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7. Supplementary material
7.1. Sub-regions corresponding to system (9)

All sub-regions related to (9) can be defined as follows
(Monfared & Durstewitz, 2020):
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where each subindex d of S, 0<d<2M _1, isassociated
with a sequence djs dps—1 - - - do di of binary digits. The
notation (dy dy --- djr)3 in building each corresponding
sequence stands for the mirror image of the binary repre-
sentation of d with M digits. By mirror image here we
mean writing digits d; dy - -+ dps from right to left, i.e.
dayrdpr—1 ---dody. For example, for M = 2 there are
4 sub-regions Sqr, k = 1,2, 3,4, associated with 4 ma-
trices Dqr := diag(da, dy), where do d; = (dy d2)} and
d; € {0, 1} (Fig. S1).

Denoting switching boundaries X;; = Sq: N Sq; between
every pair of successive sub-regions Sq: and Sq; withi, j €

{1,2,---,2M}, we can rewrite map (7) as
Zyr = F(Zy)
Fi(Zy) = Won Zy + by Zy € S
Fy(Zy) = Wa2 Zy + h; Z; € Sqe
) Fs(Zy) = Was Zy + by Zy € Sqs
- Fy(Zy) = Waa Zy + h; Z; € Sqa
Fou (Zy) = Weam Zy+ by Zy € Sgam

(24)

7.2. Discontinuity boundaries

Consider map (7) and two sub-regions Sq: and Sq; (i,j €
{1,2,---,2M}) as defined in Section 4 (subsection 4.2).
Suppose that subindices ¢ — 1 and j — 1 of S,_1 and gj_l
are associated with ¢ — 1 = 4149 ---ipy and j — 1 =
J1J2 -+ jum- Then Sq: and Sq; are two successive sub-
regions with the switching boundary ;; = Sq: N Sqj,
iff there is exactly one 1 < s < M such that for all

i VT e Soiand (zig. -z )T € Sos
(Zzltv azth) € Oqi an (Zjltv vZ]Mt) € oqi
Zist .stt < 0
(25)
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Moreover, %;; is a closed set (5;; = ¥;;) and &;; =

iij U 0X;; such that
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and 0%;; = |J X2 where
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Furthermore, it can be proven that
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7.3. Proof of theorem 3

(1) Without loss of generality let ty = 0. Assume that
there exists an equivalent continuous-time system for (10)
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Figure S1. Example of subregions S, and related matrices D for M = 2.

on [0, At], in the form of equation (12). By equivalency in
the sense of equation (13), we must have

ZO = C(O)a

According to theorem 1, the solution of system (10) on
[0, At] is

Z1 =W Zo+h = C(At). (29

5 5 t _
C(t) = eWart ¢(0) + eWart / e”WokT hdr, te0,All.
0

(30)
If Wm is invertible, then
/Ot e War™ fdr = —W5 k(e Wert — 1) R, (31)
and thus
(1) = eMort C(0) + [eMort (Wl e ot
— Want (—W;)}i}. 32)
Furthermore, since
(—Wh) e Wart = = Wart (LI 1) (33)
we have
() = eMort (o) + [T = Mort| (- W) B te [0,
(34

Putting conditions (29) in

C(A) = eMWardt ¢(0) + [1 = eWardt| (<! b,

yields
WQk Z() +h = GWQ’“At ZO “+ |:I — eWQkAt:| (_Ws;kl) .
(36)

Equation (36) has to hold for all Z; including Zy = 0.
Hence, it is deduced that

Wor = eWarAt
. L 37)
ho= [I—eVar] (=W h

According to (37), matrix Wqx should be invertible and
cannot have any zero eigenvalue. Also, since Wm is
invertible, it does not have any zero eigenvalue, which
implies that Wq has no eigenvalue equal to one. Then,
Py, (1) # 0, which means [I — W] is invertible and
(37) becomes equivalent to (14).

Now, considering WQk and A as in (14), we can obtain the
desired equivalent continuous-time system (12) for (10) on
[0, At]. Ttis just required to prove that every fixed point
Z* of map (10) is also an equilibrium point of system (12),
and (14) is a solution of (36) for all Z*. For this purpose,
let Z* be a fixed point of (10), then

F(Z*)=WuZ*+h = Z". (38)
Z* must be an equilibrium of (12), i.e.

