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7. Supplementary material
7.1. Sub-regions corresponding to system (9)

All sub-regions related to (9) can be defined as follows
(Monfared & Durstewitz, 2020):

SΩ1 = Ŝ0 = Ŝ(0 0 0 · · · 0︸ ︷︷ ︸
M

)∗2
= Ŝ0 0 0 · · · 0︸ ︷︷ ︸

M

(18)

=
{
Zt ∈ RM ; zit ≤ 0, i = 1, 2, · · · ,M

}
,

SΩ2 = Ŝ1 = Ŝ(0 0 · · · 0 1︸ ︷︷ ︸
M

)∗2
= Ŝ1 0 0 · · · 0︸ ︷︷ ︸

M

(19)

=
{
Zt ∈ RM ; z1t > 0, zit ≤ 0, i 6= 1

}
,

SΩ3 = Ŝ2 = Ŝ(0 · · · 0 1 0︸ ︷︷ ︸
M

)∗2
= Ŝ0 1 0 · · · 0︸ ︷︷ ︸

M

(20)

=
{
Zt ∈ RM ; z2t > 0, zit ≤ 0, i 6= 2

}
,

SΩ4 = Ŝ3 = Ŝ(0 · · · 0 1 1︸ ︷︷ ︸
M

)∗2
= Ŝ1 1 0 · · · 0︸ ︷︷ ︸

M

(21)

=
{
Zt ∈ RM ; z1t, z2t > 0, zit ≤ 0, i 6= 1, 2

}
,

SΩ5 = Ŝ4 = Ŝ(0 · · · 1 0 0︸ ︷︷ ︸
M

)∗2
= Ŝ0 0 1 0 · · · 0︸ ︷︷ ︸

M

(22)

=
{
Zt ∈ RM ; z3t > 0, zit ≤ 0, i 6= 3

}
,

...
...

SΩ2M = Ŝ2M − 1 = Ŝ(1 1 1 · · · 1︸ ︷︷ ︸
M

)∗2
= Ŝ1 1 1 · · · 1︸ ︷︷ ︸

M

(23)

=
{
Zt ∈ RM ; zit > 0, i = 1, 2, · · · ,M

}
.

where each subindex d of Ŝ, 0 ≤ d ≤ 2M − 1, is associated
with a sequence dM dM−1 · · · d2 d1 of binary digits. The
notation (d1 d2 · · · dM )∗2 in building each corresponding
sequence stands for the mirror image of the binary repre-
sentation of d with M digits. By mirror image here we
mean writing digits d1 d2 · · · dM from right to left, i.e.
dM dM−1 · · · d2 d1. For example, for M = 2 there are
4 sub-regions SΩk , k = 1, 2, 3, 4, associated with 4 ma-
trices DΩk := diag

(
d2, d1

)
, where d2 d1 = (d1 d2)∗2 and

di ∈ {0, 1} (Fig. S1).

Denoting switching boundaries Σij = S̄Ωi ∩ S̄Ωj between
every pair of successive sub-regions SΩi and SΩj with i, j ∈

{1, 2, · · · , 2M}, we can rewrite map (7) as

Zt+1 = F (Zt)

=



F1(Zt) = WΩ1 Zt + h; Zt ∈ S̄Ω1

F2(Zt) = WΩ2 Zt + h; Zt ∈ S̄Ω2

F3(Zt) = WΩ3 Zt + h; Zt ∈ S̄Ω3

F4(Zt) = WΩ4 Zt + h; Zt ∈ S̄Ω4

...
...

F2M (Zt) = WΩ2M Zt + h; Zt ∈ S̄Ω2M

.

(24)

7.2. Discontinuity boundaries

Consider map (7) and two sub-regions SΩi and SΩj (i, j ∈
{1, 2, · · · , 2M}) as defined in Section 4 (subsection 4.2).
Suppose that subindices i− 1 and j − 1 of Ŝi−1 and Ŝj−1

are associated with i − 1 = i1 i2 · · · iM and j − 1 =
j1 j2 · · · jM . Then SΩi and SΩj are two successive sub-
regions with the switching boundary Σij = S̄Ωi ∩ S̄Ωj ,
iff there is exactly one 1 ≤ s ≤ M such that for all
(zi1t, · · · , ziM t)T ∈

◦
SΩi and (zj1t, · · · , zjM t)T ∈

◦
SΩjzist . zjst < 0

zirt . zjrt > 0, 1 ≤ r
r 6=s
≤M

. (25)

