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Abstract

Consequential decision-making incentivizes in-

dividuals to strategically adapt their behavior to

the specifics of the decision rule. While a long

line of work has viewed strategic adaptation as

gaming and attempted to mitigate its effects, re-

cent work has instead sought to design classifiers

that incentivize individuals to improve a desired

quality. Key to both accounts is a cost function

that dictates which adaptations are rational to un-

dertake. In this work, we develop a causal frame-

work for strategic adaptation. Our causal perspec-

tive clearly distinguishes between gaming and

improvement and reveals an important obstacle

to incentive design. We prove any procedure for

designing classifiers that incentivize improvement

must inevitably solve a non-trivial causal infer-

ence problem. We show a similar result holds

for designing cost functions that satisfy the re-

quirements of previous work. With the benefit

of hindsight, our results show much of the prior

work on strategic classification is causal modeling

in disguise.

1. Introduction

Individuals faced with consequential decisions about them

often use knowledge of the decision rule to strategically

adapt towards achieving a desirable outcome. Much work

in computer science views such strategic adaptation as

adversarial behavior (Dalvi et al., 2004; Brückner et al.,

2012), manipulation, or gaming (Hardt et al., 2016; Dong

et al., 2018). More recent work rightfully recognizes

that adaptation can also correspond to attempts at self-

improvement (Bambauer & Zarsky, 2018; Kleinberg &

Raghavan, 2019). Rather than seek classifiers that are ro-

bust to gaming, these works suggest to design classifiers
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that explicitly incentive improvement on some target mea-

sure (Kleinberg & Raghavan, 2019; Alon et al., 2020; Kha-

jehnejad et al., 2019; Haghtalab et al., 2020).

Incentivizing improvement requires a clear distinction be-

tween gaming and improvement. While this distinction

may be intuitive in some cases, in others, it is subtle. Do

employer rewards for punctuality improve productivity? It

sounds plausible, but empirical evidence suggests other-

wise (Gubler et al., 2016). Indeed, the literature is replete

with examples of failed incentive schemes (Oates & Schwab,

2015; Rich & Larson, 1984; Belot & Schröder, 2016).

Our contributions in this work are two-fold. First, we pro-

vide the missing formal distinction between gaming and

improvement. This distinction is a corollary of a compre-

hensive causal framework for strategic adaptation that we

develop. Second, we give a formal reason why incentive

design is so difficult. Specifically, we prove any success-

ful attempt to incentivize improvement must have solved a

non-trivial causal inference problem along the way.

1.1. Causal Framework

We conceptualize individual adaptation as performing an

intervention in a causal model that includes all relevant fea-

tures X , a predictor Ŷ , as well as the target variable Y . We

then characterize gaming and improvement by reasoning

about how the corresponding intervention affects the pre-

dictor Ŷ and the target variable Y . This is illustrated in

Figure 1.

We combine the causal model with an agent-model that

describes how individuals with a given setting of features

respond to a classification rule. For example, it is common

in strategic classification to model agents as being rational

with respect to a cost function that quantifies the cost of

feature changes.

Combining the causal model and agent model, we can sepa-

rate improvement from gaming. Informally speaking, im-

provement corresponds to the case where the agent response

to the predictor causes a positive change in the target vari-

able Y . Gaming corresponds to the case where the agent

response causes a change in the prediction Ŷ but not the

underlying target variable Y . Making this intuition precise,

however, requires the language of counterfactuals of the



Strategic Classification is Causal Modeling in Disguise

form: What value would the variable Y have taken had the

individual changed her features to X ′ given that her original

features were X?

If we think of the predictor as a treatment, we can analo-

gize our notion of improvement with the established causal

quantity known as effect of treatment on the treated.

1.2. Inevitability of Causal Analysis

Viewed through this causal lens, only adaptations on causal

variables can lead to improvement. Therefore, any mecha-

nism for incentivizing improvement intuitively must capture

some knowledge of the causal relationship between the fea-

tures and the target measure. We formalize this intuition

and prove causal modeling is unavoidable in incentive de-

sign. Specifically, we establish a computationally efficient

reduction from discovering the causal structure relating the

variables (sometimes called causal graph discovery) to a

sequence of incentive design problems. In other words, de-

signing classifiers to incentivize improvement is as hard

as causal discovery. Previous work in strategic classifica-

tion sidesteps this difficulty either by assuming the decision

maker already has resolved this discovery step (Kleinberg

& Raghavan, 2019; Alon et al., 2020), or by implicitly as-

suming all the features are causal for the label (Haghtalab

et al., 2020).

