a point z ∈ X as input, the main strategy is to search
for a halfspace w ∈ Rd that can label all of U(x) with +1,
and label the point z with −1. If z /∈ U(x) then there is
a halfspace w that separates z from U(x) because U(x) is
convex, but this is impossible if z ∈ U(x). Since we are
only concerned with implementing an approximate separa-
tion oracle, we will settle for a slight relaxation which is to
either:

• assert that z is γ-close to U(x), i.e., z ∈ B(U(x), γ),
or

• return a separating hyperplane w such that 〈w, z′〉 ≤
〈w, z〉 for all z′ ∈ U(x).

Let K = {(w, b0) : ∀z′ ∈ U(x), 〈w, z′〉+ b0 > 0} de-
note the set of halfspaces that label all of U(x) with +1.
Since U(x) is nonempty, it follows by definition that K is
nonempty. To evaluate membership in K, given a query
wq, bq, we just make a call to EVALU ((wq, bq), (x,+)).
Let MEMK(wq, bq) = 1−EVALU ((wq, bq), (x,+)). This
can be efficiently computed in poly(d, b) time. Next, for
any η ∈ (0, 0.5), we can get an η-approximate separa-
tion oracle for K denoted SEPηK (see Definition 3.3) using
O(db log (d/η)) queries to the membership oracle MEMK

described above (Lee et al., 2018). When queried with a
halfspace w̃ = (w, b0), SEPηK either:

• asserts that w̃ ∈ K+η , or
• returns a separating hyperplane c such that 〈c, w̃′〉 ≤
〈c, w̃〉+ η for all halfspaces w̃′ ∈ K−η .

Observe that by definition, K−η ⊆ K ⊆ K+η. Fur-
thermore, for any w ∈ K+η, by definition, ∃w̃′ ∈ K
such that ‖w̃ − w̃′‖2 ≤ η. Since, for each z′ ∈ U(x),
by definition of K, we have 〈w̃′, (z′, 1)〉 = 〈w′, z′〉 +
b0 > 0, it follows by Cauchy-Schwarz inequality that
(∀w̃ ∈ K+η) (∀z′ ∈ U(x)):

〈w̃, (z′, 1)〉 = 〈w̃ − w̃′, z′〉+〈w̃′, (z′, 1)〉 > −η2R. (4)

Let SEPγ/4RK be a γ
4R -approximate separation oracle for K.

Observe that if the distance between z and U(x) is greater
than γ, it follows that there is (w, b0) such that:

〈w, z〉+ b0 ≤ −γ/2 and 〈w, z′〉+ b0 > 0 (∀z′ ∈ U(x)) .

By definition of K, this implies that K ∩
{(w, b0) : 〈w, z〉+ b0 ≤ −γ/2} is not empty,
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which implies that the intersection K+ γ
4R ∩

{(w, b0) : 〈w, z〉+ b0 ≤ −γ/2} is nonempty. We
also have the contrapositive, which is, if the intersection
K+ γ

4R ∩ {(w, b0) : 〈w, z〉+ b0 ≤ −γ/2} is empty, then
we know that z ∈ B(U(x), γ). To conclude the proof,
we run the Ellipsoid method with the approximate sepa-
ration oracle SEP

γ/4R
K to search over the restricted space

{(w, b0) : 〈w, z〉+ b0 ≤ −γ/2}. Restricting the space is
easily done because we will use the query point z as the
separating hyperplane. Either the Ellipsoid method will
find (w, b0) ∈ K+ γ

4R ∩ {(w, b0) : 〈w, z〉+ b0 ≤ −γ/2},
in which case by Equation 4, (w, b0) has the property that:

〈w, z〉+b0 ≤ −
γ

2
and 〈w, z′〉+b0 > −

γ

2
(∀z′ ∈ U(x)) ,

and so we return w as a separating hyperplane between
z and U(x). If the Ellipsoid terminates without finding
any such (w, b0), this implies that the intersection K+ γ

4R ∩
{(w, b0) : 〈w, z〉+ b0 ≤ −γ/2} is empty, and therefore,
by the contrapositive above, we assert that z ∈ B(U(x), γ).