G(Z*) =WeuZ*+h = 0. (39)
From (38) and (39) it is concluded that

h = [I-Wq] (-Wgl) b, (40)
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which shows that (37) or, equivalently, (14) is a solution
of (36) for all Z* satisfying both relations (38) and (39).
Finally, let each Jordan block of W« associated with a
negative eigenvalue occur an even number of times. Then,
by theorem (2), the logarithm of real matrix Wgs, i.e. the
matrix Wm defined in (14), will be real.

(2) Let Wqr be diagonalizable, then
Wae = VE, VL, (41)

where Ej, = diag(A¥,\5,--- | Ak ) and V is the matrix of
eigenvectors of Wqk. Since W is also invertible, by (14)

~ 1 1
Weor = — Wor) = — E, V!
Qk A7 log(War) A7 log(V E, V™)
1
= V—log(Ey) V! 42
VAt 09( k) v ) ( )
such that

log(Ey) = diag(log(\}),log(\%), - log(\5))),

which completes the proof.

Remark. Due to (37)~and (14), one can see that system
(12) is homogeneous (h = 0) if and only if system (10) is
homogeneous (h = 0).

7.4. Proof of theorem 4

Again we prove the theorem for ¢y = 0 without loss of gen-
erality. Suppose that there is the equivalent continuous-time
system (12) for (10) with non-invertible and diagonalizable
matrix Wm. Similar to the proof of the previous theorem,
relations (29) and (30) must hold for (10) and (12). On the
other hand, non-invertibility and diagonalizability of Wapr
demand that it has at least one eigenvalue equal to zero and

Onn 0
* vl 43)
0 C

where O,,x, is a zero matrix corresponding to zero eigen-
values (n denotes the number of zero eigenvalues) and C' is
an invertible matrix corresponding to nonzero eigenvalues
of Wm. Therefore, for relation (31) we obtain

t .
/ e WorT hdr =
0

Wm:v<

nxn

In this case, relation (35) becomes

C(At) = eWardt ((0) 4 eWar Aty

At --- 0
: R 0 V=ih
0 - At)
0 _C—l(e—CAt _ I)
(45)
Inserting conditions (29) into (45) gives
Waor Zo +h = eWVardt 7, 4 eWarAty 5
At -+ 0
. . . 0 ~
: - V~'h
0 - At)
0 —C e CR 1)
(46)
Denoting
At 0
H = : : 47)
0 At

nxn

and considering equality (46) for all Zj, particularly for
Zy = 0, yields

WQk = BWQ"'At

. H 0 -
h = eVarAt i/ V=ih

Since

; I 0
Wor st — v (o eC‘At) Vi @9)

we can simplify A in (48) and rewrite it as

WQk = GWQ"At

H 0 _ (50
h=V V—1h,

or equivalently

WQR: = ﬁlOg(WQk)
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(54) fulfills solution (15) or, identically, solution (50). Thus,
inserting h = —Wqr Z* in (50), we have

In addition, we can write
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Therefore
~ 1
WQk = Kt lOg(WQk),
]’:L:

which is equivalent to (15).

Finally, from Wqr = eWarAt it is deduced that War is
invertible. It is only necessary to prove that for every point
Z* satisfying both equations (38) and (39), i.e. equations

Wor — 1) 2% = —h
{( r = 1) 1)

~ b

W Z* = —h

relation (15) is a solution of (46). Note that here we cannot
simplify (54) to find some equation similar to (40), as nei-
ther (Wqr — I) or W is invertible. Hence, we show that
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which demonstrates that (54) meets solution (50).

If every Jordan block of W« associated with a negative
eigenvalue occurs an even number of times, then theorem
(2) guarantees that W, will be real. Also, similar to the
proof of theorem 3, it is easy to see that W will be diago-
nalizable when W« has no negative real eigenvalues.