Beyond incentivizing improvement, a number of recent

works model individuals as acting in accordance with well-

behaved cost functions that capture the difficulty of chang-

ing the target variable. We show constructing such outcome-

monotonic cost functions also requires modeling the causal

structure relating the variables, and we give a similar reduc-

tion from designing outcome-monotonic cost functions to

causal discovery.

In conclusion, our contributions show that—with the benefit

of hindsight—much work on strategic classification turns

out to be causal modeling in disguise.

1.3. Related Work

This distinction between causal and non-causal manipula-

tion in a classification setting is intuitive, and such consider-

ations were present in early work on statistical risk assess-

ment in lending (Hand et al., 1997). Although they do not

explicitly use the language of causality, legal scholars Bam-

bauer & Zarsky (2018) give a qualitatively equivalent dis-

tinction between gaming and improvement. While we fo-

cus on the incentives classification creates for individuals,

Everitt et al. (2019) introduce a causal framework to study

the incentives classification creates for decision-makers, e.g.

which features the decision-maker is incentivized to use.

Numerous papers in strategic classification (Brückner et al.,

2012; Dalvi et al., 2004; Hardt et al., 2016; Dong et al.,
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X1

X2 X3

Gaming Improvement
The classification

causal graph

y=0

x2

x1

x3
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Figure 1. Illustration of the causal framework for strategic adapta-

tion. Adaptation is modeled as interventions in a counterfactual

causal graph, conditioned on the individual’s initial features X .

Gaming corresponds to interventions that change the classification

Ŷ , but do not change the true label Y . Improvement corresponds

to interventions that change both the classification Ŷ and the true

label Y . Incentivizing improvement requires inducing agents to

intervene on causal features that can change the label Y rather than

non-causal features. Distinguishing between these two categories

of features in general requires causal analysis.

2018) focus on game-theoretic frameworks for preventing

gaming. These frameworks form the basis of our agent-

model, and Milli et al. (2019); Braverman & Garg (2020);

Khajehnejad et al. (2019) introduce the outcome-monotonic

cost functions we analyze in Section 5. Since these ap-

proaches do not typically distinguish between gaming and

improvement, the resulting classifiers can be unduly conser-

vative, which in turn can lead to undesirable social costs (Hu

et al., 2019; Milli et al., 2019; Braverman & Garg, 2020).

The creation of decision rules with optimal incentives, in-

cluding incentives for improvement, has been long studied

in economics, notably in principle-agent games (Ross, 1973;

Grossman & Hart, 1992). In machine learning, recent work

by Kleinberg & Raghavan (2019) and Alon et al. (2020) stud-

ies the problem of producing a classifier that incentivizes a

given “effort profile”, the amount of desired effort an indi-

vidual puts into certain actions, and assumes the evaluator

knows which forms of agent effort would lead to improve-

ment, which is itself a form of causal knowledge. Haghtalab

et al. (2020) seek to design classifiers that maximize im-

provement across the population, while Khajehnejad et al.

(2019) seek to maximize institutional utility, taking into ac-

count both improvement and gaming. While these works do

not use the language of causality, we demonstrate that these

approaches nonetheless must perform some sort of causal

modeling if they succeed in incentivizing improvement.

In this paper, we primarily consider questions of improve-
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ment or gaming from the perspective of the decision maker.

However, what gets categorized as improvement or gaming

also often reflects a moral judgement—gaming is bad, but

improvement is good. Usually good or bad means good or

bad from the perspective of the system operator. Ziewitz

(2019) analyzes how adaptation comes to be seen as ethical

or unethical through a case study on search engine optimiza-

tion. Burrell et al. (2019) argue that gaming can also be a

form of individual “control” over the decision rule and that

the exercise of control can be legitimate independently of

whether an action is considered gaming or improvement in

our framework.

2. Causal Background

We use the language of structural causal models (Pearl,

2009) as a formal framework for causality. A structural

causal model (SCM) consists of endogenous variables X =
(X1, . . . , Xn), exogenous variables U = (U1, . . . , Un), a

distribution over the exogenous variables, and a set of struc-

tural equations that determine the values of the endogenous

variables. The structural equations can be written

Xi = gi(PAi, Ui), i = 1, . . . , n ,

where gi is an arbitrary function, PAi represents the other

endogenous variables that determine Xi, and Ui represents

exogenous noise due to unmodeled factors.

A structural causal model gives rise to a causal graph where

a directed edge exists from Xi to Xj if Xi is an input to

the structural equation governing Xj , i.e. Xi ∈ PAj . We

restrict ourselves to Markovian structural causal models,

which have an acyclic causal graph and independent ex-

ogenous variables. The skeleton of a causal graph is the

undirected version of the graph.