Moreover, Σij is a closed set (Σ̄ij = Σij) and Σij =
◦
Σij ∪ ∂Σij such that

◦
Σij = Σsr =

{
Zt ∈ RM ; zst = 0, and sgn(zrt) =

sgn(zirt) = sgn(zjrt), 1 ≤ r
r 6=s
≤M

}
,

(26)

and ∂Σij =
M⋃

sm=1
sm 6=s

Σs,smν where

Σs,smν =
{
Zt ∈ RM ; zsmt = zst = 0, and sgn(zνt)

= sgn(zrt), 1 ≤ ν
ν 6=s,sm

≤M
}
. (27)

Furthermore, it can be proven that

2M⋃
i,j=1

Σij =

M2M−1⋃
l=1

Σl ⊂
2M⋃
k=1

SΩk = RM . (28)

7.3. Proof of theorem 3

(1) Without loss of generality let t0 = 0. Assume that
there exists an equivalent continuous-time system for (10)
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Figure S1. Example of subregions SΩk and related matrices DΩk for M = 2.

on [0, ∆t], in the form of equation (12). By equivalency in
the sense of equation (13), we must have

Z0 = ζ(0), Z1 = WΩkZ0 + h = ζ(∆t). (29)

According to theorem 1, the solution of system (10) on
[0,∆t] is

ζ(t) = eW̃Ωk
t ζ(0) + eW̃Ωk

t

∫ t

0

e−W̃Ωk
τ h̃ dτ, t ∈ [0,∆t].

(30)

If W̃Ωk is invertible, then∫ t

0

e−W̃Ωk
τ h̃ dτ = −W̃−1

Ωk

(
e−W̃Ωk

t − I
)
h̃, (31)

and thus

ζ(t) = eW̃Ωk
t ζ(0) +

[
eW̃Ωk

t (−W̃−1
Ωk

) e−W̃Ωk
t

− eW̃Ωk
t (−W̃−1

Ωk
)
]
h̃. (32)

Furthermore, since

(−W̃−1
Ωk

) e−W̃Ωk
t = e−W̃Ωk

t (−W̃−1
Ωk

), (33)

we have

ζ(t) = eW̃Ωk
t ζ(0) +

[
I − eW̃Ωk

t
]
(−W̃−1

Ωk
) h̃ t ∈ [0,∆t].

(34)

Putting conditions (29) in

ζ(∆t) = eW̃Ωk
∆t ζ(0) +

[
I − eW̃Ωk

∆t
]
(−W̃−1

Ωk
) h̃,

(35)

yields

WΩk Z0 + h = eW̃Ωk
∆t Z0 +

[
I − eW̃Ωk

∆t
]
(−W̃−1

Ωk
) h̃.

(36)

Equation (36) has to hold for all Z0 including Z0 = 0.
Hence, it is deduced that WΩk = eW̃Ωk

∆t

h =
[
I − eW̃Ωk

∆t
]

(−W̃−1
Ωk

) h̃
. (37)

According to (37), matrix WΩk should be invertible and
cannot have any zero eigenvalue. Also, since W̃Ωk is
invertible, it does not have any zero eigenvalue, which
implies that WΩk has no eigenvalue equal to one. Then,
PW

Ωk
(1) 6= 0, which means

[
I −WΩk

]
is invertible and

(37) becomes equivalent to (14).

Now, considering W̃Ωk and h̃ as in (14), we can obtain the
desired equivalent continuous-time system (12) for (10) on
[0, ∆t]. It is just required to prove that every fixed point
Z∗ of map (10) is also an equilibrium point of system (12),
and (14) is a solution of (36) for all Z∗. For this purpose,
let Z∗ be a fixed point of (10), then

F (Z∗) = WΩkZ
∗ + h = Z∗. (38)

Z∗ must be an equilibrium of (12), i.e.

G(Z∗) = W̃ΩkZ
∗ + h̃ = 0. (39)

From (38) and (39) it is concluded that

h =
[
I −WΩk

]
(−W̃−1

Ωk
) h̃, (40)
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which shows that (37) or, equivalently, (14) is a solution
of (36) for all Z∗ satisfying both relations (38) and (39).
Finally, let each Jordan block of WΩk associated with a
negative eigenvalue occur an even number of times. Then,
by theorem (2), the logarithm of real matrix WΩk , i.e. the
matrix W̃Ωk defined in (14), will be real.

