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Abstract
We present an algorithm, HOMER, for exploration
and reinforcement learning in rich observation en-
vironments that are summarizable by an unknown
latent state space. The algorithm interleaves rep-
resentation learning to identify a new notion of
kinematic state abstraction with strategic explo-
ration to reach new states using the learned ab-
straction. The algorithm provably explores the en-
vironment with sample complexity polynomial in
the number of latent states and time horizon. Cru-
cially, the observation space could be infinitely
large. This guarantee enables efficient global pol-
icy optimization for any reward function. On the
computational side, we show that HOMER can be
implemented efficiently whenever certain super-
vised learning problems are tractable. Empirically,
we evaluate HOMER on a challenging exploration
problem, where we show that the algorithm is ex-
ponentially more sample efficient than standard
reinforcement learning baselines.

1. Introduction
Modern reinforcement learning applications call for agents
that operate directly from rich sensory information such
as megapixel camera images. This rich information en-
ables representation of detailed, high-quality policies and
obviates the need for hand-engineered features. However,
exploration in such settings is notoriously difficult and, in
fact, statistically intractable in general (Jaksch et al., 2010;
Lattimore & Hutter, 2012; Krishnamurthy et al., 2016). De-
spite this, many environments are highly structured and do
admit sample efficient algorithms (Jiang et al., 2017); in-
deed, we may be able to summarize the environment with
a simple state space and extract these states from raw ob-
servations. With such structure, we can leverage techniques
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from the well-studied tabular setting to explore the environ-
ment (Hazan et al., 2018), efficiently recover the underly-
ing dynamics (Strehl & Littman, 2008), and optimize any
reward function (Kearns & Singh, 2002; Brafman & Ten-
nenholtz, 2002; Strehl et al., 2006; Dann et al., 2017; Azar
et al., 2017; Jin et al., 2018). But can we learn to decode a
simpler state from raw observations alone?

The main difficulty is that learning a state decoder, or a
compact representation, is intrinsically coupled with explo-
ration. On one hand, we cannot learn a high-quality decoder
without gathering comprehensive information from the en-
vironment, which may require a sophisticated exploration
strategy. On the other hand, we cannot tractably explore the
environment without an accurate decoder. These interlock-
ing problems constitute a central challenge in reinforcement
learning, and a provably effective solution remains elusive
despite decades of research (Mccallum, 1996; Ravindran,
2004; Jong & Stone, 2005; Li et al., 2006; Bellemare et al.,
2016; Nachum et al., 2019).

In this paper, we provide a solution for a significant sub-
class of problems known as Block Markov Decision Pro-
cesses (MDPs) (Du et al., 2019), in which the agent operates
directly on rich observations that are generated from a small
number of unobserved latent states. Our algorithm, HOMER,
learns a new reward-free state abstraction called kinematic
inseparability, which it uses to drive exploration of the en-
vironment. Informally, kinematic inseparability aggregates
observations that have the same forward and backward dy-
namics. When observations have shared backward dynam-
ics, a single policy simultaneously maximizes the probabil-
ity of reaching them, which is useful for exploration. Shared
forward dynamics is naturally useful for recovering the la-
tent state space and model. Most importantly, we show that
kinematic inseparability can be recovered from a bottleneck
in a regressor trained on a contrastive estimation problem
derived from raw observations.

HOMER performs strategic exploration by training policies to
visit each kinematically inseparable abstract state, resulting
in a policy cover. These policies are constructed via a re-
duction to contextual bandits (Bagnell et al., 2004), using a
synthetic reward function that incentivizes reaching an ab-
stract state. Crucially, HOMER interleaves learning the state
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Figure 1: HOMER learns a set of exploration policies and a state abstraction function by iterating between exploring using the
current state abstraction and refining the state abstraction based on the new experience.

abstraction and policy cover in an inductive manner: we use
the policies from a coarse abstraction to reach new states,
which enables us to refine the state abstraction and learn
new policies (See Figure 1 for a schematic). Each process is
essential to the other. Once the policy cover is constructed,
we can use it to efficiently gather the information necessary
to find a near-optimal policy for any reward function.

We analyze the statistical and computational properties of
HOMER in episodic Block MDPs. We prove that HOMER learns
to visit every latent state and also learns a near-optimal
policy for any given reward function with a number of tra-
jectories that is polynomial in the number of latent states,
actions, horizon, and the complexity of two function classes
used by the algorithm. There is no explicit dependence
on the observation space size. The main assumptions are
that the latent states are reachable and that the function
classes are sufficiently expressive. There are no identifia-
bility or determinism assumptions beyond decodability of
the Block MDP, resulting in significantly greater scope than
prior work (Du et al., 2019; Dann et al., 2018). On the com-
putational side, HOMER operates in a reductions model and
can be implemented efficiently whenever certain supervised
learning problems are tractable.

Empirically, we evaluate HOMER on a challenging reinforce-
ment learning problem with high-dimensional observations,
precarious dynamics, and sparse, misleading rewards. The
problem is googol-sparse: the probability of encountering
an optimal reward through random search is 10�100. HOMER
recovers the underlying state abstraction for this problem
and consistently finds a near-optimal policy, outperforming
popular baselines that use naive exploration strategies (Mnih
et al., 2016; Schulman et al., 2017) or more sophisticated ex-
ploration bonuses (Burda et al., 2019), as well as the recent
PAC-RL algorithm of Du et al. (2019).