An intervention is a modification to the structural equations

of an SCM. For example, an intervention may consist of

replacing the structural equation Xi = gi(PAi, Ui) with a

new structural equation Xi := xi that holds Xi at a fixed

value. We use := to denote modifications of the original

structural equations. When the structural equation for one

variable is changed, other variables can also change. Sup-

pose Z and X are two endogenous nodes, Then, we use the

notation ZX:=x to refer to the variable Z in the modified

SCM with structural equation X := x.

Given the values u of the exogenous variables U , the en-

dogenous variables are completely deterministic. We use

the notation Z(u) to represent the deterministic value of

the endogenous variable when the exogenous variables U
are equal to u. Similarly, ZX:=x(u) is the value of Z in

the modified SCM with structural equation X := x when

U = u.

More generally, given some event E, ZX:=x(E) is the ran-

dom variable Z in the modified SCM with structural equa-

tions X := x where the distribution of exogenous variables

U is updated by conditioning on the event E. We make

heavy use of this counterfactual notion. For more details,

see Pearl (2009).

3. A Causal Framework for Strategic

Adaptation

In this section, we put forth a causal framework for reason-

ing about the incentives induced by a decision rule. Our

framework consists of two components: the agent model

and the causal model. The agent model is a standard compo-

nent of work on strategic classification and determines what

actions agents undertake in response to the decision rule.

The causal model enables us to reason cogently about how

these actions affect the agent’s true label. Pairing these mod-

els together allow us to distinguish between incentivizing

gaming and incentivizing improvement.

3.1. The Agent Model

As a running example, consider a software company that

uses a classifier to filter software engineering job appli-

cants. Suppose the model considers, among other factors,

open-source contributions made by the candidate. Some

individuals realize this and adapt—perhaps they polish their

resume; perhaps they focus more of their energy on mak-

ing open source contributions. The agent model describes

precisely how individuals choose to adapt in response to a

classifier.

As in prior work on strategic classification (Hardt et al.,

2016; Dong et al., 2018), we model individuals as best-

responding to the classifier. Formally, consider an individual

with features x ∈ X ⊆ R
n, label y ∈ Y ⊆ R, and a

classifier f : Rn → Y . The individual has a set of available

actions A, and, in response to the classifier f , takes action

a ∈ A to adapt her features from x to x+ a. For instance,

the features x might encode the candidate’s existing open-

source contributions, and the action a might correspond

to making additional open-source contributions. Crucially,

these modifications incur a cost c(a;x), and the action the

agent takes is determined by directly balancing the benefits

of classification f(x+a) with the cost of adaptation c(a;x).

Definition 3.1 (Best-response agent model). Given a cost

function c : A× X → R+ and a classifier f : X → Y , an

individual with features x best responds to the classifier f
by choosing action

a∗ ∈ argmax
a∈A

f(x+ a)− c(a;x).

Let ∆(x; f) = x+ a∗ denote a best-response of the agent

to classifier f . When clear from context, we omit the depen-

dence on f and write ∆(x).
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In the best-response agent model, the cost function com-

pletely dictates what actions are rational for the agent to

undertake and occupies a central modeling challenge. We

discuss this further in Section 5. Our definition of the cost

function in terms of an action set A is motivated by Ustun

et al. (2019). However, this formulation is completely equiv-

alent to the agent-models considered in other work (Hardt

et al., 2016; Dong et al., 2018). In contrast to prior work,

our main results only require that individuals approximately

best-respond to the classifier.

Definition 3.2 (Approximate best-response). For any ε ∈
(0, 1), say ∆ε(x, f) = x+ ã is an ε- best-response to classi-

fier f if f(x+ ã)− c(ã;x) ≥ ε · (maxa f(x+a)− c(a;x)).

While we focus on a multiplicative approximation to the

best-response, our results also hold for an additive approxi-

mation.

3.2. The Causal Model

While the agent model specifies which actions the agent

takes in response to the classifier, the causal model describes

how these actions effect the individual’s true label.

Returning to the hiring example, suppose individuals decide

increase their open-source contributions, X . Does this im-

prove their software engineering skill, Y ? There are two

different causal graphs that explain this scenario. In one

scenario, Y → X: the more skilled one becomes, the more

likely one is to contribute to open-source projects. In the

other scenario, X → Y : the more someone contributes to

open source, the more skilled they become. Only in the

second world, when X → Y , do adaptations that increase

open-source contributions raise the candidate’s skill.

More formally, recall that a structural causal model has two

types of nodes: endogenous nodes and exogenous nodes.