(2) Let WΩk be diagonalizable, then

WΩk = V Ek V
−1, (41)

where Ek = diag(λk1 , λ
k
2 , · · · , λkM ) and V is the matrix of

eigenvectors of WΩk . Since WΩk is also invertible, by (14)

W̃Ωk =
1

∆t
log(WΩk) =

1

∆t
log(V Ek V

−1)

= V
1

∆t
log(Ek)V −1, (42)

such that

log(Ek) = diag
(
log(λk1), log(λk2), · · · , log(λkM )

)
,

which completes the proof.

Remark. Due to (37) and (14), one can see that system
(12) is homogeneous (h̃ = 0) if and only if system (10) is
homogeneous (h = 0).

7.4. Proof of theorem 4

Again we prove the theorem for t0 = 0 without loss of gen-
erality. Suppose that there is the equivalent continuous-time
system (12) for (10) with non-invertible and diagonalizable
matrix W̃Ωk . Similar to the proof of the previous theorem,
relations (29) and (30) must hold for (10) and (12). On the
other hand, non-invertibility and diagonalizability of W̃Ωk

demand that it has at least one eigenvalue equal to zero and

W̃Ωk = V

(
On×n 0

0 C

)
V −1, (43)

where On×n is a zero matrix corresponding to zero eigen-
values (n denotes the number of zero eigenvalues) and C is
an invertible matrix corresponding to nonzero eigenvalues
of W̃Ωk . Therefore, for relation (31) we obtain∫ t

0

e−W̃Ωk
τ h̃ dτ =

V


t · · · 0

...
. . .

...
0 · · · t


n×n

0

0 −C−1
(
e−Ct − I

)
 V −1 h̃.

(44)

In this case, relation (35) becomes

ζ(∆t) = eW̃Ωk
∆t ζ(0) + eW̃Ωk

∆t V×
∆t · · · 0

...
. . .

...
0 · · · ∆t


n×n

0

0 −C−1
(
e−C∆t − I

)
V −1h̃.

(45)

Inserting conditions (29) into (45) gives

WΩk Z0 + h = eW̃Ωk
∆t Z0 + eW̃Ωk

∆t V ×
∆t · · · 0

...
. . .

...
0 · · · ∆t


n×n

0

0 −C−1
(
e−C∆t − I

)
V −1h̃.

(46)

Denoting

H =

∆t · · · 0
...

. . .
...

0 · · · ∆t


n×n

, (47)

and considering equality (46) for all Z0, particularly for
Z0 = 0, yields

WΩk = eW̃Ωk
∆t

h = eW̃Ωk
∆t V

(
H 0

0 −C−1
(
e−C∆t − I

)
)
V −1h̃

.

(48)

Since

eW̃Ωk
∆t = V

(
I 0

0 eC∆t

)
V −1, (49)

we can simplify h in (48) and rewrite it as
WΩk = eW̃Ωk

∆t

h = V

(
H 0

0 −C−1
(
I − eC∆t

)
)
V −1h̃,

(50)

or equivalently
W̃Ωk = 1

∆t log(WΩk)

h̃ = V

(
H 0

0 −C−1
(
I − eC∆t

)
)−1

V −1h.

(51)
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In addition, we can write

h̃ = V

(
H 0

0 −C−1
(
I − eC∆t

))−1

V −1h

= V




1
∆t · · · 0
...

. . .
...

0 · · · 1
∆t


n×n

0

0 C
(
eC∆t − I

)−1

 V −1 h

= V

[
1

∆t

(
In 0

0 O

)
+

(
On×n 0

0 C

)]

×

(
In 0

0
(
eC∆t − I

)−1

)
V −1h

= V

[
1

∆t

(
In 0

0 O

)
+ V −1 W̃Ωk V

]

×

[(
In 0

0 eC∆t

)
−

(
On×n 0

0 I

)]−1

V −1h

=

[
1

∆t

(
In 0

0 O

)
+ W̃Ωk

]

×

[
eW̃Ωk

∆t −

(
On×n 0

0 I

)]−1

h. (52)

Therefore

W̃Ωk =
1

∆t
log(WΩk),

h̃ =

[
− 1

∆t

(
In 0

0 O

)
− W̃Ωk

]

×

[(
On×n 0

0 I

)
− eW̃Ωk

∆t

]−1

h (53)

which is equivalent to (15).

