Data Steps for Video Processing

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable

Zoltan A. Milacski! Barnabas Péczos? Andras Lérincz

1

Abstract

Deep Neural Networks (DNNs) achieve the state-
of-the-art results on a wide range of image pro-
cessing tasks, however, the majority of such so-
lutions are problem-specific, like most Al algo-
rithms. The One Network to Solve Them All
(‘OneNet’) procedure has been suggested to re-
solve this issue by exploiting a DNN as the proxi-
mal operator in Alternating Direction Method of
Multipliers (ADMM) solvers for various imaging
problems. In this work, we make two contribu-
tions, both facilitating end-to-end learning using
backpropagation. First, we generalize OneNet
to videos by augmenting its convolutional prior
network with bidirectional recurrent connections;
second, we extend the fixed fully connected lin-
ear ADMM data step with another trainable bidi-
rectional convolutional recurrent network. In
our computational experiments on the Rotated
MNIST, Scanned CIFAR-10 and UCF-101 data
sets, the proposed modifications improve perfor-
mance by a large margin compared to end-to-end
convolutional OneNet and 3D Wavelet sparsity
on several video processing problems: pixelwise
inpainting-denoising, blockwise inpainting, scat-
tered inpainting, super resolution, compressive
sensing, deblurring, frame interpolation, frame
prediction and colorization. Our two contribu-
tions are complementary, and using them together
yields the best results.

1. Introduction

In previous years, Deep Neural Networks (DNNs, see Le-
Cun et al. (2015) and the references therein) have become

"Department of Artificial Intelligence, ELTE Eotvis Lorand
University, Budapest, Hungary *Machine Learning Department,
Carnegie Mellon University, Pittsburgh, USA. Correspondence to:
Zoltin A. Milacski <srph25@gmail.com>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

the state-of-the-art on many data processing tasks, includ-
ing image (Krizhevsky et al., 2012; He et al., 2016; 2017;
Sabour et al., 2017), text (Peters et al., 2018; Howard &
Ruder, 2018; Devlin et al., 2018), speech (Xiong et al.,
2018; Chiu et al., 2018) problems, among many others.
These results mostly rely on large data sets and applying
Supervised Learning or Unsupervised Learning via gradient
descent with minimal feature engineering for each task in-
dependently. One imminent downside of this practice is the
lack of Multi-Task Learning (Ruder, 2017): the regulariza-
tion effects of feature and weight sharing across the various
tasks are ignored, while training individual problem-specific
networks from scratch is computationally expensive and
time consuming. Recently, the One Network to Solve Them
All (OneNet) (Chang et al., 2017) procedure emerged as
a possible solution for images, which involves using the
same Convolutional Neural Network (CNN) as the prior
proximal operator of Alternating Direction Method of Mul-
tipliers (ADMM) (Boyd et al., 2011) solvers for various
linear inverse restoration problems. The original procedure
used a pretrained adversarial denoising autoencoder, but
lately, it was extended as an end-to-end trained architec-
ture to prevent ADMM convergence issues (Milacski et al.,
2019a).

In contrast to the image case addressed by OneNet, linear in-
verse problems for videos are more challenging: one has to
deal with larger tensors, exploit temporal correlations, while
the measurement process can involve bigger and more com-
plex linear operators acting between-frames (e.g., temporal
convolutions, dropping frames) or both within- and between-
frames (e.g., video compressive sensing (Zheng & Jacobs,
2009)). Therefore it is unlikely that the straightfoward time
distributed (i.e., framewise repeated) extension of OneNet
may be optimal under such circumstances, due to the lack of
temporal propagation. Furthermore, it is also questionable
whether the mappings in the OneNet data step, which are
kept from the original ADMM algorithm to leverage the
measurement and the corresponding linear operator (i.e.,
the proximal operator of the reconstruction loss and dual
ascent), are optimal. Although the ADMM update rules are
theoretically motivated, they are still manually engineered,
fully-connected and linear, hence they may not fully take
advantage of all available features, especially when the mea-

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing

—
...... 33)
V-~ ; Y _ Nonlinear subspace
“""x' o~ ® J072 of videos
(6] ® S\ =" and its point
Eé\/ Ground truth
Prior Video Set X @ mte;i?:tt-on
A - ° Q x Trai -
S mm-=a 2 i=- rainable prior step
~ag 3 3 _x— - P (Bidirectional
-l convolutional recurrent)
X* (2) X .,

Legend /

Linear subspace
of videos
and its point

Trainable data step

y = A®vec (X)

(Bidirectional
convolutional recurrent)

Figure 1. Schematic diagram of our proposed method. Best viewed in color. We consider solving linear inverse problems for videos, i. e.,

. . (n) . .
recovering ground truth videos X *(n) ¢ RTXHXWXFE from measurement vectors y(") e RY" observed through very different linear

operators A™) ¢ R4 X(T-H-W-F)

,n=1,...,N. As most points in the linear subspaces y = A™ vec (X)) (gray) are fake videos,

we implicitly learn a nonlinear prior video set x (blue) of real videos that reduces the problems to finding intersection points between the
linear subspaces and the prior set. This is achieved by learning two alternating nonlinear projections: the prior step (red dotted arrow)
and the data step (green solid arrow). Each sequence of steps is trained end-to-end to approximate X * () where both projections are
implemented as bidirectional convolutional recurrent networks to improve performance and convergence. The bidirectional convolutional
recurrent property of projections is explained in Algorithm 3 and Figure 2.

surement operator acts locally (e.g., spatial and temporal
convolution, super resolution) or when the ADMM iteration
count is small. This latter problem generalizes beyond the
video case.