In our model, the endogenous nodes are the individual’s

true label Y , their features X = {X1, . . . , Xn}, and their

classification outcome Ŷ . The structural equation for Ŷ is

represented by the classifier Ŷ = f(Z), where Z ⊆ X are

the features that the classifier f has access to and uses. The

exogenous variables U represent all the other unmodeled

factors.

For an individual with features X = x, let ∆(x, f) denote

the agent’s response to classifier f . Since the agent chooses

∆(x, f) as a function of the observed features x, the la-

bel after adaptation is a counterfactual quantity. This, we

model the individual’s adaptation as an intervention in the

submodel conditioned on observing features X = x. What

value would the label Y take if the individual had features

∆(X, f), given that her features were originally X?

Formally, let A = {i : ∆(x, f)i 6= xi} be the sub-

set of features the individual adapts, and let XA index

those features. Then, the label after adaptation is given by

YXA:=∆(x,f)A({X = x}). The dependence on A ensures

that, if an individual only intervenes on a subset of features,

the remaining features are still consistent with the original

causal model. For brevity, we omit reference to A and write

YX:=∆(x,f)({X = x}). In the language of potential out-

comes, both X and Y are completely deterministic given

the exogenous variables U = u, and we can express the

label under adaptation as YX:=∆(x,f)(u).

Much of the prior literature in strategic classification es-

chews explicit causal terminology and instead posits the

existence of a “qualification function” or a “true binary

classifier” h : X → Y that maps the individual’s features

to their “true quality” (Hardt et al., 2016; Hu et al., 2019;

Braverman & Garg, 2020; Haghtalab et al., 2020). Such a

qualification function should be thought of as the strongest

possible causal model, where X is causal for Y , and the

structural equation determining Y is completely determinis-

tic.

3.3. Evaluating Incentives

Equipped with both the agent model and the causal model,

we can formally characterize the incentives induced by a

decision rule f . Key to our categorization is the notion

of improvement, which captures how the classifier induces

agents to change their label on average over the population

baseline.

Definition 3.3. For a classifier f and a distribution over

features X and label Y generated by a structural causal

model, define the improvement incentivized by f , as

I(f) = EXE
[

YX:=∆(x,f)({X = x})
]

− E [Y ] .

If I(f) > 0, we say that f incentivizes improvement. Other-

wise, we say that f incentivizes gaming.

By the tower property, definition 3.3 can be equiva-

lently written in terms of potential outcomes I(f) =
EU

[

YX:=∆(x,f)(U)− Y (U)
]

. In this view, if we imagine

exposure to the classifier f as a treatment, then improvement

is the treatment effect of exposure to classifier f on the label

Y . In general, since all individuals are exposed and adapt

to the classifier in our model, and estimating improvement

becomes an exercise in estimating the effect of treatment

on the treated, and identifying assumptions are provided

in Shpitser & Pearl (2009). Our notion of improvement is

closely related to notion of “gain” discussed in Haghtalab

et al. (2020), albeit with a causal interpretation.

While we focus on characterizing improvement at the popu-

lation level for consistency with previous work, our frame-

work easily accommodates other notions of improvement.

For instance, we can similarly characterize improvement at

the level of the individuals.
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Y ŶX Z

Figure 2. Reasoning about incentives requires both the agent-

model and the causal model. The cost function plays a central

role in the agent-model. Even though the classification Ŷ only de-

pends on the non-causal feature Z, the agent can change the label

by manipulating, X , Z or both, depending on the cost function.

The causal model determines how the agent’s adaptation affects the

target measure, but the agent model, and in turn the cost function,

determines which actions the agent actually takes.

Definition 3.4. For a classifier f and a distribution over

features X and label Y generated by a structural causal

model, define the improvement incentivized by f for an

individual with features x as

I(f ;x) = E
[

YX:=∆(x,f)({X = x})
]

− E [Y | X = x] .

At first glance, the causal model and Definition 3.3 appear to

offer a convenient heuristic for determining whether a clas-

sifier incentivizes gaming. Namely, does the classifier rely

on non-causal features? However, even a classifier that uses

purely non-causal features can still incentivize improvement

if manipulating upstream, causal features is less costly than

directly manipulating the non-causal features. The follow-

ing example formalizes this intuition. Thus, reasoning about

improvement requires considering both the agent model and

the causal model.