4. Random Classification Noise
In this section, we relax the realizability assumption to
random classification noise (Angluin & Laird, 1987). We
show that for any adversary U that represents perturba-
tions of bounded norm (i.e., U(x) = x + B, where B ={
δ ∈ Rd : ‖δ‖p ≤ γ

}
, p ∈ [1,∞]), the class of halfspaces

H is efficiently robustly PAC learnable with respect to U in
the random classification noise model.

Theorem 4.1. Let U : X 7→ 2X be an adversary such
that U(x) = x + B where B =

{
δ ∈ Rd : ‖δ‖p ≤ γ

}
and

p ∈ [1,∞]. Then,H is robustly PAC learnable w.r.t U under
random classification noise in time poly(d, 1/ε, 1/γ, 1/(1−
2η), log(1/δ)).

The proof of Theorem 4.1 relies on the following key lemma.
We show that the structure of the perturbations B allows
us to relate the robust loss of a halfspace w ∈ Rd with
the γ-margin loss of w. Before we state the lemma, re-
call that the dual norm of w denoted ‖w‖∗ is defined as
sup {〈u,w〉 : ‖u‖ ≤ 1}.
Lemma 4.2. For any w,x ∈ Rd and any y ∈ Y ,

sup
δ∈B

1{hw(x + δ) 6= y} = 1

{
y

〈
w

‖w‖∗
,x

〉
≤ γ

}
.

Proof. First observe that

sup
δ∈B

1{hw(x + δ) 6= y} = sup
δ∈B

1{y 〈w,x + δ〉 ≤ 0}

= 1

{
inf
δ∈B

y 〈w,x + δ〉 ≤ 0

}
.

This holds because when infδ∈B y 〈w,x + δ〉 > 0, by def-
inition ∀δ ∈ B, y 〈w,x + δ〉 > 0, which implies that
supδ∈B 1{hw(x + δ) 6= y} = 0. For the other direc-
tion, when supδ∈B 1{hw(x + δ) 6= y} = 1, by definition
∃δ ∈ B such that y 〈w,x + δ〉 ≤ 0, which implies that
infδ∈B y 〈w,x + δ〉 ≤ 0. To conclude the proof, by defini-
tion of the set B and the dual norm ‖·‖∗, we have

inf
δ∈B

y 〈w,x + δ〉 = y 〈w,x〉 − sup
δ∈B
〈−yw, δ〉

= y 〈w,x〉 − ‖w‖∗γ.

Lemma 4.2 implies that for any distribution D over X × Y ,
to solve the γ-robust learning problem

argmin
w∈Rd

E
(x,y)∼D

[
sup
δ∈B

1{hw(x + δ) 6= y}
]
, (5)

it suffices to solve the γ-margin learning problem

argmin
‖w‖∗=1

E
(x,y)∼D

[1{y 〈w,x〉 ≤ γ}] . (6)

We will solve the γ-margin learning problem in Equation (6)
in the random classification noise setting using an appropri-
ately chosen convex surrogate loss. Our convex surrogate
loss and its analysis build on a convex surrogate that appears
in the appendix of (Diakonikolas et al., 2019a) for learn-
ing large `2-margin halfspaces under random classification
noise w.r.t. the 0-1 loss. We note that the idea of using a
convex surrogate to (non-robustly) learn large margin half-
spaces in the presence of random classification noise is
implicit in a number of prior works, starting with (Bylander,
1994).

Our robust setting is more challenging for the following
reasons. First, we are not interested in only ensuring small
0-1 loss, but rather ensuring small γ-margin loss. Second,
we want to be able to handle all `p norms, as opposed to just
the `2 norm. As a result, our analysis is somewhat delicate.

Let

φ(s) =

{
λ(1− s

γ ), s > γ

(1− λ)(1− s
γ ), s ≤ γ

.

We will show that solving the following convex optimization
problem:

argmin
‖w‖∗≤1

Gγλ(w)
def
= E

(x,y)∼D
[φ(y 〈w,x〉)] , (7)

where λ = εγ/2+η
1+εγ , suffices to solve the γ-margin learning

problem in Equation (6). Intuitively, the idea here is that for
λ = 0 , the φ objective is exactly a scaled hinge loss, which
gives a learning guarantee w.r.t to the γ-margin loss when
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there is no noise (η = 0). When the noise η > 0, we slightly
adjust the slopes, such that even correct prediction encoun-
ters a loss. The choice of the slope is based on λ which will
depend on the noise rate η and the ε-suboptimality that is
required for Equation (6).