2. Preliminaries
We consider reinforcement learning (RL) in episodic Block
Markov Decision Processes (Block MDP), first introduced
by Du et al. (2019). A Block MDP M is described
by a large (possibly infinite) observation space X , a fi-
nite latent unobserved state space S, a finite set of ac-

tions A, and a time horizon H 2 N. The process
starts from distribution µ 2 �(S)1, transitions via T :
S ⇥ A ! �(S), emits observations via q : S !

�(X ), and rewards via R : X ⇥ A ⇥ X ! �([0, 1]).
An agent-environment interaction repeatedly generates H-
step trajectories (s1, x1, a1, r1, . . . , sH , xH , aH , rH) where
s1 ⇠ µ, sh+1 ⇠ T (·|sh, ah), xh ⇠ q(sh) and rh ⇠

R(xh, ah, xh+1) for all h 2 [H], and the agent chooses
actions. We set R(xH , aH , xH+1) = R(xH , aH) for all
xH , aH as there is no xH+1. In addition, for all trajectoriesP

H

h=1 rh  1. The agent does not see the states s1, . . . , sH .

Without loss of generality, we partition S into subsets
S1, . . . , SH , where Sh are the only states reachable at
time step h. We similarly partition X based on time step
into X1, . . . , XH . Formally, T (· | s, a) 2 �(Sh+1) and
q(s) 2 �(Xh) when s 2 Sh. This partitioning may be
internal to the agent as we can simply concatenate the time
step to the states and observations. Let ⌧ : X ! [H] be the
time step function, associating an observation to the time
point where it is reachable.

A policy ⇡ : X ! �(A) chooses actions on the basis of
observations and defines a distribution over trajectories. We
use E⇡[·],P⇡[·] to denote expectation and probability with
respect to this distribution. We define the value function as:

8h 2 [H], s 2 Sh : V (s; ⇡) := E⇡

"
HX

h0=h

rh0 | sh = s

#
,

and policy value as V (⇡) := Es1⇠µ [V (s1; ⇡)]. The goal
of the agent is to find a policy that maximizes policy value.
As the observation space is extremely large, we consider a
function approximation setting, where the agent has access
to a policy class ⇧ : X ! �(A). We define the class
of non-stationary policies ⇧NS := ⇧H . A policy ⇡1:H =
(⇡1, . . . , ⇡H) 2 ⇧NS takes action ah according to ⇡h.2 The
optimal policy in this class is ⇡? := argmax

⇡2⇧NS
V (⇡),

and our goal is to find a policy with value close to the
optimal value, V (⇡?).

1Du et al. (2019) assume the starting state is deterministic,
which we generalize here.

2We also use h-step non-stationary policies (⇡1, . . . ,⇡h) 2
⇧h when we only execute this policy for h steps.
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Environment assumptions. The key difference between
Block MDPs and general Partially-Observed MDPs is a dis-
jointness assumption, which removes partial observability
effects and enables tractable learning.
Assumption 1. The emission distributions for any two
states s, s0

2 S are disjoint, that is supp(q(s)) \
supp(q(s0)) = ; whenever s 6= s0.

This disjointness assumption was argued by Du et al. (2019)
to be a natural fit for visual grid-world scenarios which are
common in empirical RL research. Assumption 1 allows
us to define an inverse mapping g? : X ! S such that for
each s 2 S and x 2 supp(q(s)), we have g?(x) = s. The
agent does not have access to g?.

Apart from disjointness, the main environment assumption
is that states are reachable with reasonable probability. To
formalize this, we define a maximum visitation probability
and reachability parameter:

⌘(s) := max
⇡2⇧NS

P⇡ [s] , ⌘min = min
s2S

⌘(s).

Here P⇡[s] is the probability of visiting s along the trajectory
taken by ⇡. As in Du et al. (2019), our sample complexity
scales polynomially with ⌘�1

min
, so this quantity should be

reasonably large. In contrast with prior work (Du et al.,
2019; Dann et al., 2018), we do not require any further iden-
tifiability or determinism assumptions on the environment.

We call the policies that visit a particular state with maxi-
mum probability homing policies.
Definition 1 (Homing Policy). The homing policy for an
observation x 2 X is ⇡x := argmax

⇡2⇧NS
P⇡ [x]. The hom-

ing policy for a state s 2 S is ⇡s := argmax
⇡2⇧NS

P⇡ [s].

Homing policies are non-compositional, in that we cannot
extend homing policies for states in Sh�1 to find homing
policies for states in Sh. See Appendix A for proof and
further discussion. Non-compositionality implies that we
must take a global policy optimization approach for learning
homing policies, which we will do in the sequel.

Reward-free learning. In addition to finding a near-
optimal policy, we consider a reward-free objective. In
this setting, the goal is to find a small set of policies, called
a policy cover, that we can use to visit the entire state space.
Definition 2 (Policy Cover). A finite set of non-stationary
policies  is called an ↵-policy cover if for every state
s 2 S we have max⇡2 P⇡ [s] � ↵⌘(s).

Intuitively, we hope to find a policy cover of size O(|S|).
By executing each policy in turn, we can collect a dataset of
observations and rewards from all states at which point it is
straightforward to maximize any reward (Kakade & Lang-
ford, 2002; Munos, 2003; Bagnell et al., 2004; Antos et al.,

2008; Chen & Jiang, 2019; Agarwal et al., 2019). Thus, con-
structing a policy cover can be viewed as an intermediate
objective that facilitates reward sensitive learning.

