
Optimizing Long-term Social Welfare in Recommender Systems

A. Algorithms and Proofs
A.1. Greedy Optimization and Theorem 2

A.1.1. PRELIMINARIES

Before we begin the proof, we make a few notational modifications to significantly simplify it. Let C be a set of content
providers (hereinafter providers), U a set of users, and A ∈ R|U|×|C| a utility matrix. Furthermore, let D : U → N be a user
demand function (specifying how many queries a user u submits to the system) and νc for c ∈ C be the provider survival
threshold, indicating how many queries the provider needs to receive in order to be viable. For this section, we will make the
following simplifying assumptions:

• every user has exactly one unique query during the epoch, and

• every user’s view contributes exactly one unit towards a provider’s viability.

Under these assumptions, the set of queries becomes identical to the set of users (U = Q), and Q̄(qu) = 1. We proceed to
prove the submodularity of user welfare as a function of the provider set subject to the above restrictions. After that, we
discuss the reduction of Problem 4 to this restricted case.

The welfare maximization problem is then to find a matching such that

X∗ = arg max
X,Y

∑
u∈U

D(u)∑
t=1

∑
c∈C

AucXuct


subject to

∑
c∈C

Xuct = 1 ∀u ∈ U , t ∈ {1, . . . , D(u)}

Xuct ≤ Yc ∀u ∈ U , c ∈ C∑
u∈U

D(u)∑
t=1

Xuct ≥ νcYc, ∀c ∈ C

Xuct, Yc ∈ {0, 1}, ∀u ∈ U , c ∈ C, t ∈ [1, . . . , D(u)], (6)

The problem (6) is a hard combinatorial problem, so the question is if we can derive good heuristics for solving it. Of
particular interest is the following greedy heuristic: let C ⊆ C and define g : 2C → R as

g(C) 7→ max
X

∑
u∈U

D(u)∑
t=1

∑
c∈C

AucXuct


subject to

∑
c∈C

Xuct = 1 ∀u ∈ U , t ∈ [1, . . . , D(u)]

∑
u∈U

D(u)∑
t=1

Xuct ≥ νc ∀c ∈ C

Xuct ∈ {0, 1}, ∀u ∈ U , c ∈ C, t ∈ [1, . . . , D(u)]. (7)

That is, g(C) is the best matching if the provider set C ⊂ C is fixed externally. Despite that (7) has binary constraints on
Xuct, its constraint matrix is Totally Unimodular; hence, we are guaranteed that (7) is integral. The goal is then to start
with C = ∅ and greedily add providers while g(C) keeps improving. In order for this to work well, g would need to be
sub-modular, which is precisely what we prove next.

Theorem 2. For every two providers c0, c1 ∈ C and C ⊆ C \ {c0, c1}, it holds that

g(C ∪ {c0, c1})− g(C ∪ {c1}) ≤ g(C ∪ {c0})− g(C). (8)

Optimizing Long-term Social Welfare in Recommender Systems

A.1.2. PROOF OF THEOREM 2 IN THE UNIT CASE

Let us make a simplification: a user with D(u) queries is equivalent to D(u) independent users; thus, we will just work with
an extended user set. We now present the terminology used in this proof. A matching X : U → C, is a function from users to
providers. We denote by C(X) the serving providers under X , i.e., C(X) = {c | ∃u ∈ U , X(u) = c}. Further, we say that a
matching X is feasible if every provider in C(X) meets her threshold under X , namely, if for every c ∈ C(X) it holds that
|{u ∈ U | X(u) = c}| ≥ νc. We denote by F (X) the value obtained for a feasible matching X in Problem (7) (note that X
may not be optimal w.r.t.. C(X)). In the rest of the proof, we rely on optimal matchings for C,C ∪ {c1} and C ∪ {c0, c1} to
construct a new matching, X0. The active providers under X0 are C ∪ {c0} and, as we shall show, X0 satisfies

g(C ∪ {c0, c1})− g(C ∪ {c1}) ≤ F (X0)− g(C). (9)

The latter immediately implies Inequality (8), since by definition of g,

F (C ∪ {c0, c1}) ≤ max
X:C(X)=C∪{c0}

F (X) = g(C ∪ {c0}).

We are now ready to develop the tools required for the proof. The next notion assists to succinctly quantify the difference in
user utility between two matchings.

Definition 1. Let X be and Y be two feasible matchings. We call a triplet (c, c′, u) a relocation triplet w.r.t. X,Y if
X(u) = c, Y (u) = c′ and c 6= c′.