We can solve Equation (7) with a standard first-order method
through samples using Stochastic Mirror Descent, when
the dual norm ‖·‖∗ is an `q-norm. We state the following
properties of Mirror Descent we will require:

Lemma 4.3 (see, e.g., Theorem 6.1 in (Bubeck et al., 2015)).
Let G(w)

def
= E(x,y)∼D [`(w, (x, y))] be a convex function

that is L-Lipschitz w.r.t. ‖w‖q where q > 1. Then, using
the potential function ψ(w) = 1

2‖w‖
2
q , a suitable step-size

η, and a sequence of iterates wk computed by the following
update:

wk+1 = Πψ
Bq

(
∇ψ−1

(
∇ψ(wk)− ηgk

))
,

Stochastic Mirror Descent withO(L2/(q−1)ε2) stochastic
gradients g of G, will find an ε-suboptimal point ŵ such
that ‖ŵ‖q ≤ 1 and G(ŵ) ≤ infw G(w) + ε.

Remark 4.4. When q = 1, we will use the entropy potential
function ψ(w) =

∑d
i=1 wi logwi. In this case, Stochastic

Mirror Descent will require O(L
2 log d
ε2 ) stochastic gradi-

ents.

We are now ready to state our main result for this section:

Theorem 4.5. Let X =
{
x ∈ Rd : ‖x‖p ≤ 1

}
. Let D be

a distribution over X × Y such that there exists a halfs-
pace w∗ ∈ Rd with Prx∼Dx [|〈w∗,x〉| > γ] = 1 and y is
generated by hw∗(x) := sign(〈w∗,x〉) corrupted by RCN
with noise rate η < 1/2. An application of Stochastic Mir-
ror Descent on Gγλ(w), returns, with high probability, a
halfspace w where ‖w‖q ≤ 1 with γ/2-robust misclassi-
fication error E(x,y)∼D [1{y 〈w,x〉 ≤ γ/2}] ≤ η + ε in
poly(d, 1/ε, 1/γ, 1/(1− 2η)) time.

With Theorem 4.5, the proof of Theorem 4.1 immediately
follows.

Proof of Theorem 4.1. This follows from Lemma 4.2 and
Theorem 4.5.

Remark 4.6. In Theorem 4.5, we get a γ/2-robustness
guarantee assuming γ-robust halfspace w∗ that is corrupted
with random classification noise. This can be strengthened
to get a guarantee of (1− c)γ-robustness for any constant
c > 0.

The rest of this section is devoted to the proof of
Theorem 4.5. The high-level strategy is to show that
an ε′-suboptimal solution to Equation (7) gives us an ε-
suboptimal solution to Equation (6) (for a suitably chosen

ε′). In Lemma 4.8, we bound from above the γ/2-margin
loss in terms of our convex surrogate objective Gγλ, and in
Lemma 4.9 we show that there are minimizers of our convex
surrogate Gγλ such that it is sufficiently small. These are
the two key lemmas that we will use to piece everything
together.

For any w,x ∈ Rd, consider the contribution of the ob-
jective Gγλ of x, denoted by Gγλ(w,x). This is defined as
Gγλ(w,x) = Ey∼Dy(x) [φ(y 〈w,x〉)] = ηφ(−z) + (1 −
η)φ(z) where z = hw∗(x) 〈w,x〉. In the following lemma,
we provide a decomposition of Gγλ(w,x) that will help us
in proving Lemmas 4.8 and 4.9.

Lemma 4.7. For any w,x ∈ Rd, let z = hw∗(x) 〈w,x〉.
Then, we have that:

Gγλ(w,x) = (η − λ)

(
z

γ

)
+ λ+ η − 2λη

+ 1{−γ ≤ z ≤ γ}(1− η)(1− 2λ)

(
1− z

γ

)
+ 1{z < −γ}(1− 2λ)

(
1− 2η − z

γ

)
.

Proof. Based on the definition of the surrogate loss, it suf-
fices to consider three cases:

Case z > γ :

l1(z)
def
= ηφ(−z) + (1− η)φ(z)

= η(1− λ)(1 + z/γ) + (1− η)λ(1− z/γ)

= (η(1− λ)− (1− η)λ)

(
z

γ

)
+ (1− η)λ

+ η(1− λ)

= (η − λ)

(
z

γ

)
+ λ+ η − 2λη.