Function classes. As the observation space is very large,
we use function approximation to generalize across observa-
tions. HOMER uses two function classes. The first is the pol-
icy class ⇧ : X 7! �(A), which was used above to define
the optimal value and the maximum visitation probabilities.
We also use a family FN of regression functions with a
specific form. To define FN , first define �N : X ! [N ]
which maps observations into N discrete abstract states.
Second, define WN : [N ] ⇥ A ⇥ [N ] ! [0, 1] as another
“tabular” regressor class which consists of all functions of
the specified type. Then, we set FN := {(x, a, x0) 7!
w(�(F)(x), a, �(B)(x0)) : w 2 WN , �(F), �(B)

2 �N} and
F := [N2NFN . For a simpler analysis, we assume ⇧
and �N are finite and we measure statistical complexity
via ln |⇧| and ln |�N |, with no assumptions on the tabular
class WN . Our results only involve standard uniform con-
vergence arguments so extensions to infinite classes with
other statistical complexity notions is straightforward. We
emphasize that ⇧ is typically not fully expressive.

Computational oracles. We take a “learning reductions"
approach by assuming access to two well-studied learning
oracles. This oracle model of computation provides no sta-
tistical benefit as the oracles can always be implemented via
enumeration; the model simply serves to guide the design
of practical algorithms. For the policy class ⇧, we assume
access to an offline contextual bandit optimization routine:

CB(D,⇧) := argmax
⇡2⇧

X

(x,a,p,r)2D

Ea0⇠⇡(.|x)


r1{a0 = a}

p

�
.

The dataset consists of (x, a, p, r) quads, where x 2 X ,
a 2 A, p 2 [0, 1] and r 2 R is the reward for the action a,
which was chosen with probability p. This oracle solves a
contextual bandit problem and is implementable by reduc-
tion to cost-sensitive classification (Agarwal et al., 2014).

For the regression class FN , we assume that we can solve
square loss minimization problems:

REG(D, FN ) := argmin
f2FN

X

(x,a,x0,y)2D

(f(x, a, x0)� y)2.

Here, the dataset consists of (x, a, x0, y) quads where
x, x0

2 X , a 2 A and y 2 {0, 1} is a binary label. Our func-
tion class FN is non-standard due to quantization hence REG
is always solving a non-convex problem. We later discuss
using a standard non-quantized model class.

We assume the CB and REG oracles with n examples has a
time complexity of Timepol(n) and Timereg(n) respectively.
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3. Kinematic Inseparability State Abstraction
The foundational concept for our approach is a new form
of state abstraction, called kinematic inseparability. This
abstraction has three key properties demonstrated in Sec-
tion 4. First, it can be learned via a reduction to supervised
learning. Second, it enables reward-free exploration of the
environment. Last, it enables us to learn and visualize the
dynamics. We define kinematic inseparability below.
Definition 3 (Kinematic Inseparability). Two observations
x0

1, x
0
2 are kinematically inseparable (KI) if for every distri-

bution u 2 �(X ⇥ A) with support over X ⇥ A and for
every x, x00

2 X and a, a0
2 A the following holds:

T (x00
| x0

1, a
0) = T (x00

| x0
2, a

0), and (C1)
Pu(x, a | x0

1) = Pu(x, a | x0
2), (C2)

where Pu(x, a | x0) := T (x0|x,a)u(x,a)P
x̃,ã

T (x0|x̃,ã)u(x̃,ã) , is the back-
ward dynamics measuring the probability that the previous
observation and action was (x, a) given that the current
observation is x0 and the prior over (x, a) is u.

Condition C1 and Condition C2 place constraints on for-
ward dynamics (T ) and backward dynamics (Pu). We say
x0

1 and x0
2 are forward KI if Condition C1 holds and back-

ward KI if Condition C2 holds. All three notions of KI
are equivalence relations, and hence they partition the ob-
servation space. The backward kinematic inseparability
dimension, denoted NBD, is the coarsest partition size gen-
erated by the backward KI equivalence relation, with NFD
and NKD defined similarly for the forward KI and KI rela-
tions. Partition elements represent abstract states denoted
via �?

B
, �?

F
, �? : X ! N. For example �?

B
(x1) = �?

B
(x2)

if and only if x1 and x2 are backward KI.

For exploration, it suffices to learn backward KI. This is
evident from the following lemma.
Lemma 1. If x1, x2 are backward kinematic inseparable
then for all ⇡1, ⇡2 2 ⇧NS we have P⇡1 (x1)

P⇡2 (x1)
=

P⇡1 (x2)
P⇡2 (x2)

.

The proof of this lemma and all mathematical statements in
this paper are deferred to the appendices. At a high level,
the lemma shows that backward KI observations induce
the same ordering over policies with respect to visitation
probability. This property is useful for exploration, since a
policy that maximizes the probability of visiting a backward
KI abstract state, also maximizes the probability of visiting
each individual observation in that abstract state simultane-
ously. While backward KI is sufficient for exploration, it
ignores the forward dynamics, which are useful for learning
a model or visualizing the underlying dynamics.