Contributions. In this work, we test the hypotheses
whether convolutional recurrent architectures and learned
data steps can improve the performance of the OneNet proce-
dure in the video setting. We start from the time distributed
version of OneNet and propose two modifications.

e We augment the convolutional network in the prior step
of OneNet with bidirectional convolutional recurrent con-
nections (Liang & Hu, 2015; Xingjian et al., 2015). This
facilitates information propagation across video frames.

e We complement the predefined fully connected linear
ADMM update rules in the data step by introducing a
second DNN on top of their outputs. This technique
can be understood as an extended ADMM (falling back
to classical ADMM when our second network learns
the identity function). Similar to the prior network, we
implement this as a Bidirectional Convolutional Recur-
rent Neural Network (BCRNN), however, with multiple
concatenated inputs.

Our scheme is summarized in Figure 1. We empirically com-

pare our method with the end-to-end convolutional OneNet

procedure and 3D Wavelet sparsity on the Rotated MNIST,

Scanned CIFAR-10 and UCF-101 data sets on an ensemble

of video processing tasks: pixelwise inpainting-denoising,

blockwise inpainting, scattered inpainting, super resolution,

compressive sensing, disk and motion deblurring, frame in-
tepolation, frame prediction and colorization. Furthermore,
we also perform an ablation study to test the efficiency of dif-
ferent components of our model. The source code enabling
the reproduction of our results is available'.

2. Theoretical Background and Related
Works

2.1. Notation

Throughout the paper, we use the following conventions. A
bold face letter refers to a multi-dimensional tensor, a tensor
superscript denotes a sample index and a tensor subscript
indexes the tensor across the corresponding axes. Following

standard machine learning notation, for a 6-dimensional ten-

sor Z € RNXIXTXHxWxF’ Zi(LnJ?
value of the n™ sample video in the i ADMM iteration

for the t™ frame at the A row, w™ column and f™ feature.
N, I, T, H, W, F stands for the total number of videos,
ADMM iterations, video frames, frame rows (height), frame
columns (width) and features (channels), accordingly. When
it does not cause confusion, we refer to (h,w) as pixel in-
dices. For simplicity, we either omit or designate by “dot” (-)
all indices across an axis, e.g., for a 6-dimensional tensor we
use Z, Z0), zC) zCo), Z.(""'), Z.(,'."") and Z.(,'.’;.") inter-
changeably, where the dots indicate the number of indexed

€ R refers to the pixel

"https://github.com/srph25/videoonenet

https://github.com/srph25/videoonenet

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing

dimensions being relevant in the expression. Specifying
some of the axes allows us to take subtensors. For example,
T G PR
mensional tensor, i.e., it is a vector. Functions are specified
by normal typesetting, where again each “dot” (-) represents
the respective argument. || - ||,, is the £, norm, || - || is the
Frobenius norm (vectorized ¢> norm), vec stands for the
vectorization operator (flattening), reshape designates the
reshaping operator (including the inverse of vec as a special
case).

denotes a one di-

2.2. Linear Inverse Problems and Signal Priors

The goal of a linear inverse problem (also called restoration
problem, see Engl et al. (1996) and the references therein)
is to reconstruct a video? X*(" ¢ RTXHXWXF from 4
measurement vector y(") € R?"™ of the form

y™ = AM vec (X*(")) +&0),)]

where A(") ¢ RA"™ *(T-H-W-F) g the linear measurement
operator and £ ¢ R4 is the zero-mean noise (e.g.,
Gaussian). For example, in image inpainting, A™ is a
pixelwise mask operator; in super resolution, A" is a
downsampling operator averaging nearby pixels; in com-
pressive sensing, A(") is a random Gaussian matrix mixing
multiple frames; in frame prediction and interpolation, A (™)
is a framewise mask operator. Notice how A" is large,
as it acts across all video pixels simultaneously, leading to
computational challenges. A("™) is often overcomplete, i.e.,
the corresponding linear system is underdetermined, thus
the null space of A(™) is nontrivial and there are an infinite
number of feasible solutions. The index n represents that
one may solve many such problems together, where A (™)
may vary considerably.

In order to choose a particular solution from the infinitely
large feasible set, the reconstruction loss is often regularized
with a signal prior penalty (Golub et al., 1999):

i 3 a0 e (x0) 20 (). @

where ¢: R(T-HW-F) _, R is the signal prior and A > 0.
Note that we apply the same ¢ for each sample index n, so
we assume that a common latent structure is present for all
X (") Originally, analytically derived, convex, predefined
signal priors were widely used as ¢ in the literature. A nat-
ural choice is sparsity in some transformation domain, i.e.,
0] (X(”)) = Herc (X(”))| 1» Where W is an operator

>Throughout this paper, we present and use the generalization
of the T' = 1 case of linear inverse problems (Chang et al., 2017)
for arbitrary 7. Yet, we introduced the vec operator for 7" > 1 and

the superscript (n) indexing various triplets [y“”, A X+ (">] .

representing either wavelet transformation (Donoho, 1995;
Mallat, 1999), spatial gradient (Chan et al., 2006), or some
other similar linear operation.