Case −γ ≤ z ≤ γ :

l2(z)
def
= ηφ(−z) + (1− η)φ(z)

= η(1− λ)(1 + z/γ)

+ (1− η)(1− λ)(1− z/γ)

= −(1− 2η)(1− λ)

(
z

γ

)
+ 1− λ.

Case z < −γ :

l3(z)
def
= ηλ(1 + z/γ) + (1− η)(1− λ)(1− z/γ)

= (ηλ− (1− η)(1− λ))

(
z

γ

)
+ ηλ

+ (1− η)(1− λ)

= (η + λ− 1)

(
z

γ

)
+ 1− η − λ+ 2ηλ.
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Considering the three cases above, we can write

G(z) = l1(z) + 1{−γ ≤ z ≤ γ} (l2(z)− l1(z))

+ 1{z < −γ} (l3(z)− l1(z)) .

Then, we calculate l2(z)−l1(z) and l3(z)−l1(z) as follows:

l2(z)− l1(z) = −(1− 2η)(1− λ)

(
z

γ

)
+ 1− λ

− (η − λ)

(
z

γ

)
− λ− η + 2λη

= −((1− 2η)(1− λ) + η − λ)

(
z

γ

)
+ (1− η)(1− 2λ)

= (1− η)(1− 2λ)

(
1− z

γ

)
, and

l3(z)− l1(z) = (η + λ− 1)

(
z

γ

)
+ 1− η − λ+ 2ηλ

− (η − λ)

(
z

γ

)
− λ− η + 2λη

= (2λ− 1)

(
z

γ

)
+ (1− 2η)(1− 2λ)

= (2λ− 1)

(
z

γ
+ 2η − 1

)
.

Using the above, we have that

G(z) = l1(z) + 1{−γ ≤ z ≤ γ}(1− η)(1− 2λ)

(
1− z

γ

)
+ 1{z < −γ}(1− 2λ)

(
1− 2η − z

γ

)
.

The following lemma allows us to bound from below our
convex surrogate Ex∼Dx [Gγλ(w,x)] in terms of the γ/2-
margin loss of w.

Lemma 4.8. Assume that λ is chosen such that λ < 1/2
and η < λ. Then, for any w ∈ Rd, Ex∼Dx [Gγλ(w,x)] ≥
η−λ
γ + 1

2 (1− 2λ)(1− η)Ex
[
1
{
z ≤ γ

2

}]
+ λ+ η − 2λη.

Proof. By Lemma 4.7, and linearity of expectation, we have
that

E
x∼Dx

[Gγλ(w,x)] = (η − λ) E
x∼Dx

[
z

γ

]
+ λ+ η − 2λη

+ (1− η)(1− 2λ) E
x∼Dx

[
1{−γ ≤ z ≤ γ}

(
1− z

γ

)]
+ (1− 2λ) E

x∼Dx

[
1{z < −γ}

(
1− 2η − z

γ

)]
.

First, observe that for any x,−1 ≤ z = hw∗(x) 〈w,x〉 ≤ 1
and since η ≤ λ, we have

(η − λ) E
x∼Dx

[
z

γ

]
≥ η − λ

γ
.

Then we observe that whenever z < −γ, 1 − z
γ − 2η >

2(1 − η) > (1 − η)/2 and λ ≤ 1/2, thus we can bound
from below the third term

(1− 2λ) E
x∼Dx

[
1{z < −γ}

(
1− 2η − z

γ

)]
≥

1

2
(1− 2λ)(1− η) E

x∼Dx

[1{z < −γ}] .

Next we note that whenever −γ ≤ z ≤ γ, 1− z
γ ≥ 0. This

implies that instead of considering 1{−γ ≤ z ≤ γ}, we can
relax this and consider the subset 1

{
−γ ≤ z ≤ γ

2

}
, and on

this subset 1 − z
γ ≥ 1/2. Thus, we can bound the second

term from below as follows:

(1− 2λ)(1− η) E
x∼Dx

[
1{−γ ≤ z ≤ γ}

(
1− z

γ

)]
≥

1

2
(1− 2λ)(1− η) E

x∼Dx

[
1
{
−γ ≤ z ≤ γ

2

}]
.