Importantly, two matchings define a unique set of (ordered) relocation triplets. conversely, a source matching and relocation
triplets uniquely define the target matching.

Let X and X1 denote (any) optimal matching induced by g(C) and g(C ∪ {c1}) in Problem (7), respectively. We now
construct a graph whose nodes are the providers and its edges correspond to relocation triplets w.r.t. X,X1. Formally, let
G1 = (C, E1, w) denote a directed multi-graph, where the set of nodes is C; E1 is the set of all relocation triplets w.r.t.
X,X1, where every triplet (c, c′, u) forms a directed edge from c = X(u) to c′ = X1(u) with an ID of u; and the weight
function w is defined by w(c, c′, u) = Auc′ −Auc. Observe that the number of users each provider c (a node in the graph)
obtains under X1 equals

|{u ∈ U | X(u) = c}|+ deg+(c)− deg−(c), (10)

where deg+(c) denotes the indegree of c and its outdegree is denoted by deg−(c). Moreover, the sum of weights is precisely
the difference in utility between X and X1, i.e.,

F (X1)− F (X) = g(C ∪ {c1})− g(C) =
∑
e∈E1

w(e).

In the next proposition, we use the fact that X,X1 are optimal w.r.t. their provider sets to characterize properties of G1.

Proposition 1. It holds that:

(1) G1 does not contain directed cycles.

(2) The only sink in G1 is c1.

The proof of Proposition 1 appears below. Proposition 1 suggests that G1 is a DAG with flow conservation, so we can
decompose its edges into a set of independent paths (for any arbitrary partition into paths) between a source, i.e. a provider
with an excess of users under the matching X , and the sink c1.

Next, we introduce a second graph, G0,1, with relocation triplets from X1 to X0,1, the optimal matching for g(C ∪{c0, c1}).
Formally, G0,1 = (C, E0,1, w) is a directed multi-graph, with the same set of nodes and the same weight function w. E0,1 is
composed of all relocation triplets fromX1 toX0,1. By mirroring the proof of Proposition 1, we conclude thatG0,1 contains
no cycles and that c0 is the unique sink of every directed path in it. This graph is of special interest because its sum of weights
is the left hand side of Inequality (8). Namely,

∑
e∈E0,1 w(e) = F (X0,1)− F (X1) = g(C ∪ {c0, c1})− g(C ∪ {c1}). It

also describes how to optimally relocate users from C ∪ {c1} to C ∪ {c0, c1}.

Optimizing Long-term Social Welfare in Recommender Systems

After understanding the structural properties of G1 and G0,1, we are ready to construct the promised matching X0 (recall
Inequality (9)). Let G = (C, E1 ∪ E0,1, w) be the graph on the same set of nodes C, with all the edges from both E1 and
E0,1 (notice that the same edge cannot appear in both). For simplicity, we refer to paths in E1 as blue and to paths in E0,1

as red, for some arbitrary partition into paths. Our goal is to select a subset E of edges from E1 ∪E0,1, which, when applied
to X , will induce the matching X0. To that end, we devise an iterative process to construct the set E, by adding one path at
the time. The key property of this process, which we formalize via Algorithm 1, is that there exists a mapping from every
red path to a new path, composed of red and (potentially) blue edges, with a less or equal weight than that red path.

To illustrate why this process is necessary, observe that not every subset of E1 ∪E0,1 can be applied to X in order to obtain
a new valid matching. In particular, recall that E0,1 is the difference between X1 and X0,1; thus, a red path may involve the
relocation (c, c′, u), where u might have been matched to c′ due some blue relocation (c′′, c, u). To ensure that the subset
we pick will result in a valid matching, we make the following distinction: a subset E such that E ⊆ E1 ∪ E0,1 is called
consistent if for any relocation triplet (c, c′, u) ∈ E either X(u) = c or there exists another relocation triplet (c′′, c, u) ∈ E.
Informally, E is consistent if every user u that was relocated to c′ from c was either matched to c in X , or was relocated to c
from another provider. Consistency of the relocation triplets is a necessary, but not a sufficient condition for the resulting
matching to be feasible.

Another useful notion is that of a junction node. We say that a node c ∈ C is a junction w.r.t. E1, E0,1 if there exists a blue
edge (c′′, c, u) ∈ E1 and a red edge (c, c′, u) ∈ E0,1 for some c′, c′′ ∈ C and u ∈ U . See Fig. 5 for illustration.