In Appendix B, we collect and prove several useful proper-
ties of these state abstractions. We show that observations
emitted from the same state are kinematically inseparable

and, hence, max{NFD, NBD}  NKD  |S|. It is possible
for NKD < |S| only when the latent state space is obser-
vationally unidentifiable. For example, if we partition the
observations from a state into many “sub-states,” we obtain
a new Block MDP that is indistinguishable from the original.
Observations from these sub-states can be shown to be kine-
matically inseparable. Using this, kinematic inseparability
implies a canonical state space for Block MDPs.

Definition 4 (Canonical Form). A Block MDP is in canoni-
cal form if 8x1, x2 2 X : g?(x1) = g?(x2) if and only if x1

and x2 are kinematically inseparable.

The canonical form is simply a way to characterize the state
space of a Block MDP—it does not restrict this class of
environments whatsoever.

4. HOMER: Learning Kinematic
Inseparability for Strategic Exploration

The main algorithm, HOMER (Algorithm 1), learns a kine-
matic inseparability abstraction while performing reward-
free strategic exploration. Given hypothesis classes ⇧
and F , a positive integer N , and three hyperparameters
⌘, ✏, � 2 (0, 1), HOMER learns a policy cover of size N and
a state abstraction function for each time step. We assume
N � NKD and ⌘  ⌘min for our theoretical analysis.

HOMER operates in two phases: a reward-free phase in which
it learns a policy cover (line 2-line 15) and a reward-sensitive
phase where it learns a near-optimal policy for the given
reward function (line 17). In the reward-free phase, HOMER
proceeds inductively, learning a policy cover for time step h
given the learned policy covers  1:h�1 for previous steps
(line 2-line 15). In each iteration h, we first learn an abstrac-
tion function �̂(B)

h
over Xh. This is done using a form of con-

trastive estimation and our function class FN . Specifically
in the hth iteration, HOMER collects a dataset D of size nreg
containing real and imposter transitions. We define a sam-
pling procedure: (x, a, x0) ⇠ Unf( h�1)�Unf(A) where x
is observed after rolling-in with a uniformly sampled policy
in h�1 until time step h� 1, action a is taken uniformly at
random, and x0 is sampled from T (· | x, a) (line 5). We sam-
ple two independent transitions (x1, a1, x0

1), (x2, a2, x0
2) us-

ing this procedure as well as a Bernoulli random variable
y ⇠ Ber(1/2). If y = 1 then we add the observed transition
([x1, a1, x0

1], y) to D and otherwise we add the imposter
transition ([x1, a1, x0

2], y) (line 6-line 10). The imposter
transition may not be a feasible environment outcome.

We call the subroutine REG to solve the supervised learning
problem induced by D with model family FN (line 11), and
we obtain a predictor f̂h = (ŵh, �̂(F)

h�1, �̂
(B)
h

). As we show
later, �̂(B)

h
is closely related to backward KI abstraction for

Xh, and �̂(F)
h�1 is related to forward KI for Xh�1.
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Algorithm 1 HOMER(⇧, F , N, ⌘, ✏, �). Reinforcement and
abstraction learning in a Block MDP.

1: Set nreg = eO
⇣

N
6|A|3
⌘3

⇣
N2

|A| + ln
⇣

|�N |H
�

⌘⌘⌘
,

npsdp = eO
⇣

N
4
H

2|A|
⌘2 ln

⇣
|⇧|
�

⌘⌘
, and  1:H = ;

2: for h = 2, . . . , H do
3: D = ;

4: for nreg times do
5: (x1, a1, x0

1), (x2, a2, x0
2) ⇠ Unf( h�1)�Unf(A)

6: y ⇠ Ber(1/2)

7: if y = 1 then
8: D  D [ {([x1, a1, x0

1], 1)}, // Real transition
9: else

10: D  D [ {([x1, a1, x0
2], 0)}. // Fake transition

11: (ŵh, �̂(F)
h�1, �̂

(B)
h

) REG(FN , D) // Do Abstraction
12: for i = 1 to N do
13: Ri,h(x, a, x0) := 1{⌧(x0) = h ^ �̂(B)

h
(x0) = i}

14: ⇡i,h  PSDP( 1:h�1, Ri,h, h� 1,⇧, npsdp)

15:  h   h [ {⇡i,h} // Save exploration policy
16: Set neval = eO

⇣
N

2
H

2|A|
✏2

ln
⇣

|⇧|
�

⌘⌘

17: ⇡̂  PSDP( 1:H , R, H,⇧, neval)

18: return ⇡̂,  1:H , �̂(F)
1:H�1, �̂(B)

2:H

Algorithm 2 PSDP( 1:h, R0, h,⇧, n). Optimizing reward
function R0 given policy covers  1:h

1: for t = h, h� 1, · · · , 1 do
2: D = ;

3: for n times do
4: (x, a, p, r) ⇠ Unf( t) �Unf(A) � ⇡̂t+1 � · · · � ⇡̂h

5: D  {(x, a, p, r)} [D

6: ⇡̂t  CB(D,⇧) // solve contextual bandit problem
7: return (⇡̂1, ⇡̂2, · · · , ⇡̂h)

We define N internal reward functions {Ri,h}
N

i=1 corre-
sponding to each output of �̂(B)

h
(line 13). As argued in Sec-

tion 3, backward KI is sufficient for exploration, therefore,
we only use �̂(B)

h
for defining Ri,h. The reward function

Ri,h gives a reward of 1 if the agent observes x0 at time
step h satisfying �̂(B)

h
(x0) = i and 0 otherwise. The internal

reward functions incentivize the agent to reach different
learned backward KI abstract states.