Combining the above, we obtain

E
x∼Dx

[Gγλ(w,x)] ≥ η − λ
γ

+
1

2
(1− 2λ)(1− η)E

x

[
1
{
−γ ≤ z ≤ γ

2

}
+ 1{z < −γ}

]
+ λ+ η − 2λη

≥ η − λ
γ

+
1

2
(1− 2λ)(1− η)E

x

[
1
{
z ≤ γ

2

}]
+ λ+ η − 2λη ,

as desired.

We now show that there exist minimizers of the convex
surrogate Gγλ such that it is sufficiently small, which will be
useful later in choosing the suboptimality parameter ε′.
Lemma 4.9. Assume that λ is chosen such that λ < 1/2
and η < λ. Then we have that

inf
w∈Rd

E
x∼Dx

[Gγλ(w,x)] ≤ 2η(1− λ).

Proof. By definition, we have that
infw∈Rd Ex∼Dx [Gγλ(w,x)] ≤ Ex∼Dx [Gγλ(w∗,x)].
By assumption, with probability 1 over x ∼ Dx, we have
hw∗(x) 〈w∗,x〉 > γ. Thus, by Lemma 4.7, we have

E
x

[Gγλ(w∗,x)] = (η − λ)

(
z

γ

)
+ λ+ η − 2λη

≤ η − λ+ λ+ η − 2λη

= 2η(1− λ) ,
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where the last inequality follows from the fact that η < λ

and the fact that Ex

[
z
γ

]
> 1.

Using the above lemmas, we are now able to bound from
above the γ/2-margin loss of a halfspace w that is ε′-
suboptimal for our convex optimization problem (see Equa-
tion (7)).

Lemma 4.10. For any ε′ ∈ (0, 1) and any w ∈ Rd such
that Ex∼Dx [Gγλ(w,x)] ≤ Ex∼Dx [Gγλ(w∗,x)] + ε′, the
γ/2-missclassification error of w satisfies

E
(x,y)∼D

[1{y 〈w,x〉 ≤ γ/2}] ≤

η +
2

(1− 2λ)

(
ε′ + (λ− η)

(
1

γ
− 1

))
.

Proof. By Lemma 4.8 and Lemma 4.9, we have

η − λ
γ

+
1

2
(1− 2λ)(1− η)E

x

[
1
{
z ≤ γ

2

}]
+ λ+ η − 2λη

≤ 2η(1− λ) + ε′.

This implies

(1−η)E
x

[
1
{
z ≤ γ

2

}]
≤ 2

(1− 2λ)

(
ε′ + (λ− η)

(
1

γ
− 1

))
.

Since E(x,y)∼D [1{y 〈w,x〉 ≤ γ/2}] ≤ η + (1 −
η)Ex

[
1
{
z ≤ γ

2

}]
, we get the desired result.

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. Based on Lemma 4.10, we will
choose λ, ε′ such that

2

(1− 2λ)

(
ε′ + (λ− η)

(
1

γ
− 1

))
≤ ε .

By setting ε′ = λ− η, this condition reduces to

2(λ− η)

(1− 2λ)
≤ γε .

This implies that we need λ ≤ εγ/2+η
1+εγ . We will choose

λ = εγ/2+η
1+εγ . Note that our analysis relied on having λ ≤

1/2 and η ≤ λ. These conditions combined imply that we
should choose λ such that η ≤ λ ≤ 1/2. Our choice of
λ = εγ/2+η

1+εγ satisfies these conditions, since

εγ/2 + η

1 + εγ
−η =

εγ/2 + η − η(1 + εγ)

1 + εγ
=
εγ(1/2− η)

1 + εγ
≥ 0 ,

and

εγ/2 + η

1 + εγ
−1

2
=
εγ/2 + η − 1/2(1 + εγ)

1 + εγ
=
η − 1/2

1 + εγ
≤ 0 .

By our choice of λ, we have that ε′ = λ − η =
εγ(1/2−η)

1+εγ = εγ(1−2η)
2(1+εγ) . By the guarantees of Stochas-

tic Mirror Descent (see Lemma 4.3), our theorem fol-
lows with O

(
1

ε2γ2(1−2η)2(q−1)

)
samples for q > 1 and

O
(

log d
ε2γ2(1−2η)2

)
samples for q = 1.