2.3. Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM)?
(Boyd et al., 2011) is an optimization method for solving
linear inverse problems in the form of (2). ADMM relies on
variable splitting: an auxiliary variable Z(") is introduced
that is constrained to be equal to X (™). This gives us the
following optimization problem:

min

1 2
- Hy<n> — A™ yee (Zm))H Ty (Xm))
X(n),Z(n) 2 2

st. XM =z, (3)
which is equivalent to the original regularized problem (2).

The scaled form of the augmented Lagrangian of (3) can be
written as

1 2

(n) 7(n) pr(n) :,H (n) _ A(n) (n) H
LX™M, 20, 0™) = |ly™ - A VeC(Z) .
(n) 2
+ A\ (X(”)) + r_ Hx(n) —zM U™,

2 2

“4)

where p(™) > 0 is the penalty parameter of the con-
straint X = Z® and U™ is the tensor of dual
variables divided by p(™. By alternatively optimizing
L (X(")7 ARN U(”)) over X ("), Z(") and U("), ADMM
is composed of the iterations in Algorithm 1.

Algorithm 1 Alternating Direction Method of Multipliers
(ADMM) (Boyd et al., 2011)

Input: (™), AT p(M X 4(.)
{Initialization}

2
Z(0) = arg min 3 Hy(") — A vec (Z)H (a)
z 2
U =o (b)
{Iterations }
fori =1,...,Ido
{Prior Step}
{Prior Proximal Operator}
_— . p(n) nyi—1,- n,i—1,)]2
x(>'):argm1n"2 HX7Z(A=) 4 gl 1’)H
X 2
+ ¢ (X) ©
{Data Step }
{Reconstruction Loss Proximal Operator (Least Squares) }
. 2
Z(h) = arg min 3 Hy(") — A™M vec (Z)H
z 2
3 . . 2
e)X<n,z,~> —Z+ U("'H"')Hz @
{Dual Ascent (Cumulative Summation)}
Uni) = glmi=1) 4 x (i) _ glni,) ©
end for
Output: Z (™71

3Throughout this paper, we present and use the generalization
of the 7' = 1 case of ADMM (Boyd et al., 2011) for arbitrary 7.

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing

The update (c) of X (™ in Algorithm 1 is the proximal op-

erator of the signal prior ¢ with penalty #, denoted as
DIOX ,(n) /) (zmi=1) —UMi=1)) When the signal
prior uses ¢1-norm, this is simply a soft-thresholding. The
update (d) of Z(™ is the proximal operator of the recon-
struction loss, which is a least squares problem; while the
update (e) of U™ is dual ascent, a cumulative summation
resembling residual skip connections (He et al., 2016).

Notice that the ADMM algorithm separates the signal prior
¢ from the linear operators A n = 1,... N. This
enables learning a signal prior that can be used with many
linear operators.

2.4. One Network to Solve Them All and Unrolled
Optimization

Chang et al. (2017) argue that in each iteration ¢, the in-
put (Z(mi=1) — g(™i=1)) (o the prior proximal opera-
tor resembles a noisy video, which is ideally mapped to
a noiseless video. Consequently, the authors proposed to
pretrain an adversarial denoising convolutional autoencoder
penn (6, -) (Makhzani et al., 2015) and use it during infer-
ence phase in ADMM in place of the prior proximal operator
as in Algorithm 2 (c).

Algorithm 2 One Network to Solve Them All (OneNet)
(Chang et al., 2017; Milacski et al., 2019a)

Input: y<"), A(n)» P(”)’ penn (6, 1)
{Initialization }
(a)-(b) of Algorithm 1
{Iterations }

fori =1,...,1do
{Prior Step}
{Deep Time Distributed Convolutional Prior Network }
X (i) = ponn (97 Z (=1, _ U(w‘—l,») ©
{Data Step}
(d)-(e) of Algorithm 1
end for
Output: Z (™71

In other words, Chang et al. (2017) suggested a modified
ADMM with a learned (but pretrained) nonconvex prior ¢.
They call their framework One Network to Solve Them All
(OneNet)* as they are using the same pretrained network
ponn (6, +) with multiple linear inverse problem matrices
A (compressive sensing, pixelwise inpainting-denoising,
scattered inpainting, blockwise inpainting and super resolu-
tion). They showed either significantly improved or on par
performance while also being less prone to changes in A
and €™ compared to 2D Wavelet sparsity and more com-
mon problem-specific Context Encoder networks (Pathak
et al., 2016), depending on the task. As their prior is trained
separately from the linear operators, it generalizes well to
new problems without retraining, however, it also underfits

“Throughout this paper, we present and use the generalization
of the T' = 1 case of OneNet (Chang et al., 2017) for arbitrary 7.

those observed during testing phase.