Finally, from WΩk = eW̃Ωk
∆t it is deduced that WΩk is

invertible. It is only necessary to prove that for every point
Z∗ satisfying both equations (38) and (39), i.e. equations{(

WΩk − I
)
Z∗ = −h

W̃ΩkZ
∗ = −h̃

, (54)

relation (15) is a solution of (46). Note that here we cannot
simplify (54) to find some equation similar to (40), as nei-
ther

(
WΩk − I

)
or W̃Ωk is invertible. Hence, we show that

(54) fulfills solution (15) or, identically, solution (50). Thus,
inserting h̃ = −W̃ΩkZ

∗ in (50), we have

h = eW̃Ωk
∆t V

(
H 0

0 −C−1
(
e−C∆t − I

))V −1h̃

= eW̃Ωk
∆t V

(
H 0

0 −C−1
(
e−C∆t − I

))V −1(−W̃ΩkZ
∗)

= eW̃Ωk
∆t V

(
H 0

0 −
(
e−C∆t − I

)
C−1

)
V −1 V

×

(
On×n 0

0 −C

)
V −1Z∗

= eW̃Ωk
∆t V

(
On×n 0

0
(
e−C∆t − I

)) V −1Z∗

= eW̃Ωk
∆t V

[(
In 0

0 e−C∆t

)
−

(
In 0

0 I

)]
V −1Z∗

=
(
I − eW̃Ωk

∆t
)
Z∗ = (I −WΩk)Z∗, (55)

which demonstrates that (54) meets solution (50).

If every Jordan block of WΩk associated with a negative
eigenvalue occurs an even number of times, then theorem
(2) guarantees that W̃Ωk will be real. Also, similar to the
proof of theorem 3, it is easy to see that W̃Ωk will be diago-
nalizable when WΩk has no negative real eigenvalues.

7.5. Proof of theorem 5

Let t0 = 0 without loss of generality and assume there
exists the equivalent continuous-time system (12) for (10),
for which matrixWΩk is non-invertible. Then, relations (29)
and (30) must hold for (10) and (12), analogously to the
proofs of the previous theorems. Also, by similar reasoning
we have

ζ(∆t) = eW̃Ωk
∆t ζ(0) +

[
eW̃Ωk

∆t

∫ ∆t

0

e−W̃Ωk
τ dτ

]
h̃.

(56)

Inserting conditions (29) in equation (56) and solving the
resulting equation for all Z0, including Z0 = 0, yields WΩk = eW̃Ωk

∆t

h = eW̃Ωk
∆t
(∫∆t

0
e−W̃Ωk

τ dτ
)
h̃.

(57)

Now let

λ ∈ Spectrum(W̃Ωk) ⇒ λ∆t /∈ 2iπZ∗. (58)
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Then, by proposition 1,
∫∆t

0
e−W̃Ωk

τ dτ is invertible and soW̃Ωk = 1
∆t log(WΩk)

h̃ =
(∫∆t

0
e−W̃Ωk

τ dτ
)−1

e−W̃Ωk
∆t h

, (59)

which is equal to equation (17). The last point which still
has to be proven is that equation (54) meets solution (17) or,
identically, (57), for every Z∗. Since W̃Ωk is non-invertible,
it can be written in the following Jordan form:

W̃Ωk = U

(
B 0

0 C

)
U−1, (60)

where B is a strictly upper triangular matrix and C is an
invertible matrix. Then

e−W̃Ωk
∆t = U

(
e−B∆t 0

0 e−C∆t

)
U−1, (61)

∫ ∆t

0

e−W̃Ωk
τ h̃ dτ =

U

(∫∆t

0
e−Bτdτ 0

0 −C−1
(
e−C∆t − I

)) U−1.

(62)

Now, substituting h̃ = −W̃ΩkZ
∗ in (57) we have

h = eW̃Ωk
∆t

(∫ ∆t

0

e−W̃Ωk
τ dτ

)
h̃

= eW̃Ωk
∆t U

(∫∆t

0
e−Bτ dτ 0

0 −C−1
(
e−C∆t − I

))

× U−1(−W̃ΩkZ
∗)

= eW̃Ωk
∆t U

(∫∆t

0
e−Bτ dτ 0

0 −
(
e−C∆t − I

)
C−1

)

× U−1 U

(
−B 0

0 −C

)
U−1Z∗

= eW̃Ωk
∆t U

(∫∆t

0
−B e−Bτ dτ 0

0
(
e−C∆t − I

))

× U−1Z∗

= eW̃Ωk
∆t U

((
e−B∆t − I

)
0

0
(
e−C∆t − I

)) U−1Z∗

=
(
I − eW̃Ωk

∆t
)
Z∗ = (I −WΩk)Z∗, (63)

which completes the proof.