5. Conclusion
In this paper, we provide necessary and sufficient conditions
for perturbation sets U , under which we can efficiently solve
the robust empirical risk minimization (RERM) problem.
We give a polynomial time algorithm to solve RERM given
access to a polynomial time separation oracle for U . In
addition, we show that an efficient approximate separation
oracle for U is necessary for even computing the robust
loss of a halfspace. As a corollary, we show that halfspaces
are efficiently robustly PAC learnable for a broad range of
perturbation sets. By relaxing the realizability assumption,
we show that under random classification noise, we can
efficiently robustly PAC learn halfspaces with respect to any
`p perturbations. An interesting direction for future work is
to understand the computational complexity of robustly PAC
learning halfspaces under stronger noise models, including
Massart noise and agnostic noise.
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Appendix: Another Approach to Large
Margin Learning under Random
Classification Noise
We remark that γ-margin learning of halfspaces has been
studied in earlier work, and we have algorithms such as
Margin Perceptron (Balcan et al., 2008) and SVM. The
Margin Perceptron (for `2 margin) and other `p margin
algorithms have been also implemented in the SQ model

1This paper does not reflect the position or the policy of the
Government, and no endorsement should be inferred.
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(Feldman et al., 2017). But no explicit connection has been
made to adversarial robustness.

We present here a simple approach to learn γ-margin halfs-
paces under random classification noise using only a convex
surrogate loss and Stochastic Mirror Descent. The construc-
tion of the convex surrogate is based on learning generalized
linear models with a suitable link function u : R→ R. To
the best of our knowledge, the result of this section is not
explicit in prior work.

Theorem 5.1. Let X =
{
x ∈ Rd : ‖x‖p ≤ 1

}
. Let D be a

distribution over X × Y such that there exists a halfspace
w∗ ∈ Rd, ‖w∗‖q = 1 with Prx∼Dx [|〈w∗,x〉| > γ] = 1
and y is generated by hw∗(x) := sign(〈w∗,x〉) corrupted
with random classification noise rate η < 1/2. Then, run-
ning Stochastic Mirror Descent on the following convex
optimization problem:

min
w∈Rd,‖w‖q≤1

E
(x,y)∼D

[`(w, (x, y))]

where the convex loss function ` is defined in Equation 8,
returns with high probability, a halfspace w with γ/2-robust
misclassification error E(x,y)∼D [1{y 〈w,x〉 ≤ γ/2}] ≤
η + ε.

We prove Theorem 4.5 in the remainder of this section.
We will connect our problem to that of solving generalized
linear models. We define the link function as follows,

u(s) =


η s < −γ
1−2η
2γ s+ 1

2 −γ ≤ s ≤ γ
1− η s > γ

.

Observe that u is monotone and 1−2η
2γ -Lipschitz.

First, we will relate our loss of interest, which is the γ/2-
margin loss with the squared loss defined in terms of the
link function u,

Lemma 5.2. For any w ∈ Rd,

E
x∼Dx

[1{hw∗(x) 〈w,x〉 ≤ γ/2}] ≤

16

(1− 2η)2
E

x∼Dx

[
(u(〈w,x〉)− u(〈w∗,x〉))2

]
.

Proof. Let E+ = {hw∗(x) = +} and E− =

{hw∗(x) = −}. Let U(x) = (u(〈w,x〉)− u(〈w∗,x〉))2.
By law of total expectation and definition of the link func-
tion u, we have

E
x∼Dx

[U(x)] = E
x∼Dx

[
U(x)1

{
E+}]+ E

x∼Dx

[
U(x)1

{
E−

}]
= E

x∼Dx

[
(u(〈w,x〉)− (1− η))2 1

{
E+}]

+ E
x∼Dx

[
(u(〈w,x〉)− η)2 1

{
E−

}]
.

We will lower bound both terms:

E
x∼Dx

[
(u(〈w,x〉)− (1− η))

2
1
{
E+
}]

≥ E
x∼Dx

[
(a− (1− η))

2
1
{
E+
}
1{u(〈w,x〉) ≤ a}

]
,

E
x∼Dx

[
(u(〈w,x〉)− η)

2
1
{
E−
}]

≥ E
x∼Dx

[
(b− η)

2
1
{
E−
}
1{u(〈w,x〉) ≥ b}

]
.