Recently, OneNet was enhanced by end-to-end training (Mi-
lacski et al., 2019a). In the original OneNet procedure,
the network is trained independently from ADMM, conse-
quently updates are suboptimal and thus many (up to 300)
ADMM iterations are required for convergence, preventing
real-time applications. Therefore, Milacski et al. (2019a)
adopted the Unrolled Optimization with Deep Priors (Di-
amond et al., 2017) framework based on Deep Unfolding
(Hershey et al., 2014), in which they truncate a classical
iterative optimization algorithm (e.g., Proximal Gradient
(Chen et al., 2015), Iterative Shrinkage Thresholding (Beck
& Teboulle, 2009; Gregor & LeCun, 2010) and even ADMM
(Boyd et al., 2011; Sun et al., 2016)) and propose using deep
convolutional prior architectures pcnn (6, -) within the un-
rolled optimization, facilitating end-to-end backpropagation.
They also leveraged Self-Supervised Multi-Task Learning
(Doersch & Zisserman, 2017; Jing & Tian, 2020): given a
target video X =), they randomly pick a linear operator
A from a prescribed problem set and automatically gen-
erate the measurement (™ via (1); then use A and y(™
as inputs to Algorithm 2 for computing the approximate
inverse Z (™). They have shown greatly improved results
in terms of Peak Signal-to-Noise Ratio (PSNR) score while
also requiring much fewer ADMM iterations (13 < 300),
due to the stabilizing effect of end-to-end training on conver-
gence. As they tailor their prior to specific linear operators,
it works much better for those, but does not generalize well
to new problems without retraining anymore.

Simultaneously with the original OneNet paper, similar
procedures using pretrained deep prior objectives have been
developed for other variable splitting solvers, including Half
Quadratic Splitting (HQS) (Zhang et al., 2017), Primal-
Dual Hybrid Gradient (PDHG) (Meinhardt et al., 2017) and
Proximal Gradient Descent (PGD) (Shah & Hegde, 2018).
Specifically, Meinhardt et al. (2017) proves the equivalence
of these with ADMM. Hence, we focus on OneNet.

2.5. Deep Neural Network Solvers for Specific Linear
Inverse Problems

Related to our method, there are several DNNs in the litera-
ture that can solve individual linear inverse problems, even
if the particular linear operator A = Aforn=1,..., N
is not constructed explicitly as in (1). Hereby, we refer the
reader to the following short collection of papers. See e.g.,
for images: pixelwise inpainting-denoising (Vincent et al.,
2008; Srivastava, 2013), blockwise and scattered inpainting
(Pathak et al., 2016), super resolution (Dong et al., 2015;
Ledig et al., 2017), compressive sensing (Kulkarni et al.,
2016; Bora et al., 2017; Mousavi & Baraniuk, 2017), deblur-
ring (Xu et al., 2014; Kupyn et al., 2018) and colorization
(Zhang et al., 2016); as well as for videos: inpainting (Kim

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing

et al., 2019), compressive sensing (Iliadis et al., 2018; Xu &
Ren, 2018), deblurring (Su et al., 2017; Zhang et al., 2018),
frame interpolation (Niklaus et al., 2017; Jiang et al., 2018),
frame prediction (Mathieu et al., 2015; Lotter et al., 2016;
Finn et al., 2016) and colorization (Thasarathan et al., 2019).
These techniques are tailored to their specific problems,
hence they are unable to deal with others without retraining.
Training networks for each case separately ignores the reg-
ularization induced by sharing parameters between similar
tasks, while it is also wasteful from the point of view of
computational power and storage.

In contrast, ADMM with predefined signal priors supports
new tasks by altering the matrix A™M however, it is less
efficient. Considering the linear inverse scenario, OneNet is
the golden mean between the two extremes, as it is trainable,
and works well on multiple problems.

2.6. Multi-Task Learning

Multi-Task Learning (see the overview of Ruder (2017)) re-
lies on sharing weights of DNNs between related problems
to improve generalization capabilities on individual ones.
Hard parameter sharing (Caruana, 1997) employs separate
models for problems with tied weights at middle layers and
untied weights at bottom and top layers, facilitating dis-
tributed training across tasks (Doersch & Zisserman, 2017).
Soft parameter sharing (Argyriou et al., 2008; Duong et al.,
2015) uses completely untied weights, which are promoted
to be similar with regularization. In both cases, tasks can
be quite general, as they are implicitly predefined by input-
target pairs, yet adapting to additional problems requires
retraining.

Our setup operates with hard parameter sharing: we use sep-
arate ADMM models, where network weights are tied, and
only the linear operator A("™) is untied for different prob-
lems, which is not a trainable parameter but part of the input.
Therefore, our scheme is trainable on infinitely many differ-
ent tasks by randomizing A(™). However, our technique is
not expected to generalize well to new problems.

2.7. Self-Supervised Learning

Self-Supervised Learning (Jing & Tian, 2020) is a type of
Unsupervised Learning, where one uses automated gener-
ation of input-target pairs (e.g., producing one from the
other, or both from some 3" variable) in order to leverage
techniques from Supervised Learning. It is often employed
in Transfer Learning (Weiss et al., 2016) scenarios: source
tasks (called pretext tasks in the self-supervised setting) are
used for pretraining before performing actual supervised
target tasks with human annotated data.