Figure 5. Exemplifying the definition of a junction node. In (a), the node c is a junction between the red path that starts at cr (and ends at
c0) and the blue path that starts at cb (and ends at c1). The reason is that it receives the user u from c′′ along a blue edge, and passes u
along a red edge. In (b), however, c is not a junction, since the user it passes onward along the red path is u′, which is not the user c
receives along the blue path.

Next, we employ Algorithm 1 on the blue and red paths in E1 ∪ E0,1. We show that

Lemma 1. The output E of Algorithm 1 satisfies the following:

1. E is consistent.

2. When applied to X , the resulting matching X0 is feasible.

3.
∑
e∈E w(e) ≥

∑
e∈E0,1 w(e).

The proof of Lemma 1 appears below. As elaborated above, the matching X and the relocation triplets in E uniquely define
the matching X0. By the second part of Lemma 1, X0 is feasible. Moreover, by the third part of Lemma 1 and the definition
of relocation triplets, we have

g(C ∪ {c0, c1})− g(C ∪ {c1}) =
∑

e∈E0,1

w(e) ≤
∑
e∈E

w(e) = F (X0)− g(X).

This completes the proof of the theorem.

A.1.3. PROOFS OF PROPOSITION 1 AND LEMMA 1

Proof of Proposition 1. For (1), assume by contradiction that a simple cycle e1, e2, . . . ek exists for some k ∈ N. Since
c1 /∈ C(X), there is no relocation triplet with c1 in the first entry, and hence c1 does not participate in the cycle. We proceed

Optimizing Long-term Social Welfare in Recommender Systems

Algorithm 1 Flow Construction for X0

1: let B be the set of blue paths and R be the set of red paths.
2: let E ← ∅ be the set of new paths.
3: while R 6= ∅ do
4: if there is a junction node w.r.t. B,R then
5: let c be a junction node, and b, r denote the paths whose edges (c′′, c, u) ∈ b, (c, c′, u) ∈ r form the junction such

that c is the closest junction node to the sink of b.
6: add to E the edge (c′′, c, u) and all the directed edges that precede it in b, and (c, c′, u) and all subsequent directed

edges in r.
7: remove r from R, b from B.
8: continue
9: else

10: add all the edges in R to E, set R← ∅.
11: end if
12: end while
13: return E

by analyzing the weight of the cycle,
∑k
i=1 w(ei). 6

• If
∑k
i=1 w(ei) = 0, we can remove the cycle from the graph and obtain a new graph G̃1 and a corresponding matching

X̃1. Observe that the number of users every provider gets is the same as in X (see Equation (10)), and hence not only
C(X̃1) = C(X1) = C ∪ {c1} but also every provider in that set meets her threshold. Further, we did not change the
sum of weights, and F (X1)− F (X) = F (X̃1)− F (X) implies F (X1) = F (X̃1); hence, X̃1 is also optimal and we
can assume w.l.o.g. that X1 does not contain such cycles.

• If
∑k
i=1 w(ei) > 0, we denote by X̃ a matching such that

X̃(u) =

{
c′ if the edge (c, c′, u) belongs to the cycle
X(u) otherwise

.

Since the number of users each provider in C = C(X) = C(X̃) gets under X̃ is the same as under X , X̃ is feasible.
Moreover, F (X̃)− F (X) > 0; hence, we obtain a contradiction to the optimality of X .

• If
∑k
i=1 w(ei) < 0, we can use an argument similar to the previous case to claim sub-optimality of X1.

For (2), assume by contradiction that a node v ∈ C, v 6= c1 is a sink, and observe that we must have v ∈ C since
C(X1) = C ∪ {c1}. Let v1, . . . , vk, v denote the shortest path ending at v. Because c1 /∈ C(X), we know that c1 cannot
participate in this path. Further, X is feasible and hence v gets at least νv users under X1. The analysis identically to the
first part of the proposition, arguing that the contradiction assumption entails the existence of a path with positive/negative
weights, in contrast to the optimality of X and X1.

Proof of Lemma 1. Assume by contradiction that the output E is not consistent. By definition of consistency, there exists an
edge e = (c, c′, u) such that

1. X(u) 6= c, and

2. (c′′, c′, u) /∈ E for every c ∈ C.

Notice that e ∈ E ⊆ E1 ∪ E0,1; hence, e is either blue or red. If e is blue, let b(e) denote the path e is part of. Since e ∈ E
and is blue, the only way it could have been added to E is via Line 1. This means that either e is the first edge in b(e), in

6In general, a set of relocation triplets can contain cycles with positive/negative weights, if providers pass different users along the
cycle. However, as we prove, this cannot happen in G1 due to the optimality of X1.