Then, observe that the event {〈w,x〉 ≤ γ/2} implies
the event

{
u(〈w,x〉) ≤ 3−2η

4

}
, and similarly the event

{〈w,x〉 ≥ −γ/2} implies the event
{
u(〈w,x〉) ≥ 2η+1

4

}
.

This means that

E
x∼Dx

[(
3− 2η

4
− (1− η)

)2

1
{
E

+
}
1

{
u(〈w,x〉) ≤

3− 2η

4

}]
≥
(

3− 2η

4
− (1− η)

)2

E
x∼Dx

[
1
{
E

+
}
1{〈w,x〉 ≤ γ/2}

]
, and

E
x∼Dx

[(
2η + 1

4
− η
)2

1
{
E
−
}
1

{
u(〈w,x〉) ≥

2η + 1

4

}]
≥
(

2η + 1

4
− η
)2

E
x∼Dx

[
1
{
E
−
}
1{〈w,x〉 ≥ −γ/2}

]
.

We combine these observations to conclude the proof,

E
x∼Dx

[(
u(〈w,x〉)− u(

〈
w
∗
,x
〉
)
)2] ≥ (1− 2η)2

16
×

E
x∼Dx

[
1(E

+
)1{〈w,x〉 ≤ γ/2}+ 1(E

−
)1{〈w,x〉 ≥ −γ/2}

]
≥

(1− 2η)2

16
E

x∼Dx
[1{hw∗ (x) 〈w,x〉 ≤ γ/2}] .

But note that the squared loss is non-convex and so it
may not be easy to optimize. Luckily, we can get a tight
upper-bound with the following surrogate loss (see (Kanade,
2018)):

`(w, (x, y)) =

∫ 〈w,x〉
0

(u(s)− y)ds. (8)

Note that `(w, (x, y)) is convex w.r.t w since the Hes-
sian ∇2

w`(w, (x, y)) = u′(〈w,x〉)xxT is positive semi-
definite.
Assuming our labels y have been transformed to {0, 1} from
{±1}, observe that E[y|x] = u(〈w∗,x〉). We now have the
following guarantee (see e.g., (Cohen, 2014; Kanade, 2018))
for U(x) = (u(〈w,x〉)− u(〈w∗,x〉))2:

E
x∼Dx

[U(x)] ≤
1− 2η

γ
E

(x,y)∼D

[
`(w, (x, y))− `(w∗, (x, y))

]
. (9)

Proof of Theorem 5.1. Combining Lemma 5.2 and Equa-
tion 9, we get the following guarantee for any w ∈ Rd,

(1− 2η) E
x∼Dx

[1{hw∗(x) 〈w,x〉 ≤ γ/2}] ≤

16

γ
E

(x,y)∼D
[`(w, (x, y))− `(w∗, (x, y))] .
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Thus, running Stochastic Mirror Descent with ε′ = (εγ(1−
2η))/16 and O(1/ε′2) samples (labels transformed to
{0, 1}), returns with high probability, a halfspace w such
that

E
x∼Dx

[1{hw∗(x) 〈w,x〉 ≤ γ/2}] ≤ ε. (10)

Then, to conclude the proof, observe that

E
(x,y)∼D

[1{y 〈w,x〉 ≤ γ/2}] = η E
x∼Dx

[1{−hw∗(x) 〈w,x〉 ≤ γ/2}]

+ (1− η) E
x∼Dx

[1{hw∗(x) 〈w,x〉 ≤ γ/2}]

= η(1− E
x∼Dx

[1{hw∗(x) 〈w,x〉 ≤ −γ/2}])

+ (1− η) E
x∼Dx

[1{hw∗(x) 〈w,x〉 ≤ γ/2}]

(i)

≤ η + (1− η) E
x∼Dx

[1{hw∗(x) 〈w,x〉 ≤ γ/2}]

(ii)

≤ η + ε,

where (i) follows from that fact that
Ex∼Dx [1{hw∗(x) 〈w,x〉 ≤ −γ/2}] ≥ 0, and (ii)
follows from Equation 10.
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