Our scheme is an instance of Self-Supervised Learning, as
we generate the inputs automatically: we first pick the target

X*(from the training set, then sample A randomly,
to finally compute y(™ from those using (1). However, in
this work we focus on the linear inverse problems instead
of transferring knowledge to later supervised tasks.

3. Methods
3.1. Proposed Solution

In this section, we describe our two contributions to OneNet
(Section 2.4): the generalization to videos via the convolu-
tional recurrent prior network, and the trainable data step.
Our method is summarized in Algorithm 3.

Algorithm 3 VideoOneNet: Bidirectional Convolutional
Recurrent OneNet with Trainable Data Steps for Videos

Input: ¥, AT, o™ pporan (8, 4), gBoRNN (W, -)
{Initialization}
(a)-(b) of Algorithm 1

Z(0:) — reshape (A(MTy(”’), (1,1, T, H, W, F)) (@)
{Iterations }
fori =1,...,1do
{Prior Step}
{Deep Bidirectional Convolutional Recurrent Prior Network }
X (i) = e e <97 [Z(n,iq,-)’U(n,iA,QD ©
{Data Step }

(d)-(e) of Algorithm 1
{Deep Bidirectional Convolutional Recurrent Data Network }

c(ni) [X('n,i,-)7 Z(n,O,-)7 Z"('H.,O,»)7 Z(n.ifl,-)7 Z(n,i,-)7
U(n,i—l,-)’ U('n,,i‘-)]
(2059, U] = gaoran (w, €) ®
end for
Output: Z (1)

First, we replace pcnn (6, -) with a bidirectional convolu-
tional recurrent network pgcrnn (6, -) (Liang & Hu, 2015;
Xingjian et al., 2015) in (c). This is a standard architec-
ture that can leverage temporal information between frames
via local spatio-temporal connectivity. This is a rather
straightforward extension of OneNet to videos. One no-
table difference is in the input to the network: instead
of employing (Z(™~1) —U™i=1.)) we concatenate
the two parts across channels, i.e., use the more general
[Z(n,i—l,')’ U(n,i—l;)})

Second, we extend ADMM by adding a second bidirectional
convolutional recurrent network denoted by gpcrnn(w, ©)
on top of the original operations within the data step in
(f). In other words, we aim to improve upon both the prox-
imal operator of the reconstruction loss and dual ascent.
This is also reminiscent of OneNet, as we use a trainable
architecture instead of a fixed, analytically derived, linear
one, in a vein similar to the learned prior step. We precom-

pute and reshape the matrix A(")Ty(") in (a), denoted by
Z(:0-) Then again, we use the concatenation {X(m"),
Z(n,O,-)’ Z(n,O,-)’ Z(n,ifl,)’ Z(n,i,~)’ U(n,ifl,-)’ U (i)

across channels as input to the network in order to efficiently

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing

Denoised Denoised
Video Frame Video Frame Video Frame

Decoder

Encoder [7">] Encoder |77 "™ Encoder
[| K it

C C tenated Concatenated C Axis
Noisy Frames Noisy Frames Noisy Frames Forward
t=1 t=2 t=T > Propagation
Time ¢ | o Optional

(Video Frame)

(2)

I Nonparametric

‘ ELU-like |

Operations

Parametric Operations
h with Untied Weights
27 77 Parametric Operations
with Tied Weights

- ‘o

---->» Forward Propagation

(b)

Figure 2. Schematic diagram of our proposed Deep Neural Network architecture used for both prior and data step networks. Best viewed
in color, same color and border means tied weights. (a) Base architecture. It processes concatenated noisy input video frames using
the (optionally bidirectional convolutional recurrent) encoder and the decoder in order to output denoised video frames. (b) Details of
our encoder. It consists of 3 convolutional layers each followed by instance normalization and ELU-like smooth activation function.
Optionally there can be a bidirectional convolutional recurrent mechanism added on top that can propagate temporal information between
frames. (c) Details of our decoder. It is a single linear transposed convolutional layer.

utilize information about the measurement y(™ and the lin-
ear operator A(™ > Making the data step nonlinear and
trainable should improve performance and convergence.

Network parameters 0 and w are trained end-to-end to mini-
mize the mean squared error (MSE) between the final output
Z(™ 1) and the ground truth solution X *(") for each train-
ing sample:

&)

RN (n) 2
in — *(n) _ <n,1,‘>H
i > [-z
We also adopt the self-supervised sample generation of end-
to-end OneNet in Section 2.4 and Section 2.7 for Algo-
rithm 3.

3.2. Experimental Setup

We followed the experimental setups of Chang et al. (2017)
and Milacski et al. (2019a). Data sets were taken from San-
tana et al. (2017). Hyperparameters were chosen according
to the increased hardware requirements. We compared the
performance of our VideoOneNet with 3D Wavelet sparsity
(Wakin et al., 2006) and end-to-end convolutional OneNet
(Milacski et al., 2019a). We also performed an ablation
study to quantify the individual effects of our bidirectional

>In principle, one could directly feed ™ and A™ as inputs to
the data network ggcrn~ (w,). Although, at first sight, this seems
appealing, the varying row size dm hampers implementation.
Thus, we concatenate variables of fixed size N x 1 x T x H x
W x F in each iteration. This way we treat y™ and A™ as
latent variables, but it is easy to realize.

convolutional recurrent prior step and our learned data step.