Optimizing Long-term Social Welfare in Recommender Systems

which case X(u) = c since E1 is consistent; or e is an intermediate edge in b(e), in which case there exists another edge
e′ = (c′′, c′, u) ∈ b(e) that precedes it, again because E1 is consistent. In both cases, we obtain contradiction.

Otherwise e is red. Let r denote the path that contains e. We have two cases:

• If c is a junction w.r.t. the initial B,R. In this case, there exists a blue path b ∈ B that contains an edge (c′′, c, u), by
the definition of a junction node. Moreover, at some point in the execution e was added, so b must have been identified
as a path containing an edge that forms a junction node v (not necessarily c) in Line 1. Recall that in Line 1 we assume
that v is the closest junction node to the sink of b, which is c1; hence, all edges of b that precedes the outgoing edge
from v are added to E too, including (c′′, c, u). This implies a contradiction.

• Else, c is not a junction. If e is the first edge in the red path r, then X1(u) = c, and since c is not a junction, X(u) = c
as well. This holds because both X,X1 are feasible. Otherwise, if e is an intermediate edge in r, then there must exists
a red edge (c′′, c, u) for some c′′ ∈ C, because E1 ∪ E0,1 is consistent. Since red edges like e are inserted to E in
Lines 1 and 1, the preceding edges in their red path, including (c′′, c, u), are added as well. In both cases, we reach a
contradiction.

Second part Denote the matching obtained by applying the relocation triplets of E to X by X0. To show that X0 is
feasible, we need to show that for every c ∈ C ∪ {c0}, it holds that

∣∣{u : X0(u) = c}
∣∣ ≥ νc. To do so, we rely on the

feasibility of X1 and X1,0, whose relocation edges were used to construct X0. We divide the analysis into three parts:

• If c = c0. Since X1,0 is feasible, we know that the deg+(c0) in G0,1 is at least νc0 (Recall the quantification of the
number of matched users in Equation (10)). Since E contains the final edge of every red path, the indegree of c0 in
G0 = (C, E, w) is the same as in G0,1.

• Else, if c is the source of at least one path in E. In this case, it must have been the source of some paths in E1 (blue) and
E0, 1 (red). Recall that the sink of every blue path is c1, and the sink of every red path is c0. Moreover, if c participates
in other red/blue paths, it must be an intermediate node; thus, we can analyze its loss of users due to the paths in which
c is the source solely. Since E ⊆ E1 ∪E0,1, c is the source of less paths in G0 = (C, E, w) than in G0,1; therefore, its
indegree in G0 is greater or equal to its indegree in G0,1, which implies that X0 matched c with at least as many users
as X0,1.

• Finally, for any other c, X0 matches c with the same number of users as X0,1, since its difference between the indegree
and the outdegree in G0 = (C, E, w) remains as in G0,1.

Third part The proof of this part is based on the following observation:

Observation 1. Let b be a blue path with source cb and sink c1, r be a red path with source cr and sink c0, and let c be
a junction w.r.t. b and r, with edges (c′′, c, u) ∈ b and (c, c′, u) ∈ r. Denote by p the path that starts from cb, takes the
edge (c′′, c, u) and the edges that precedes in b, and then takes (c, c′, u) and its subsequent edges in r, ending at c0. Then,∑
e∈p w(e) ≤

∑
e∈E0,1 w(e).

To see why Observation 1 holds, recall that the prefix of p from its source to (c′′, c, u) inclusive, all blue edges, must have
higher weight than the prefix of r from its source to (c, c′, u), exclusive. This is true since otherwise we could find a heavier
blue path to replace b in E0. However, this cannot be true as X1, which accounts for the blue edges in G1, is an optimal
matching for g(C ∪ {c1}). Finally, Algorithm 1 adds red paths either in their entirety (Line 1) or by modifying them to be
heavier according to Observation 1; hence,

∑
e∈E w(e) ≥

∑
e∈E0,1 w(e).