Finally, due to theorem (2), W̃Ωk will be real, provided that
each Jordan block of WΩk related to a negative eigenvalue
occurs an even number of times.

Remark. In theorem 5, by (62) we have

(∫ ∆t

0

e−W̃Ωk
τ dτ

)−1

= (64)

U

(∫∆t

0
e−Bτ dτ

)−1

0

0
(
I − e−C∆t

)−1
C

 U−1h.

(65)

On the other hand, since C is invertible, det
(
I−e−C∆t

)
6=

0. Therefore,
∫∆t

0
e−W̃Ωk

τ dτ is invertible if and only
if
∫∆t

0
e−Bτ dτ is invertible. Thus, for invertibility of∫∆t

0
e−W̃Ωk

τ dτ , it is required that relation (58) holds only
for any pair of eigenvalues of B.

7.6. Grazing bifurcation

Here we investigate a grazing bifurcation of periodic orbits
for the continuous PLRNN derived from the van-der-Pol
oscillator (Example 1). For this purpose, we consider the
converted continuous-time system locally in the neighbor-
hood of only one border

Σ =
{
ζ = (ζ1, ζ2, · · · , ζ10)T ∈ R10 |H(ζ) = ζ2 = 0

}
,

where the scalar function H : R10 → R defines the border
and has non-vanishing gradient. According to (di Bernardo
& Hogani, 2010; Monfared et al., 2017), a periodic orbit
ζ̂(t) undergoes a grazing bifurcation for some critical value
of a bifurcation parameter, if it is a grazing orbit for some
t = t∗. This means ζ̂(t) hits Σ tangentially at the grazing
point ζ̂∗ = ζ̂(t∗) and satisfies the following conditions:

H(ζ̂∗) = ζ̂∗2 = 0,

∇H(ζ̂∗) = (0, 1, 0, · · · , 0)T 6= 0,

〈
∇H(ζ̂∗), W̃Ω1 ζ̂∗ + h̃1

〉
=

10∑
j=1
j 6=2

w̃
(1)
2j ζ̂

∗
j + h̃12 = 0,

〈
∇H(ζ̂∗), W̃Ω2 ζ̂∗ + h̃2

〉
=

10∑
j=1
j 6=2

w̃
(2)
2j ζ̂

∗
j + h̃22 = 0,
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∇H(ζ̂∗), W̃ 2

Ω1 ζ̂∗ + W̃Ω1 h̃1

〉
+
〈
∇2H(ζ̂∗)(W̃Ω1 ζ̂∗

+ h̃1), W̃Ω1 ζ̂∗ + h̃1

〉
=

10∑
j=1
j 6=2

ṽ
(1)
2j ζ̂

∗
j +

10∑
j=1
j 6=2

w̃
(1)
2j h̃1j = 0,

〈
∇H(ζ̂∗), W̃ 2

Ω2 ζ̂∗ + W̃Ω2 h̃2

〉
+
〈
∇2H(ζ̂∗)(W̃Ω2 ζ̂∗

+ h̃2), W̃Ω2 ζ̂∗ + h̃2

〉
=

10∑
j=1
j 6=2

ṽ
(2)
2j ζ̂

∗
j +

10∑
j=1
j 6=2

w̃
(2)
2j h̃2j = 0,

where W̃Ω1 = [w̃
(1)
ij ], W̃Ω2 = [w̃

(2)
ij ], W̃ 2

Ω1 = [ṽ
(1)
ij ] and

W̃ 2
Ω2 = [ṽ

(2)
ij ].

In this case the periodic orbit ζ̂(t) crosses Σ transversally
as the bifurcation parameter passes through the bifurcation
value. The grazing bifurcation leads to a transition or a
sudden jump in the system’s response by the dis-/appearance
of a tangential intersection between the trajectory and the
switching boundary. The occurrence of a grazing bifurcation
in the continuous PLRNN is illustrated in Fig. 2.