Our linear inverse problem set consisted of various dense
and sparse linear operators A("): pixelwise inpainting-
denoising (PID; randomly replacing 50% of the pixels by
zeros and adding Gaussian noise with 0.1 standard devia-
tion), blockwise inpainting (BI; replacing the center block
of side length 40% with zeros), scattered inpainting (SI; ran-
domly replacing 10 blocks of side length 20% with zeros),
super resolution (SR; downsampling to side length 50% or
25% using box-averaging), 4D spatio-temporal compressive
sensing (CS; to size 10% by multiplying the vector of all
RGB channel values with an overcomplete random Gaussian
matrix), video compressive sensing (VCS; the initial frame
is given and frame differences are spatially compressed to
10% (Zheng & Jacobs, 2009)), 2D spatial and 1D temporal
disk deblurring (DD and TDD; filter size 4 x 4 and 4 with
radius 2, accordingly), 2D spatial motion deblurring (MD;
filter size 7 x 7), frame interpolation (FI; estimating the rest
from every 2" or 4" frame), frame prediction (FP; from the
initial 75%, 50% and 25% of frames) and frame coloriza-
tion (C; from grayscale). For details, see the cited papers in
Section 2.5.

We set the ADMM iteration count / = 13 and the least
squares regularization constant p(™ = 0.3 for all cases. All
least squares problems were implemented by precomputing
the Moore — Penrose pseudoinverses of the corresponding
matrices.

Our prior and data network architectures are summarized in
Figure 2. For both networks we used identical setups: we

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing

employed 3 time distributed convolutional 2D layers and
optionally 1 bidirectional convolutional MinimalRNN 2D
(Chen, 2017; Milacski et al., 2019b) layer in the encoder,
with a single linear time distributed transposed convolutional
2D decoder layer. All encoder convolutional layers were fol-
lowed by instance normalization (Ulyanov et al., 2016) and
exponential linear-like (ELU-like) smooth w -1
activation (Gulrajani et al., 2017). We used Adam optimizer
(Kingma & Ba, 2014) with learning rate 10~4, 3; = 0 and
B2 = 0.9. Due to potential training instability problems
via exploding gradients, we employed gradient clipping to
norm 1 (Pascanu et al., 2013). All methods were trained
over 50 epochs with early stopping patience 5.

Each training/validation/test split was defined by partition-
ing the ground truth video set. All methods were ensured to
train and validate using the exact same randomly sampled
([y("), AM] X *(")) triplets (except for early stopping).
Following related papers, we employed the PSNR score as
the evaluation metric, which is basically MSE on reverse
logarithmic scale (being even more sensitive to large errors):
a unit higher PSNR means an order of magnitude better
MSE . A PSNR value > 25 is typically acceptable. Test set
PSNR scores were computed for each problem separately,
to see how performance varied.

We implemented our scheme and the baseline procedures
in Python 3.7 using NumPy 1.18.1 and Keras 2.2.4 (Chollet
et al., 2015) with Tensorflow 1.14.1 (Abadi et al., 2015)
backend.

Regarding hardware requirements, we note that all discussed
methods compute 6D tensors X, Z, U for each batch us-
ing both DNNs and massive pseudoinverses, which demand
large computational power and memory. While the algo-
rithms may be scalable in the cloud in their current form, our
intention was to achieve good performance, without address-
ing computational issues. For now, to fit the 6D tensors into
the accessible GPUs (2 x 24 GB), we restricted ourselves
to smaller problems: we specifically picked data sets with
limited sizes, and for each of those, our batch size NV, frame
count 7" and frame size H x W were chosen to be as big
as possible for execution. We employed single-precision
format (FP32).° For details, see Section 3.3.

3.3. Data Sets

We evaluated our method and the baseline procedures on two
semi-toy problems, namely, Rotated MNIST and Scanned
CIFAR-10 (Santana et al., 2017); and on the real video data
set UCF-1017 (Soomro et al., 2012).

SWe tried automatic mixed precision training, but memory
gains were marginal as only few operations were converted to
half-precision format (FP16).

"https://www.crev.ucf.edu/data/UCF101.php

For Rotated MNIST, we rotated images of size 28 x 28 by
40° steps starting from a random angle, and cropping the
top left H x W = 14 x 14 pixels, resulting in videos of
T =9 frames. We left out 6,000 randomly selected training
videos for validation. All convolutional 2D layers consisted
of 64 filters with size 3 in the encoder and size 11 in the
decoder. We applied N = 8 batch size. This experiment
was executed on Tesla K80 GPUs with 12 GB VRAM.

For Scanned CIFAR-10, we took the H x W = 16 x 16
corners of the 32 x 32 images, creating T' = 4 frame videos.
We held out 5,000 randomly selected training videos for
validation. Each convolutional 2D layer had 256 filters with
size 5 in the encoder and size 7 in the decoder. We set
N = 4 batch size. This study was carried out using Tesla
V100 GPUs with 16 GB VRAM.