We find a policy that optimizes the internal reward functions
using PSDP (Algorithm 2), which is based on Policy Search
by Dynamic Programming (Bagnell et al., 2004). Using an
exploratory data-collection policy, we optimize a reward
function by solving a sequence of contextual bandit prob-
lems (Langford & Zhang, 2008) in a dynamic programming

fashion. In our case, the policy covers for steps 1, . . . , h� 1
induce the exploratory policy (Algorithm 2, line 4).

Formally, at time step t of PSDP, we solve

max
⇡2⇧

Ext⇠Dt,at⇠⇡,at+1:h⇠⇡̂t+1:h

"
hX

h0=t

R0(xh0 , ah0 , xh0+1)

#
,

using the previously computed solutions (⇡̂t+1, · · · , ⇡̂h) for
future time steps. The context distribution Dt is obtained
by uniformly sampling a policy in  t and rolling-in with
it until time step t. To solve this problem, we first collect
a dataset D of tuples (x, a, p, r) of size n by (1) sampling
x by rolling-in with a uniformly selected policy in  t until
time step t, (2) taking action a uniformly at random, (3)
setting p := 1/|A|, and (4) executing ⇡̂t+1:h, and (5) setting
r :=

P
h

h0=t
rh0 . Then we invoke the contextual bandit

oracle CBwith dataset D to obtain ⇡̂t. Repeating this process
we obtain the non-stationary policy ⇡̂1:h returned by PSDP.

The learned policy cover  h for time step h is simply the
policies identified by optimizing each of the N internal
reward functions {Ri,h}

N

i=1. Once we find the policy covers
 1:H , we perform reward-sensitive learning via a single
invocation of PSDP using the external reward function R
(Algorithm 1, line 17). In a purely reward free setting, we
can just return the policy covers and learned abstractions.

We combine the two abstractions as �
h

:= (�̂(F)
h

, �̂(B)
h

) to
form the learned KI abstraction, where for any x1, x2 2 X ,
�

h
(x1) = �

h
(x2) if and only if �̂(F)

h
(x1) = �̂(F)

h
(x2) and

�̂(B)
h

(x1) = �̂(B)
h

(x2). We define �̂(B)
1 (x) ⌘ 1 and �̂(F)

H
⌘ 1

as there is no backward and forward dynamics at these
steps, respectively. Empirically, we use � for learning the
transition dynamics and visualization (see Section 7).

5. Theoretical Analysis
Our main theoretical contribution is to show that HOMER
computes a policy cover and a near-optimal policy with
high probability in a sample-efficient and computationally-
tractable manner. The result requires an additional expres-
sivity assumption on classes ⇧ and F , which we now state.
Assumption 2. Let R := {R} [ {(x, a, x0) 7!

1 {�(x0) = i ^ ⌧(x0) = h} | � 2 �N , i 2 [N ], h 2
[H], N 2 N} be the set of external and internal reward
functions. We assume that ⇧ satisfies policy completeness
for every R0

2 R: for every h 2 [H] and ⇡0
2 ⇧NS, there

exists ⇡ 2 ⇧ such that for each x 2 Xh we have:

⇡(x) = argmax
a2A

E
"

HX

h0=h

rh0 | xh = x, ah = a, ah0 ⇠ ⇡0

#
.

We also assume that F is realizable: for any h 2 [H],
N � NKD, and any prior distribution ⇢ 2 �(Sh) with
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supp(⇢) = Sh, there exists f⇢ 2 FN , such that for any
x 2 Xh�1, a 2 A, and x0

2 Xh we have:

f⇢(x, a, x0) =
T (g?(x0)|g?(x), a)

T (g?(x0)|g?(x), a) + ⇢(g?(x0))
.

Completeness assumptions are common in the analysis of
dynamic programming style algorithms for the function
approximation setting (Antos et al., 2008) (see Chen & Jiang
(2019) for a detailed discussion). Our exact completeness
assumption appears in the work of Dann et al. (2018), who
use it to derive an efficient algorithm for a restricted version
of our setting with deterministic latent state transitions.

The realizability assumption on F is adapted to our learn-
ing approach: as we use F to distinguish between real and
imposter transitions, F should contain the optimal regres-
sor for these problems. In HOMER, the sampling procedure
we use to collect data for the learning problem in the hth

iteration induces a marginal distribution ⇢ 2 �(Sh) and
the optimal regressor for this problem is f⇢ (See Lemma 9
in Appendix D). It is not hard to see that if x1, x2 are kine-
matically inseparable then f⇢(x1, a, x0) = f⇢(x2, a, x0) and
the same claim holds for the third argument of f⇢. Therefore
the realizability structure of FN ensures that �N contains a
kinematic inseparability abstraction.

Theoretical Guarantees. We now state the main guarantee.
Theorem 1 (Main Result). For any Block MDP and hyper-
parameters ✏, �, ⌘ 2 (0, 1), N 2 N, satisfying ⌘  ⌘min

and N � NKD, HOMER outputs exploration policies  1:H

and a reward sensitive policy ⇡̂ satisfying:

1.  h is an 1/2-policy cover of Sh for every h 2 [H]

2. V (⇡̂) � max⇡2⇧NS V (⇡)� ✏

with probability least 1 � �. The sample complex-
ity of HOMER is O

�
npsdpNH3 + nregH + nevalH

�
where

npsdp, nreg, neval are as specified in Algorithm 1, which gives

eO
✓

N8
|A|

4H

⌘3
+

N6
|A|H

⌘3
ln(|�N |/�)+

✓
N5H4

|A|

⌘2
+

N2H3
|A|

✏2

◆
ln(|⇧|/�)

◆
.