A.1.4. FROM DETERMINISTIC TO STOCHASTIC MATCHING

To complete the picture, it remains to argue that problems in which user queries contribute non-unit amounts to provider
viability can be reduced to the unit case analyzed in the previous sections. We can think of the optimization problem in (4)

Optimizing Long-term Social Welfare in Recommender Systems

as a matching problem with a weighted constraint

X∗ = arg max
X,Y

∑
u∈U

D(u)∑
t=1

∑
c∈C

AucXuct


subject to

∑
c∈C

Xuct = 1 ∀u ∈ U , t ∈ {1, . . . , D(u)}

Xuc ≤ Yc ∀u ∈ U , c ∈ C∑
u∈U

D(u)∑
t=1

wuctXuct ≥ νcYc, ∀c ∈ C

Xuct ∈ [0, 1], Yc ∈ {0, 1}, ∀u ∈ U , c ∈ C, t ∈ [1, . . . , D(u)], (11)

where the weight wuct reflects the expected engagement of user u towards provider c at time t. Similarly to the deterministic
setting above, we aim to show that

g(C) 7→ max
X

∑
u∈U

D(u)∑
t=1

∑
c∈C

AucXuct


subject to

∑
c∈C

Xuct = 1 ∀u ∈ U , t ∈ [1, . . . , D(u)]

∑
u∈U

D(u)∑
t=1

wuctXuct ≥ νc ∀c ∈ C

Xuct ∈ [0, 1], ∀u ∈ U , c ∈ C, t ∈ [1, . . . , D(u)] (12)

is submodular. The challenge in this case is that the problem of (12) is no longer totally unimodular due to the fractional
coefficients introduced by the viability constraint, hence, the combinatorial argument of the previous section is no longer
applicable. It is possible, however, to construct an unweighted equivalent to weighted problem by introducing fictitious
users and providers in a symmetric fashion. Applying the submodularity argument to the unweighted problem implies that
the weighted one is submodular as well. See the extended version of this paper (Mladenov et al., 2020) for a complete proof
of this fact.

A.2. Non-linear Optimization via Column Generation

A.2.1. FORMULATION

As discussed in Sec. 3.2, it is desirable to have a procedure that can optimize social welfare under non-linear utility models.
To this end, we extend the mixed-integer linear program in Problem (4) to handle non-linear utilities. Let C ∈ Ck be a
k-tuple of providers. A pair (qu, C) ∈ Q × Ck represents a possible answer to user u’s k queries identical to qu by the
provider tuple C. We call such a tuple a star quC. For each star, we use a variable πquC to represent the policy’s match to
qu.

max
π, y

∑
u∈U

∑
qu∈Q

∑
C∈Ck

πqu,C σ̄(qu, C)

s.t.
∑
C∈Ck

πqu,C ≤ 1 u ∈ U ,

∑
{C∈Ck|c∈C}

πqu,C ≤ yc u ∈ U , c ∈ C,

∑
u∈U

∑
C∈Ck

#[quC, c]Q(qu)πqu,C ≥ νcyc, c ∈ C,

(13)

where #[uC, c] is the number of times provider c appears in star quC, and σ̄(qu, C) = ρ(u)Pu(qu)σ(qu, C). We rely on
the linear relaxation of the integrality constraints to approximate the solution of (13) efficiently. It is not obvious if and how

Optimizing Long-term Social Welfare in Recommender Systems

this problem can be approximated via discrete algorithmic techniques, so we resort to relaxing the integrality constraints and
solving the problem as a linear program. Even under the linear relaxation, the problem size still grows proportionally to Ck
due to the number of variables introduced by linearization. The redeeming property of this problem, however, is that the
number of constraints grows proportionally to U ×Q× C and not Ck. Hence, it is feasible to approach the problem from a
column generation perspective.

A.2.2. COLUMN GENERATION

A standard column generation approach for solving a large linear program is a two-step iterative algorithm in which the LP
is initially constructed using a small subset of its variables to obtain a reduced-size (master) problem. The dual of the master
problem yields a dual optimal solution, which is then used to find a (as of yet not generated) variable with maximal reduced
cost. That variable is added to the master problem. The method iterates until no variable with positive reduced cost can be
found, or some convergence tolerance is reached.

When the set of primal variables is large, the problem of finding a variable with maximal reduced cost (also called a column
generation oracle) is still a hard combinatorial optimization problem (typically some flavor of knapsack). However, these
problems tend to be massively decomposable and the running time does not scale exponentially in practice.

We now proceed to derive a column generation oracle for Problem (13). Let A = (A, b, c) denote an LP in inequality
form, denoting the optimization problem x∗ = arg maxx:Ax≤b,x≥0 c

Tx. Let y∗ be an optimal dual solution to A. The
reduced cost problem is thus ĉ = c−AT y∗. The column generation oracle thus solves the problem i∗ = arg maxi ĉ, which
corresponds to the index of the primal variable with highest reduced cost. We now discuss solving the column generation
problem given the specific form of (13).