Example 3.1. Suppose we have a structural causal model

with features X,Z and label Y distributed as X := UX ,

Y := X + UY , and Z := Y + UZ , where UX , UY , UZ
i.i.d.
∼

N (0, 1). Let the classifier f depend only on the non-causal

feature, Z, f(z) = ŷ. Let A = R
2, and define the cost

function c(a;x) = (1/2)a⊤Ca, where C ≻ 0 is a symmet-

ric, positive definite matrix with det(C) = 1. Then, direct

computation shows ∆(x, z; f) = (x− C12, z + C11), and

I(f) = −C12. Hence, provided C12 < 0, f incentivizes im-

provement despite only rely on non-causal features. When

C12 < 0 changing x and z jointly is less costly than ma-

nipulating z alone. This complementarity (Holmstrom &

Milgrom, 1991) allows the decision-maker to incentivize

improvement using only a non-causal feature. This example

is illustrated in Figure 2.

4. Incentivizing Improvement Requires

Causal Modeling

Beyond evaluating the incentives of a particular classifier,

recent work has sought to design classifiers that explicitly in-

centivize improvement. Haghtalab et al. (2020) seeks classi-

fiers that maximize the improvement of strategic individuals

according to some quality score. Similarly, both Klein-

berg & Raghavan (2019) and Alon et al. (2020) construct

decision-rules that incentivize investment in a desired “ef-

fort profile” that ultimately leads to individual improvement.

In this section, we show that when these approaches suc-

ceed in incentivizing improvement, they must also solve a

non-trivial causal modeling problem. Therefore, while they

may not explicitly discuss causality, much of this work is

necessarily performing causal reasoning.

4.1. The Good Incentives Problem

We first formally state the problem of designing classifiers

that incentivize improvement, which we call the good in-

centives problem. Consider the hiring example presented

in Section 3. A decision-maker has knowledge of the joint

distribution over the features (open-source contributions,

coding test scores, etc) and the label (engineering ability),

and wishes to design a decision rule that incentivizes strate-

gic individuals to improve their engineering ability. As

discussed in Section 3, the decision-maker must reason

about the agent model governing adaptation, and we as-

sume agent’s approximately best-respond according to some

specified cost function.

Definition 4.1 (Good Incentives Problem). Assume agents

ε-best-respond to the classifier for some ε > 0. Given:

1. A joint distribution PX,Y over examples (x, y) ∈ X ×
Y entailed by structural causal model, and

2. A cost function c : A×X → R+,

Find a classifier f∗ : X → Y that incentivizes improvement,

i.e. find a classifier with I(f∗) > 0. If no such classifier

exists, output Fail.

The good incentives problem is closely related to the im-

provement problem studied in Haghtalab et al. (2020).

Translated into our framework, Haghtalab et al. (2020) seek

classifiers that optimally incentivize improvement and solve

maxf I(f), which is a more difficult problem than finding

some classier that leads to improvement.

In the sequel, let GoodIncentives be an oracle for the

Good Incentives problem. GoodIncentives takes as in-

put a cost function and a joint distribution over features

and label, and either returns a classifier that incentivizes

improvements or returns no such classifier exists.

4.2. A Reduction From Causal Modeling to Designing

Good Incentives

Incentivizing improvement requires both (1) knowing which

actions lead to improvement, and (2) incentivizing individ-

uals to take those actions. Since only adaptation of causal
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features can affect the true label Y , determining which ac-

tions lead to improvement necessitates distinguishing be-

tween causal and non-causal features. Consequently, any

procedure that can provide incentives for improvement must

capture some, possibly implicit, knowledge about the causal

relationship between the features and the label.

The main result of this section generalizes this intuition

and establishes a reduction from orienting the edges in a

causal graph to designing classifiers that incentivize im-

provement. Orienting the edges in a causal graph is not

generally possible from observational data alone (Peters

et al., 2017), though it can be addressed through active inter-

vention (Eberhardt et al., 2005). Therefore, any procedure

for constructing classifiers that incentivize improvement

must at its core also solve a non-trivial causal discovery

problem.

We prove this result under a natural assumption: improve-

ment is always possible by manipulating causal features. In

particular, for any edge V →W in the causal graph, there is

always some intervention on V a strategic agent can take to

improve W . We formally state this assumption below, and,

as a corollary, we prove this assumption holds in a broad

family of causal graphs: additive noise models.

Assumption 4.1. Let G = (X,E) be a causal graph, let

X−W denote the random variables X excluding node W .

For any edge (V,W ) ∈ E with V → W , there exists a

real-valued function h mapping X−w to an intervention

v∗ = h(x−w) so that

EX−W
E
[

WV :=h(x−w) ({X−W = x−w})
]

> E [W ] . (1)

Importantly, the intervention v∗ = h(x−w) discussed in As-

sumption 4.1 is an intervention in the counterfactual model,

conditional on observing X−W = x−w. In strategic classi-

fication, this corresponds to choosing the adaptation condi-

tional on the values of the observed features. Before proving

Assumption 4.1 holds for faithful additive noise models, we

first state and prove the main result.