The running time is O
�
npsdpNH3 + nregH2 + nevalH2+

Timepol(npsdp)NH2 + Timereg(nreg)H + Timepol(neval)H
�
.

Theorem 1 shows that executing HOMER with NKD 

N  cNKD and ⌘min

d
 ⌘  ⌘min for some con-

stants c, d � 1, gives us a sample complexity of
poly(NKD, H, |A|, ⌘�1

min
, ✏�1, log |⇧|/�), which at a coarse

level is our desired scaling. Empirically, we can set the hy-
perparameters by running HOMER with N = 2t and ⌘ = 1

2t

for increasing values of t, and stopping when the final
learned policy stops improving. Recall that NKD  |S|,

hence our bounds are polynomially dependent on the state
space but crucially do not depend upon the size of observa-
tion space. Further, our bounds only depend on log |�N |

which means we can use an exponentially large model fam-
ily for �N . In terms of computation, the running time is
polynomial in our oracle model, where we assume we can
solve contextual bandit problems over ⇧ and regression
problems over FN . In Section 7, we see that these problems
can be solved effectively in practice.

The closest related result is for the PCID algorithm of Du
et al. (2019). PCID provide guarantees only for a restricted
class of Block MDPs. The precise details of the guaran-
tee differs from ours in several ways (e.g., additive versus
multiplicative error in policy cover definition, different com-
putational and expressivity assumptions), so the sample
complexity bounds are incomparable. However, Theorem 1
represents a significant conceptual advance as it eliminates
the identifiability assumptions required by PCID and there-
fore greatly increases the scope for tractable RL.

Why does HOMER learn kinematic inseparability? A de-
tailed proof of Theorem 1 is deferred to Appendix C-
Appendix D, but for intuition, we provide a sketch of how
HOMER learns a kinematic inseparability abstraction. For
this discussion only, we focus on asymptotic behavior and
ignore sampling issues.

Inductively, assume that  h�1 is a policy cover of Sh�1,
let D(x, a, x0) be the marginal distribution over real and
imposter transitions sampled by HOMER in the hth iteration
(line 4–line 10), and let ⇢ be the marginal distribution over
Xh. First observe that as  h�1 is a policy cover, we have
supp(D) = Xh�1⇥A⇥Xh, which is crucial for our analysis.
Let f̂ = (ŵh, �̂(F)

h�1, �̂
(B)
h

) be the output of the regression
oracle REG in this iteration. The first observation is that
the Bayes optimal regressor for this problem is f⇢ defined
in Assumption 2, and, with realizability, in this asymptotic
discussion we have f̂ ⌘ f⇢.

Next, we show that for any two observations x0
1, x

0
2 2 Xh,

if �̂(B)
h

(x0
1) = �̂(B)

h
(x0

2) then x0
1 and x0

2 are backward kine-
matically inseparable. If this precondition holds, then
8x 2 Xh�1, a 2 A we have:

f⇢(x, a, x0
1) = f̂(x, a, x0

1) = ŵh(�̂(F)
h�1(x), a, �̂(B)

h
(x0

1)) =

ŵh(�̂(F)
h�1(x), a, �̂(B)

h
(x0

2)) = f̂(x, a, x0
2) = f⇢(x, a, x0

2).

Then, by inspection of the form of f⇢, we have

f⇢(x, a, x0
1) = f⇢(x, a, x0

2),
T (x0

1 | x, a)

⇢(x0
1)

=
T (x0

2 | x, a)

⇢(x0
2)

.

As this identity holds for all x 2 Xh�1, a 2 A and trivially
when x 62 Xh�1, it is easy to see that x0

1, x
0
2 are backward
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KI. Formally, for any prior u 2 �(X , A), we have

Pu(x, a | x0
1) =

T (x0
1 | x, a)u(x, a)P

x̃,ã
T (x0

1 | x̃, ã)u(x̃, ã)

=

⇢(x0
1)

⇢(x0
2)

T (x0
2 | x, a)u(x, a)

P
x̃,ã

⇢(x0
1)

⇢(x0
2)

T (x0
2 | x̃, ã)u(x̃, ã)

= Pu(x, a | x0
2).

This implies that �̂(B)
h

is a backward KI abstraction over Xh.
Similarly, we can show that �̂(F)

h�1 is a forward KI abstraction
over Xh�1 (See Appendix D.4 for proof).

Standardizing REG Oracle. We learn abstractions by solv-
ing regression problems with the quantized model class FN .
While this is empirically feasible as we will see, it always
result in a difficult optimization problem and requires a par-
ticular form for the model class. We show how to avoid this
in Appendix E, where we present a parallel version of our
algorithm and guarantees using a black-box (non-quantized)
regression class. The main algorithmic difference is that
we recover the abstraction by clustering the outputs of the
predictor trained to distinguish real and imposter transitions.