UCF-101 consists of 25 groups of videos of people perform-
ing one of 101 actions. Following the official data split 1,
we employed groups {8, ..., 22} for training, {23, 24,25}
for validation and {1, ..., 7} for testing; resulting in 7,953,
1,584 and 3,783 videos, respectively for the 3 sets. We
randomly sampled 7" = 4 consecutive frames resized to
H x W =32 x 32 from N = 2 videos in each batch. We
used the same network setup from Scanned CIFAR-10. Due
to the increased memory requirements, this analysis was
performed on 2 Tesla P40 GPUs with 24 GB VRAM each,
exploiting data parallelism.

4. Results and Discussion

Table 1 shows our quantitative results. Table 2 depicts the
corresponding qualitative figures for illustrative purposes.

Overall, one can see both quantitatively and qualitatively
that our proposed VideoOneNet using both of our novel-
ties performed the best on all data sets. By visual inspec-
tion, our method generates semantically correct, sharper
videos compared to the two baselines schemes. 3D Wavelet
sparsity only performed well on deblurring, while it com-
pletely failed on every other task. End-to-end convolutional
ADMM OneNet produced appealing results on spatial do-
main problems, but broke down on frame interpolation and
prediction. Our scheme worked successfully in the afore-
mentioned cases.

Regarding the ablation study, both of our modifications
boosted performance on their own. Recurrent connections
attained huge gains in temporal domain, thanks to the ability
of propagating information across the frames. The trainable
data step gave the biggest improvements in deblurring. This
was because the local spatial connections suited the inver-
sion of 2D convolution, in contrast to a predefined dense
layer. Yet, both add-ons were able to give minor boosts
on other tasks, too. When combined together, all problems
observed even further gains, many of which became quite

https://www.crcv.ucf.edu/data/UCF101.php

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing

Table 1. Mean and population standard deviation Peak Signal-to-Noise Ratio (PSNR) scores computed over test samples on the Rotated
MNIST, Scanned CIFAR-10 and UCF-101 data sets. Reverse logarithmic scale (higher is much better). PID, BI, SI, SR, (V)CS,
(T)DD, MD, FI, FP and C stand for pixelwise inpainting-denoising, blockwise inpainting, scattered inpainting, super resolution, (video)
compressive sensing, (temporal) disk deblurring, motion deblurring, frame interpolation, frame prediction and colorization tasks,
respectively (see Section 3.2 for detailed description). An ablation study is included showing the individual effects of our contributions.
Standard deviations are large, due to the reverse logarithmic scale and the differences in the difficulties of the test samples. The winning

numbers and methods are highlighted in bold.

Rotated MNIST (10,000 x 9 X 14 X 14 X 1)

SR SR
PID BI SI 2x (14/3)x CS

FI FI Fp Fp Fp

vCs DD TDD MD 2.25% 4.5% (9/7)x 1.8 3x

3D Wavelet Sparsity (2006)
OneNet CNN (2019a)
OneNet BCRNN (ours)
VideoOneNet CNN (ours)

13.043.6 21.6+4.6 20.0£4.5 17.1+4.1 10.3£3.2 10.14£32 10.7£3.3 24.24+49 245449 29.5+£54 12.843.6 11.3+£3.4 17.0£4.1 13.843.7 12.0£3.5
234448 30.3+5.5 324457 274452 164+4.1 242449 22.1+4.7 287454 289454 324+£57 152439 13.6+3.7 192444 16.1+4.0 143+£3.8
239449 320457 327457 27.6+5.3 17.8£4.2 25545.0 25.0+£5.0 28.94£54 294454 32.5£57 222447 17.1+4.1 26.64£52 20.3+4.5 17.0+4.1
23.04+4.8 30.0+£5.5 31.845.6 26.9+5.2 16.5+£4.1 24.04+4.9 22.9+4.8 314456 32.845.7 344+59 154439 13.84+3.7 193444 162440 144+38

VideoOneNet BCRNN (ours) 26.3+5.1 36.1+6.0 35.0+5.9 29.74+54 21.844.7 27.9453 27.74+53 39.94+6.3 39.0+6.2 41.54+6.4 284453 20.2+4.5 31.2+5.6 22.3+4.7 18.0+4.2

Scanned CIFAR-10 (10,000 X 4 X 16 X 16 x 3)

SR SR
PID BI SI 2% 4x [

FI Fp Fp Fp

VCS DD TDD MD 2x (4/3)x 2x 4x C

3D Wavelet Sparsity (2006)
OneNet CNN (2019a)
OneNet BCRNN (ours)
VideoOneNet CNN (ours)

8.6+2.9 143438 11.6+3.4 139437 62425 57424 72427 20.0+4.5 19.6+4.4 243+49 88+3.0 11.7434 89+3.0 72427 72427
242449 274452 26.145.1 252450 19.6£4.4 21.844.7 19.6+4.4 273452 26.4+5.1 31.6£5.6 16.9+4.1 20.0+4.5 16.8+4.1 14.7+3.8 23.1+4.8
249450 28.8+54 268452 26.0+5.1 204+£4.5 22.944.8 20.5+4.5 29.14£54 285453 343+£59 18.74+4.3 224447 18.54+4.3 157+4.0 24.1+4.9
25.0£5.0 29.9+5.5 28.445.3 272452 21.5+4.6 23.844.9 21.5+4.6 38.246.2 36.8+6.1 39.1+6.3 17.24+4.1 209+4.6 17.1+4.1 14.943.9 24.6+5.0