We adopt the following convention for naming the dual variables corresponding to constraints in (13):

βu :
∑
C∈Ck

πqu,C ≤ 1 u ∈ U ,

γuc :
∑

{C∈Ck|c∈C}

πqu,C ≤ yc u ∈ U , c ∈ C,

αc :
∑
u∈U

∑
C∈Ck

#[quC, c]Q(qu)πqu,C ≥ νcyc c ∈ C.

The column generation problem (derived by computing the dual and maximizing the reduced cost) then becomes:

uC∗ = arg max
u∈U,C∈Ck

σ̄(qu, C)−

(
βu +

∑
c∈C

γuc −
∑
c∈C

#[quC, c]Q(qu)αc

)
.

Let us now discuss how the above maximization can be solved. First, observe that the problem decomposes in the user
variable u. That is for each u ∈ U , we can independently solve the maximization over C. This can be done in parallel for
each user and the maximum over u can be computed by enumeration. Supposing u is fixed, we still have to solve a series of
non-linear integer optimization problems due to the non-linear nature of σ̄. We can covert the non-linear problems to linear
in two steps. First, we convert the tuple maximization problem to a binary-variable one as by introducing slot indicator
variables for each of the elements of the tuple C. That is:

max
x

σ̄

(∑
t∈1:k

∑
c

xctAuc

)
−

(
βu +

∑
t∈1:k

∑
c∈C

xctγuc −
∑
c∈C

(∑
t

xct

)
αc

)
s.t.

∑
c

xct = 1 ∀t ∈ 1 : k .

Furthermore, the non-linear σ̄ can be replaced by a series of local first-order approximations (in fact, a zero-order approxi-
mation is also possible), to yield binary integer program. That is:

max
x

σ̄′(mi) ·

(∑
t∈1:k

∑
c

xctAuc

)
−

(
βu +

∑
t∈1:k

∑
c∈C

xctγuc −
∑
c∈C

(∑
t

xct

)
αc

)

Optimizing Long-term Social Welfare in Recommender Systems

0 2 4 6 8 10
epochs

0
12

25
37

50

Vi
ab

le
 p

ro
vi

de
rs

LP-RS
LP-RS (col. gen.)
Myopic

(a) Synthetic embeddings.

0 2 4 6 8 10
epochs

0

25

50

75

100

Vi
ab

le
 p

ro
vi

de
rs LP-RS

LP-RS (col. gen.)
Myopic

(b) Movielens embeddings.

0 2 4 6 8 10
epochs

0
25
50
75

100

Vi
ab

le
 p

ro
vi

de
rs LP-RS

LP-RS (col. gen.)
Myopic

(c) SNAP embeddings.

Figure 6. Simulations that evaluate the column generation matching strategy (LP-RS col. gen.) on smaller problems. While LP-RS col.
gen. is capable of finding a good matching at a given step of simulation, its solutions are relatively inconsistent compared with LP-RS in
the limit of several time steps.

s.t.
∑
c

xct = 1 ∀t ∈ 1 : k , li ≤
∑
t∈1:k

∑
c

xctAuc ≤ ui,

where σ̄′(mi) is the derivative of σ̄ at mi. Under smoothness assumptions on σ̄, this linearization provides a bounded
approximation to the original problem. Again, these interval sub-problems can be solved in parallel.

A.2.3. ILLUSTRATIVE EVALUATION OF COLUMN GENERATION

Here we describe some preliminary experiments using the column generation strategy described above. We find that column
generation is capable of keeping more providers viable than the myopic baseline at early steps. However the performance
was less reliable than the LP-RS approach that was evaluated in Section 4. In some settings, the column generation approach
fails to maintain a consistent matching in successive iterations, resulting in a slowly declining number of viable providers
over time. We hypothesize that this is due to rounding errors in the procedure, or early stopping before convergence (our
implementation used 300 iterations of column generation rather than running exhaustively until convergence). Therefore we
expect that improvements can be made by fine-tuning this approach, but leave this to future work.

Figure 6 shows the results of the experiments. While we use the same embeddings data as in the main body of the paper, but
we scale down the problem size to compensate for the slower runtime of the column generation approach; this explains the
differing number of viable providers at equilibrium compared with the LP −RS approach presented in Section 4. In the
synthetic setting we used 50 providers, about 260 users and viability threshold of ν = 5. In the other two datasets we used a
competitive (from the provider perspective) setting of 100 providers, 100 users, and viability threshold of ν = 8. We used
slate size of 1 for all datasets.