Limitation of Existing Abstractions. In Appendix G we
present examples showing that strategies for learning ab-
straction from prior work can lead to exploration failures.
We specifically demonstrate failures for (a) predicting the
previous action (Pathak et al., 2017), (b) predicting the pre-
vious abstract state and action (Du et al., 2019), and (c)
using autoencoders (Tang et al., 2017). Figure 2a provides
a sketch of the autoencoding failure. If observations contain
a bit encoding the state along with many more noisy bits, the
optimal autoencoder will memorize a noise bit and ignore
the state. This naturally leads to exploration failure.

6. Related Work
Sample efficient exploration of Markov Decision Processes
with a small number of observed states has been studied in
a number of papers (Brafman & Tennenholtz, 2002; Strehl
et al., 2006; Jaksch et al., 2010), initiated by the break-
through result of Kearns & Singh (2002). While state-of-
the-art results provide near-optimal guarantees for these
small-state MDPs, the algorithms do not exploit latent struc-
tures, and therefore, cannot scale to the rich-observation
environments that are popular in modern empirical RL.

A recent line of theoretical work (Krishnamurthy et al.,
2016; Jiang et al., 2017) focusing on rich observation
reinforcement learning has shown that it is information-
theoretically possible to explore these environments and
has provided computationally efficient algorithms for some
special settings. In particular, Dann et al. (2018) considers
deterministic latent-state dynamics while Du et al. (2019)
allows for limited stochasticity. As we have mentioned,

the present work continues in this line by eliminating as-
sumptions required by these results, further expanding the
scope for tractable rich observation reinforcement learning.
Specifically, compared to the PCID algorithm of Du et al.
(2019), HOMER can handle a stochastic start state and does
not require any margin assumptions on the Block MDP. In
addition, our algorithm does not rely on abstract states for
defining policies or future prediction problems which avoids
cascading errors due to inaccurate predictions.

On the empirical side, a number of approaches have been
proposed for exploration with large observation spaces using
pseudo-counts (Tang et al., 2017), optimism-driven explo-
ration (Chen et al., 2017), intrinsic motivation (Bellemare
et al., 2016), and prediction errors (Pathak et al., 2017).
While these algorithms can perform well on certain RL
benchmarks, we lack a deep understanding of their behavior
and failure modes. As the earlier discussion and examples
in Appendix G show, using the representations learned by
these methods for provably efficient exploration is challeng-
ing, and may not be possible in some cases.

Most closely related to our work, Nachum et al. (2019) use
a supervised learning objective similar to ours for learning
state abstractions. However, they do not address the problem
of exploration and do not provide any sample complexity
guarantees. Importantly, we arrive at our supervised learn-
ing objective with the goal to learn kinematic inseparability.

7. Proof of Concept Experiments
We evaluate on a challenging problem called a diabolical
combination lock that contains high-dimensional observa-
tions, precarious dynamics, and anti-shaped, sparse rewards.

The environment. The diabolical combination lock is a
class of rich observation MDPs. For a fixed horizon H
and action space size K, the state space is given by S :=
{s1,a, s1,b} [ {sh,a, sh,b, sh,c}

H

h=2 and the action space by
A := {a1, ..., aK}. The agent starts in either s1,a or s1,b

with equal probability. After taking h actions the agent is in
sh+1,a, sh+1,b or sh+1,c. Informally, the states {sh,a}

H

h=1
and {sh,b}

H

h=1 are “good” states from which optimal return
is achievable, while the states {sh,c}

H

h=2 are “bad” states
from which an optimal return is impossible. Each good state
has a single good action, denoted uh for sh,a and vh for
sh,b, which transitions the agent uniformly to one of the
two good states at the next time step. All other good state
actions and all bad state actions lead to the bad state at the
next time. We fix the vectors u1:H , v1:H before the learning
process by choosing each action uniformly from A.

The agent receives a reward of 5 on taking action uH in
sH,a or action vH in sH,b. Upon transitioning from one
good state to another good state at time step h 2 [H � 1],
the agent receives an anti-shaped reward of �1/(H�1). For
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(a) (b) (c)
Figure 2: Left: Failure case for autoencoder training (see text and Appendix G for full discussion). Center: Results on the
diabolical combination lock problem showing horizon against number of episodes needed to achieve mean return of V (⇡?)/2.
Right: Dynamics and abstraction for first 4 steps, learned by HOMER for H = 100 and K = 10.

many algorithms this structure leads the agent away from
the optimal policy. The agent receives a reward of 0 for all
other transitions. We have ⌘min = 1/2 and V (⇡?) = 4.

The agent never directly observes the state and instead re-
ceives an observation x 2 Rd where d = 2dlog2(H+4)e,
generated stochastically. We add mean 0 and variance 0.1
Gaussian noise to a 2-sparse vector encoding the state and
timestep identity, then multiply with a Hadamard matrix.
See Appendix H for full details and environment figure.

Our main experiments consider H = 100 and |A| = K =
10. In this case, the problem is googol-sparse: the proba-
bility of finding the optimal return through random search
is 10�100.3 Moreover, for any fixed sequence of actions
the probability of an optimal return is at most 2�⌧ where
⌧ :=

P100
h=1 1 {uh 6= vh}. As u1:H and v1:H are chosen

randomly, we have E[⌧ ] = 90 in these instances.