Under Assumption 4.1, we exhibit a reduction from ori-

enting the edges in a causal graph to the good incentives

problem. While Assumption 4.1 requires Equation (1) to

hold for every edge in the causal graph, it is straightforward

to modify the result when Equation (1) only holds for a

subset of the edges.

Theorem 4.1. Let G = (X,E) be a causal graph induced

by a structural causal model that satisfies Assumption 4.1.

Assume X has bounded support X . Given the skeleton of

G, using |E| calls to GoodIncentives, we can orient all

of the edges in G.

Proof of Theorem 4.1. The reduction proceeds by invoking

the good incentives oracle for each edge (Xi, Xj), taking

Xj as the label and using a cost function that ensures only

manipulations on Xi are possible for an ε-best-responding

agent. If Xi → Xj , then Assumption 4.1 ensures that

improvement is possible, and we show GoodIncentives

must return a classifier that incentivizes improvement. Oth-

erwise, if Xi ← Xj , no intervention on Xi can change Xj ,

so GoodIncentives must return Fail.

More formally, let Xi − Xj be an undirected edge in the

skeleton G. We show how to orient Xi −Xj with a single

oracle call. Let X−j , X \ {Xj} be the set of features

excluding Xj , and let x−j denote an observation of X−j .

Consider the following good incentives problem instance.

Let Xj be the label, and let the features be (X−j , X̃i), where

X̃i is an identical copy of Xi with structural equation X̃i :=
Xi. Let the action set A = R

n, and let c be a cost function

that ensures an ε-best-responding agent will only intervene

on Xi. In particular, choose

c(a; (x−j , x̃i)) = 2BI [ak 6= 0 for any k 6= i] ,

where B = sup {‖x‖
∞

: x ∈ X}. In other words, the indi-

viduals pays no cost to take actions that only affect Xi, but

otherwise pays cost 2B. Since every feasible classifier f
takes values in X , f(x) ≤ B, and any action a with ak 6= 0
leads to negative agent utility. At the same time, action

a = 0 has non-negative utility, so an ε-best-responding

agent can only take actions that affect Xi.

We now show GoodIncentives returns Fail if and only

if Xi ← Xj . First, suppose Xi ← Xj . Then Xi is not

a parent nor an ancestor of Xj since if there existed some

Xi  Z  Xj path, then G would contain a cycle. There-

fore, no intervention on Xi can change the expectation of

Xj , and consequently no classifier that can incentivize im-

provement exists, so GoodIncentives must return Fail.

On the other hand, suppose Xi → Xj . We explicitly

construct a classifier f that incentivizes improvement, so

GoodIncentives cannot return Fail. By Assumption 4.1,

there exists a function h so that

EX−j
E

[

Xj [Xi:=h(x−j)]
({X−j = x−j})

]

> E [Xj ] .

Since X̃i := Xi, Assumption 4.1 still holds additionally

conditioning on X̃i = x̃i. Any classifier that induces

agents with features (x−j , x̃i) to respond by adapting only

Xi := h(x−j) will therefore incentivize improvement. The

intervention Xi := h(x−j) given X−j = x−j is incentiviz-

able by the classifier

f((x−j , x̃i)) = I [xi = h(x̃−j)] ,

where x̃j indicates that xi is replaced by x̃i in the vector

x−j .

An ε-best-responding agent will choose action a∗ where

a∗i = h(x̃−j) − xi and otherwise a∗k = 0 in response to
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f . To see this, a∗ has cost 0. Since X̃i := Xi, we initially

have xi = x̃i. Moreover, by construction, h(x̃−j) depends

only on the feature copy x̃i, not xi, so h(x̃−j) is invariant

to adaptations in xi. Therefore, h(x̃−j + a∗−i) = h(x̃−j) =
xi + a∗i , so f((x−j , x̃i) + a∗) = 1. Thus, action a∗ has

individual utility 1, whereas all other actions have zero or

negative utility, so any ε-best responding agent will choose

a∗. Since all agents take a∗, it then follows by construction

that I(f) > 0.

Repeating this procedure for each edge in the causal

graph thus fully orients the skeleton with |E| calls to

GoodIncentives.

We now turn to showing that Assumption 4.1 holds in a

large class of nontrivial causal model, namely additive noise

models (Peters et al., 2017).

Definition 4.2 (Additive Noise Model). A structural causal

model with graph G = (X,E) is an additive noise model if

the structural assignments are of the form

Xj := gj(PAj) + Uj for j = 1, . . . , n .