VideoOneNet BCRNN (ours) 25.1+5.0 29.9+5.5 28.4+53 27.2452 21.5+4.6 24.0+4.9 21.94+4.7 38.94+6.2 37.84+6.2 40.54+6.4 19.3+4.4 22.84+4.8 18.6+4.3 159+4.0 24.4+49

UCF-101 (3,783 X 4 X 32 X 32 X 3)

SR SR
PID BI SI 2% 4% CcS

FI FpP Fp FP

VCS DD TDD MD 2x (4/3)x 2% 4% C

3D Wavelet Sparsity (2006)
OneNet CNN (2019a)
OneNet BCRNN (ours)
VideoOneNet CNN (ours)

10.1432 154439 12.543.5 14.6+3.8 7.6+£27 7.1427 8.6+2.9 22.7+4.8 20244.5 25.6+5.1 103+32 13.243.6 10.3+£32 85+29 87+29
242449 23.1+4.8 223447 237449 18.3+£4.3 223447 18.5+4.3 256451 27.745.3 282453 16.54+4.1 19.2+4.4 16.5+4.1 147+3.8 22.0+4.7
264451 25245.0 27.04£52 26.7+5.2 20.6£4.5 24.74+5.0 304+5.5 29.0454 33.945.8 33.7+£5.8 33.845.8 354459 324457 302455 24.1+4.9
23.244.8 25.14£5.0 24.14£4.9 26.4+5.1 21.6+£4.6 20.7+4.6 20.6+4.5 31.0£5.6 323457 324+57 17.84+42 20.7+4.5 17.84+4.2 16.0+4.0 24.4+4.9

VideoOneNet BCRNN (ours) 27.3+5.2 26.4+5.1 31.24+5.6 27.5+52 22.14+4.7 27.14+52 31.61+5.6 38.61+6.2 40.24+6.3 41.04+6.4 355+6.0 36.9+6.1 33.4+5.8 30.7+5.5 24.7+5.0

significant.

It is important to note that there is a minor exception to the
trend on Scanned CIFAR-10 colorization. Our experimental
setup allows methods to greedily adapt to certain tasks, at
the expense of sacrificing others, which is exactly what
happened in that unique case.

5. Conclusions

We proposed an improved OneNet framework for video
data, exploiting a convolutional recurrent prior network
and a learned nonlinear data step. Considering pixelwise
inpainting-denoising, blockwise inpainting, scattered in-
painting, super resolution, compressive sensing, disk and
motion deblurring, frame interpolation, frame prediction
and colorization, our method significantly outperformed
the more recent end-to-end trainable variant of the convo-
Iutional OneNet procedure and 3D Wavelet sparsity in the
new video setting, even though the baselines already give
reasonable results (both quantitatively and qualitatively) on
our tasks. The best results were achieved when our two
contributions were used together.

Our studies have been limited and certain possibilities for
further extensions need to be mentioned. We list some
possible directions. First, extending the scope of this pa-
per to larger sample and frame sizes is important for real-

world applications, calling for more advanced hardware.
However, more carefully designed lightweight variants of
our approach (e.g., using fewer iterations, or avoiding least
squares) may save memory and computation. Second, some
of our generated videos are blurry. This is due to the MSE
objective failing to capture uncertainty. Fortunately, adver-
sarial training procedures (Goodfellow et al., 2014) could
readily solve this problem. Third, our prior and data net-
works both try to denoise frames by learning identity-like
mappings. This suggests that a residual architecture (He
et al., 2016) could enhance performance, since it includes
a hard-coded identity. Fourth, Meta-Learning (Vanschoren,
2018), i.e., estimating the optimal 8(™) and w™) specifi-
cally for each task with a DNN from few samples, may
prevent overfitting to a fixed set of problems. Finally, as
we work with many self-supervised tasks jointly, Transfer
Learning to supervised tasks (e.g., classification) may be
worth investigating (see Section 2.7).

Our method is a step towards achieving Multi-Task Learning
exploiting video data. It has relevance when storing and run-
ning pretrained weights of several problem specific DNNs
is infeasible (e.g., when processing camera recordings on
mobile devices and in robots or self-driving cars): instead,
one can simply construct appropriate linear operators by a
computer program on-the-fly and deploy our two networks.
We believe that our trainable data step idea may gain some
attention outside the video processing domain, too, as it

VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing

Table 2. Sample qualitative and quantitative experimental test results for the Rotated MNIST, Scanned CIFAR-10 and UCF-101 data
sets. Best viewed zoomed in and in color. PID, BI, SI, SR, (V)CS, (T)DD, MD, FI, FP and C stand for pixelwise inpainting-denoising,
blockwise inpainting, scattered inpainting, super resolution, (video) compressive sensing, (temporal) disk deblurring, motion deblurring,
frame inter