B. Training Details
Here we provide details of training for the embeddings described in Section 4.2.

Movielens We trained a non-negative matrix factorization embedding space using the Movielens dataset (Harper &
Konstan, 2015). We use the distribution of this dataset containing about 100, 000 ratings of about 9, 000 movies by about
600 users. The dataset comprises a sparse ratings matrix Given the sparse ratings matrix R ∈ RNusers×Nmovies

≥0 . We use the
binarized engagement matrix E ∈ {0, 1}Nusers×Nproviders with Ei,j = 1(Ri,j). The embeddings are produced by finding
low-rank non-negative factors of the engagement matrix E ∈ {0, 1}Nusers×Nproviders , by solving the optimization problem

min
U,V
||(E − UV T)||2F + λU ||U ||2F + λV ||V ||2F (14)

which yields factors U ∈ RNusers×Ntopic
≥0 and U ∈ RNproviders×Ntopic

≥0 .

The factors U ∈ RNusers×Ntopic
≥0 and C ∈ RNproviders×Ntopic

≥0 yield row and column vectors that are treated as the embedding
vectors; in this case, a single content provider is equivalent to a single movie from the dataset.

The rows of these factor matrices were used to sample user and provider vectors in the RS ecosystem. Note that the value of
the ratings were not used, so the “affinity” between user and movie in this embedding space is a measure of how likely the

Optimizing Long-term Social Welfare in Recommender Systems

user is to watch the movie, rather than rate it highly. The randomly initialized factors U, V are alternatively updated via
Weighted alternating least squares (Hu et al., 2008) for 100 iterations. We used embedding rank Ntopic = 20, and set λU = 1
and λv = 1..

SNAP The dataset consists of a large list of (followee, follower) pairs, where each user is given a unique node ID label.
We turn this dataset into a set of providers and users as follows. First, we randomly subsample 100k of the 41 million users.
We designate followees as providers. For every provider, we then remove their follow edges, so that they do not follow
anyone else. This makes the graph bipartite, where users follow providers. We then choose the top 500 providers in terms
of follower count, and remove any users that do not follow at least one of them. This leaves a total of 500 providers, and
59,394 users.

for each user i, we learn a 24-dimensional vector ui, and for each provider j, a 24-dimensional vector vj . We train these
embeddings by cross-entropy to predict whether there is an edge Aij between user i and provider j, where the probability is
given by,

P (Aij = 1) = σ(u>i vj) (15)

Where σ(·) is the sigmoid function. Aij is 1 if user i follows provider j. We add a small amount of weight decay to ensure
that the embeddings are well behaved.

C. Simulation Details
This section contains details to reproduce the simulations described in Section 4.3.

Exploring Embedding Type We generate 50 provider vectors and a varying number of user vectors (between 4412 and
4672 per run). Provider and user vectors are sampled in a 10-dimensional topic space, with provider vectors sampled
normally with variance 50. These provider vectors serve as cluster means for the mixture-of-Gaussians that generates user
vectors. The prior over cluster assignments depends on the variant (uniform vs. skewed described in the text). User variance
was set to 0.1 in the uniform variant, and user variance scaled inversely with popularity in the skewed variant. The slate size
was s = 1, with viability threshold set to ν = 80. We run for 10 epochs using 5 seeds for each method/data type pair, and
report average values plus or minus one standard deviation in Table 1.

Tradeoffs in regret and welfare We generate synthetic embeddings of the skewed variant, with 50 providers and around
900 users. We use slate size s = 4 with viability threshold ν = 9. Other settings are carried over from the previous
experiment. We run steps of simulation until the policies converge then measure the welfare and max regret metrics.

Synthetic simulation We generate synthetic embeddings of the skewed. The parameters are similar to those described
above, with 50 providers (distributed normally with σ2 = 5) and about 10, 000 users. We simulate the RS for ten epochs
with slate size s = 1 and viability threshold ν = 78.5.

Movielens simulation Starting with the learned low-rank factors, we subsample 250 movie column (which serve as
providers) and 1, 000 user columns. We simulate the RS for ten epochs with slate size s = 1 and viability threshold ν = 10.

SNAP simulation Starting with the learned embedding, we subsample 300 providers and 566 users. We simulate the RS
for ten epochs with slate size s = 1 and viability threshold ν = 10.

D. Stochastic Policy Ablation
When considering which providers to recommend to a particular user query qu, our proposed policy πLP-RS may choose
to “subsidize” providers that are slightly suboptimal, i.e. not the best affinity for the user but still having relatively good
affinity. By contrast the myopic policy ignores the ecosystem dynamics and always chooses the best-affinity provider for
each user. Would a policy that stochastically samples providers c in proportion to their affinity to qu naturally lead to a
similar subsidizing effect as πLP-RS? We find empirically that this is not the case.