Further, we assume that all nodes Xi are non-degenerate and

that their joint distribution has a strictly positive density.1

Before stating the result, we need one additional technical

assumption, namely faithfulness. The faithfulness assump-

tion is ubiquitous in causal graph discovery setting and rules

out additional conditional independence statements that are

not implied by the graph structure. For more details and

a precise statement of the d-separation criteria, see Pearl

(2009).

Definition 4.3 (Faithful). A distribution PX is faithful to a

DAG G if A ⊥⊥ B | C implies that A and B are d-separated

by C in G

Proposition 4.1. Let (X1, . . . , Xn) be an additive noise

model, and let the joint distribution on (X1, . . . , Xn) be

faithful to the graph G. Then, G satisfies Assumption 4.1.

The proof of Proposition 4.1 is deferred to the appendix.

On the other hand, Assumption 4.1 can indeed fail in non-

trivial cases.

Example 4.1. Consider a two variable graph with X → Y .

Let Y = UX where X and U are independent and E [U ] =
0. In general, X and Y are not independent, but for any

x, x′, E [YX:=x′({X = x})] = x′
E [U ] = 0 = E [Y ].

This section demonstrates the necessity of causal reasoning

for incentivizing improvement. In the other direction, causal

1 The condition that the nodes X have a strictly positive den-
sity is met when, for example, the functional relationships fi are
differentiable and the noise variables Ui have a strictly positive
density (Peters et al., 2017).

reasoning can be used to directly solve the good incentives

problem. As discussed in Section 3, evaluating improve-

ment corresponds to computing an effect of treatment on

the treated. Abstractly, given an oracle for such queries,

optimizing improvement becomes a generic stochastic opti-

mization problem. Concretely, in subsequent work, Shavit

et al. (2020) show how to leverage strategic response to

evaluate causal interventions and give an efficient algorithm

for using these interventions to design decision rules that

incentivize improvement.

5. Designing Good Cost Functions Requires

Causal Modeling

The cost function occupies a central role in the best-response

agent model and essentially determines which actions the in-

dividual undertakes. Consequently, not few works in strate-

gic classification model individuals as behaving according

to cost functions with desirable properties, among which is

a natural monotonicity condition—actions that raise an indi-

vidual’s underlying qualification are more expensive than

those that do not. In this section, we prove an analogous

result to the previous section and show constructing these

cost functions also requires causal modeling.

5.1. Outcome-Monotonic Cost Functions

Although they use all slightly different language, Milli et al.

(2019), Khajehnejad et al. (2019), and Braverman & Garg

(2020) all assume the cost function is well-aligned with the

label. Intuitively, they both assume (i) actions that lead to

large increases in one’s qualification are more costly than

actions that lead to small increases, and (ii) actions that de-

crease or leave unchanged one’s qualification have no cost.

Braverman & Garg (2020) define these cost functions using

an arbitrary qualification function that maps features X to

label Y , while Milli et al. (2019) and Khajehnejad et al.

(2019) instead use the outcome-likelihood Pr(y | x) as the

qualification function. Khajehnejad et al. (2019) explicitly

assume a causal factorization so that Pr(y | x) is invariant to

interventions on X , and the qualification function of Braver-

man & Garg (2020) ensures a similar causal relationship

between X and Y . Translating these assumptions into the

causal framework introduced in Section 3, we obtain a class

of outcome-monotonic cost functions.

Definition 5.1 (Outcome-monotonic cost). A cost function

c : A×X → R+ is outcome-monotonic if, for any features

x ∈ X :

1. For any action a ∈ A, c(a;x) = 0 if and only if

E [YX:=x+a({X = x})] ≤ E[Y | X = x].

2. For pair of actions a, a′ ∈ A, c(a;x) ≤ c(a′, x) if and
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only if

E [YX:=x+a({X = x})] ≤ E [YX:=x+a′({X = x})] .

While several works assume the decision-maker has ac-

cess to an outcome-monotonic cost, in general the decision-

maker must explicitly construct such a cost function from

data. This challenge results in the following problem.

Definition 5.2 (Learning outcome-monotonic cost problem).

Given action set A and a joint distribution PX,Y over a set

of features X and label Y entailed by a structural causal

model, construct an outcome-monotonic cost function c.

5.2. A Reduction From Causal Modeling to

Constructing Outcome-Monotonic Costs

Outcome-monotonic costs are both conceptually desir-

able (Milli et al., 2019; Braverman & Garg, 2020) and

algorithmically tractable (Khajehnejad et al., 2019). Si-

multaneously, outcome-monotonic cost functions encode

significant causal information, and the main result of this

section is a reduction from orienting the edges in a causal

graph to learning outcome-monotonic cost functions under

the same assumption as Section 4. Consequently, any pro-

cedure that can successfully construct outcome-monotonic

cost functions must inevitably solve a non-trivial causal

modeling problem.