HOMER implementation. We use non-stationary determin-
istic policies, where each policy is represented as a tu-
ple of H linear models ⇡ = (W1, W2, · · · , WH). Here
Wh 2 R|A|⇥d for each h 2 [H]. Given an observa-
tion x 2 Rd at time step h, the policy takes the action
⇡(x) := argmax

a2A(Whx)a. We represent a state abstrac-
tion function � : X ! [N ] using a linear model B 2 RN⇥d.
Given an observation x we decode it to the abstract state
�(x) = arg maxi2[N ](Bx)i. The regressor class F uses
a two-layer neural network with ReLu non-linearity and a
Gumbel Softmax operation on the output of �(x) to make
the model end-to-end differentiable. We make a few im-
plementation changes for empirical efficiency of HOMER
without changing key ideas. We provide full details of the
model, optimization and empirical changes in Appendix H.

Baselines. We compare our method against Proximal Policy
Optimization (PPO) (Schulman et al., 2017). PPO uses a

3For comparison, 10100 is more than the current estimate of
the total number of elementary particles in the universe.

naive exploration strategy based on entropy bonus which
is often insufficient for challenging exploration problems.
Therefore, we also augment it with an exploration bonus
based on Random Network Distillation (RND) (Burda et al.,
2019), denoted PPO + RND. We also compare against Deep
Q Networks (DQN) (Mnih et al., 2015) which are a value
function method. Lastly, we consider the model-based al-
gorithm (PCID) of Du et al. (2019). Their approach makes
certain margin assumptions on the MDP which are violated
by this problem. We use publicly available code for running
these baselines. For details see Appendix H.

Results. Figure 2b reports the minimum number of episodes
needed to achieve a mean return of V (⇡?)/2 = 2.0. We
run each algorithm 5 times with different seeds and for a
maximum of 10 million episodes, and we report the median
performance. We run each method on increasingly longer
horizons until it fails to achieve a mean return of 2. As we
can see, PPO fails at H = 3 and DQN at H = 6 as expected
given their simple exploration methods. Adding RND bonus
is helpful, and PPO + RND can solve problems with H = 25,
but it fails at H = 50. PCID fails at H = 3 showing that its
margin assumption is empirically limiting. Finally, HOMER is
able to solve the problem for all horizons. Figure 2c shows
the recovered dynamics for the first four steps. The top two
rows show the “good states" and the bottom row shows the
“bad states." HOMER is able to accurately find the canonical
form of the Block MDP, and using count-based statistics
we estimate the transition probabilities up to a maximum
error of 0.03. In Appendix H, we show the error bars, and
visualize the visitation probabilities.

We plot the moving average of returns against the number
of episodes on the diabolical combination lock problem
with H = 100 and K = 10 in Figure 3. We compare the
performance of HOMER against the best baseline PPO + RND.
The result shows that HOMER is able to learn the optimal
policy while PPO + RND fails to do so. Furthermore, the plot
of HOMER shows three distinct regions. The first region up
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Statistics N = 1 N = 2 N = 3 N = 4
Max 1 6.55⇥ 106 6.65⇥ 106 6.71⇥ 106

Median 1 6.54⇥ 106 6.65⇥ 106 6.7⇥ 106

Min 1 6.53⇥ 106 6.63⇥ 106 6.69⇥ 106

Table 1: Performance of HOMER on diabolical combination lock with H = 100 and K = 10. We vary the abstract state space
size (N) and report the number of episodes needed to achieve a mean return of V (⇡?)/2. We report median, max and min
performance over five runs with different seeds. If the algorithm fails to solve the problem in 107 episodes then we report
the result as1 indicating timeout.

Figure 3: Results on diabolical combination lock with hori-
zon (H) of 100 and action space (K) of size 10. We plot the
moving average of returns against the number of episodes
for HOMER and PPO + RND. We have V (⇡?) = 4.0

to 106 episodes shows a decline in return as the algorithm
learns to explore. This is due to the negative antishaped
reward which occurs when moving from one good state
to the next. The second region between 106 and 3 ⇥ 106

episodes is when the algorithm is learning a reward-sensitive
policy. This region shows an increase in returns. The last
region is when the algorithm is exploiting using the learned
policies and this consistently gives an optimal return of 4.

Performance on varying abstract state space size (N).
HOMER uses two hyperparameters: the size of the abstract
state space N and an estimate ⌘ of the reachability param-
eter ⌘min. In our main experiments, we implicitly search
over ⌘ by using different values of nreg and npsdp, but we
always use N = 2. We study the performance when vary-
ing N by running HOMER five times on different seeds for
different values of N . We set the other hyperparameters to
the best setting for H = 100 and K = 10. Results are given
in Table 1. We fail to solve the problem with N = 1, which
is expected since the entire observation space is mapped
to the same abstract state. However, we consistently solve
the problem for N � 2. This is consistent with our the-
oretical results where the only constraint on N is that it
should be greater than NKD. The diabolical combination

lock has two backward KI abstract states at each timestep:
one corresponding to the two good states {sh,a, sh,b} and
the other corresponding to the bad state sh,c. Hence, N � 2
is sufficient on a per timestep basis. Furthermore, we see
that HOMER does not use significantly more episodes when
doubling N from 2 to 4.

Reproducibility. Code and models can be found at
https://github.com/cereb-rl.

8. Conclusion
We present HOMER, a model-free RL algorithm for rich ob-
servation environments. We prove theoretical guarantees
for HOMER and provide proof of concept experiments on
a challenging domain. Applying HOMER to real-world RL
scenarios is a future work direction.
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