We specify a stochastic policy πStochastic that samples the recommended provider for user query qu as cSto
qu ∼ p(c; qu) where

p(c; qu) = r(qu,c)∑
c′ r(qu,c

′) is a Boltmann distribution over creators specified by the affinity function r(qu, ·) for that user. If

Optimizing Long-term Social Welfare in Recommender Systems

0 2 4 6 8
-3.04

-2.40

-1.75

-1.11

-0.46

Av
g

us
er

 u
til

ity

LP-RS
Myopic
Stochastic

0 2 4 6 8 10
epochs

0
12

25
37

50

Vi
ab

le
 p

ro
vi

de
rs LP-RS

Myopic
Stochastic

Figure 7. An affinity-aware stochastic policy under-performs relative to the myopic baseline and the proposed LP-RS policy.

3 2 1 0
user utility

100

101

102

103

lo
g

co
un

ts

LP-RS
Myopic

(a) Synthetic embeddings.

0.6 0.8 1.0
user utility

100

101

102

lo
g

co
un

ts

LP-RS
Myopic

(b) Movielens embeddings.

0.2 0.0 0.2
user utility

100

101

102

lo
g

co
un

ts

LP-RS
Myopic

(c) SNAP embeddings.

Figure 8. Histogram of user utility.

multiple recommendations per user query are needed, then the appropriate number of samples are drawn without replacement.
We simulate the recommender ecosystem using synthetic embedding distributions with the same settings as in Section 4.
Figure 7 shows that the stochastic baseline under-performs relative to the myopic policy, indicating that simply sampling
suboptimal providers with some non-zero probability does not keep these providers viable in the long run.

E. Additional Histograms
Figure 8 shows user utility histograms for all simulations.

F. Extended Welfare-Regret Tradeoff Results
Table 3 extends the result from Table 2 by including the Myopic baseline recommender.

Optimizing Long-term Social Welfare in Recommender Systems

Avg. Welfare Max Regret Viable Providers

0.1 LP-RS 18.02 ± 1.05 7.24 ± 0.77 47.20 ± 1.72
Myopic 13.49 ± 1.26 10.17 ± 0.20 11.80 ± 1.47

0.18 LP-RS 19.79 ± 1.16 7.97 ± 0.84 47.20 ± 1.72
Myopic 14.83 ± 1.39 11.18 ± 0.22 11.80 ± 1.47

0.26 LP-RS 21.87 ± 1.28 8.84 ± 0.91 46.60 ± 2.15
Myopic 16.42 ± 1.54 12.37 ± 0.25 11.80 ± 1.47

0.35 LP-RS 24.30 ± 1.43 10.14 ± 1.18 45.20 ± 3.06
Myopic 18.29 ± 1.71 13.79 ± 0.27 11.80 ± 1.47

0.43 LP-RS 27.17 ± 1.58 11.65 ± 0.91 44.00 ± 3.16
Myopic 20.50 ± 1.92 15.45 ± 0.31 11.80 ± 1.47

0.51 LP-RS 30.44 ± 1.79 14.19 ± 1.46 44.80 ± 0.98
Myopic 23.08 ± 2.16 17.40 ± 0.35 11.80 ± 1.47

0.59 LP-RS 34.30 ± 1.95 16.50 ± 1.73 43.00 ± 1.90
Myopic 26.07 ± 2.44 19.65 ± 0.39 11.80 ± 1.47

0.67 LP-RS 38.67 ± 2.29 20.53 ± 1.46 42.60 ± 1.50
Myopic 29.51 ± 2.76 22.24 ± 0.44 11.80 ± 1.47

0.75 LP-RS 43.69 ± 2.61 24.61 ± 1.31 41.80 ± 1.72
Myopic 33.44 ± 3.13 25.21 ± 0.50 11.80 ± 1.47

0.84 LP-RS 49.51 ± 2.90 28.95 ± 1.11 39.80 ± 3.06
Myopic 37.91 ± 3.55 28.57 ± 0.57 11.80 ± 1.47

0.92 LP-RS 56.15 ± 3.26 33.05 ± 1.16 36.80 ± 3.97
Myopic 42.94 ± 4.02 32.36 ± 0.64 11.80 ± 1.47

1.0 LP-RS 63.62 ± 3.58 37.89 ± 1.39 34.20 ± 5.08
Myopic 48.59 ± 4.55 36.62 ± 0.73 11.80 ± 1.47

Table 3. The discounting factor γ allows LP-RS to trade off between average user welfare and max user regret.