Proposition 5.1. Let G = (X,E) induced by a struc-

tural causal model that satisfies Assumption 4.1. Let

OutcomeMonotonicCost be an oracle for the outcome-

monotonic cost learning problem. Given the skeleton of G,

|E| calls to OutcomeMonotonicCost suffices to orient all

the edges in G.

Proof. Let X denote the variables in the causal model, and

let Xi − Xj be an undirected edge. We can orient this

edge with a single call to OutcomeMonotonicCost. Let

X−j , X \ {Xj} denote the variables excluding Xj .

Construct an instance of the learning outcome-monotonic

cost problem with features X−j , label Xj , and action set

A = {αei : α ∈ R}, where ei is the i-th standard ba-

sis vector. In other words, the only possible actions are

those that adjust the i-th coordinate. Let c denote the

outcome-monotonic cost function returned by the oracle

OutcomeMonotonicCost. We argue c ≡ 0 if and only if

Xi ← Xj .

Similar to the proof of Theorem 4.1, if Xi ← Xj , then Xi

can be neither a parent nor an ancestor of Xj . Therefore,

conditional on X−j = x−j , there is no intervention on Xi

that can change the conditional expectation of Xj . Since no

agent has a feasible action that can increase the expected

value of the label Xj and the cost function c is outcome-

monotonic, c is identically 0.

On the other hand, suppose Xi → Xj . Then, by Assump-

tion 4.1, there is a real-valued function h such that

EX−j
E

[

XjXi:=h(x−j)
({X−j = x−j})

]

> E [Xj ] .

This inequality along with the tower property then implies

there is some agent x−j such that

E

[

XjXi:=h(x−j)
({X−j = x−j})

]

> E [Xj | X−j = x−j ] ,

since otherwise the expectation would be zero or negative.

Since h(x−j)ei ∈ A by construction, there is some action

a ∈ A that can increase the expectation of the label Xj for

agents with features x−j , so c(a;x−j) 6= 0, as required.

The proof of Proposition 5.1 makes repeated calls to an

oracle to construct outcome-monotonic cost functions to

decode the causal structure of the graph G. In many cases,

however, even a single outcome-monotonic cost function

encode significant information about the underlying graph,

as the following example shows.

Example 5.1. Consider a causal model with features (X,Z)
and label Y with the following structural equations

Xi := UXi
for i = 1, . . . , n

Y :=

n
∑

i=1

θiXi + UY

Zj := gj(X,Y, UZj
) for j = 1, . . . ,m,

for some set of non-zero coefficients θi ∈ R and arbitrary

functions gj . In other words, the model consists of n causal

features, m non-causal features, and a linear structural equa-

tion for Y .

Suppose the action set A = R
n+m, and let c be any

outcome-monotonic cost. Then, 2(n+m) queries evalua-

tions of c suffice to determine (1) which features are causal,

and (2) sign(θi) for i = 1, . . . , n. To see this, evaluate

the cost function at points c(ei; 0) and c(−ei; 0), where ei
denotes the i-th standard basis vector. Direct calculation

shows

E
[

Y(X,Z):=ei({(X,Z) = 0})
]

=

{

θi if feature i is causal

0 otherwise.

Therefore, since c is outcome-monotonic, if c(ei; 0) > 0,

then sign(θi) = 1, if c(−ei; 0) > 0, then sign(θi) = −1,

and if both c(ei; 0) = 0 and c(−ei; 0) = 0, then feature i is

non-causal.
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6. Discussion

The large collection of empirical examples of failed incen-

tive schemes is a testament to the difficulty of designing

incentives for individual improvement. In this work, we

argued an important source of this difficulty is that incen-

tivize design must inevitably grapple with causal analysis.

Our results are not hardness or impossibility results per

se. There are no fundamental computational or statistical

barriers that prevent causal modeling beyond the standard

unidentifiability results in causal inference. Indeed, subse-

quent work by Shavit et al. (2020) shows how causal queries

can explicitly be leveraged to incentive improvement, and

both Shavit et al. (2020) and Bechavod et al. (2020) prove

strategic response itself can facilitate causal discovery. Our

work suggests incentive design without causal understand-

ing is unlikely to succeed, not that such understanding is

unachievable.

Beyond incentive design, we hope our causal perspective

clarifies intuitive, though subtle notions like gaming and

improvement and provides a clear and consistent formalism

for reasoning about strategic adaptation more broadly.
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