7.5. Proof of theorem 5

Let to = 0 without loss of generality and assume there
exists the equivalent continuous-time system (12) for (10),
for which matrix Wq is non-invertible. Then, relations (29)
and (30) must hold for (10) and (12), analogously to the
proofs of the previous theorems. Also, by similar reasoning
we have

- _ At - ~
((At) = MR ((0) + |eMorat / e WdT} h.
0

(56)

Inserting conditions (29) in equation (56) and solving the
resulting equation for all Zj, including Zy = 0, yields

War = eWardt
(57)

h = eWarAt (fOAt e_WQdeT) h.
Now let

X € Spectrum(War) = AAL ¢ 2inZ*.  (58)
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Then, by proposition 1, fOAt e~WarT dr is invertible and so

WQk = ﬁlog(WQk)

- At i -1 - , (59
ho= (J e Wormar) e Wardt g
which is equal to equation (17). The last point which still
has to be proven is that equation (54) meets solution (17) or,
identically, (57), for every Z*. Since Wy is non-invertible,
it can be written in the following Jordan form:

B 0

Wor = U
o (o c

) U, (60)

where B is a strictly upper triangular matrix and C' is an
invertible matrix. Then

5 e—BAt 0
e Wardt — Uy . ~CAt U, (61)
At ~
/ e Wark™ hdr =
0
At _pr
o e Brdr 0 -1
0 _0—1(€—cm _ I)
(62)
Now, substituting h = —Wm Z* in (57) we have
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h = eWarst (/ eWﬂ’”dT> h
0
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0 7071(67CAt — I)
X U™H=Waqr Z*)

At _pBr
_ eVVQkAt U 0 (& B dr 0
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xU U 0 o uv—-zr

At _Br
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x U 1z*

(ejBAt - I) O U—lz*
0 (e’cm — I)

- (1 - eVVnkAt) 7 = (I — Wen) 2%, (63)

_ eWQ;cAt U (

which completes the proof.

Finally, due to theorem (2), Wm will be real, provided that
each Jordan block of Wq related to a negative eigenvalue
occurs an even number of times.

Remark. In theorem 5, by (62) we have

At B -1
</ e WarT dT) = (64)
0

U (fOAt e BT d7)71 0
0 (I- e_CAt)_l C

U~ 'h.
(65)

On the other hand, since C is invertible, det (I — e*CAt) +
0. Therefore, fOAt e~ "akT dr is invertible if and only

if fOAt e B7 dr is invertible. Thus, for invertibility of
OAt e~WakT dr, it is required that relation (58) holds only
for any pair of eigenvalues of B.

7.6. Grazing bifurcation

Here we investigate a grazing bifurcation of periodic orbits
for the continuous PLRNN derived from the van-der-Pol
oscillator (Example 1). For this purpose, we consider the
converted continuous-time system locally in the neighbor-
hood of only one border

E:{CZ(Q’C%“' ,C10)” €R10|H(C)=C2=0}7

where the scalar function H : R'Y — R defines the border
and has non-vanishing gradient. According to (di Bernardo
& Hogani, 2010; Monfared et al., 2017), a periodic orbit
é (t) undergoes a grazing bifurcation for some critical value
of a bifurcation parameter, if it is a grazing orbit for some
t = t*. This means ((¢) hits & tangentially at the grazing

point (* = ((t*) and satisfies the following conditions:

H(C") = ¢ =0,

VH((*) = (0,1,0,---,0)T #£0,

10
(VH((Y), Wan ¢ + ) = Z@%) 4 hiz =0,

—1

j#2

10

(VH(CY), Waa C* + ha) = Y @5 { + hap =0,
=1
72
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(VH(), Wélé*wglm (v’ (5*)(%15*

+ hn), Wan & + o) Z%Pc +Z 0y haj =0,
J#Z 3#2
<VH(5*)’ WS2€*+W92B2> <V2H(é*)(WQ2 ¢

+ ha), Wa2 (" + ha) ZUZ?C +ZU~’§§ haj =
7752 7752

where W = [uvfj)], Wa = [7111(]2)], W2, = (1)] and
Wa. = [,

In this case the periodic orbit é (t) crosses X transversally
as the bifurcation parameter passes through the bifurcation
value. The grazing bifurcation leads to a transition or a
sudden jump in the system’s response by the dis-/appearance
of a tangential intersection between the trajectory and the
switching boundary. The occurrence of a grazing bifurcation
in the continuous PLRNN is illustrated in Fig. 2.



