
���

Supplementary Material 
Projective Preferential Bayesian Optimization 

Petrus Mikkola 1 Milica Todorovi´ Jari J¨ Patrick Rinke 2 Samuel Kaski 1 3 c 2 arvi 2 

— The source code written in Python is available at https://github.com/AaltoPML/PPBO — 

This supplementary material provides more details about the technicalities and implementation of the Projective Preferential 
Bayesian Optimization framework [1]. The document is divided into eight subsections that discuss the projective preferential 
feedback, the derivation of the likelihood, the choice of Monte-Carlo sampling distribution in the likelihood, the model 
selection, the Gaussian process covariance matrix, the optimization of acquisition functions, the derivatives of the log-scaled 
posterior T , and the numerical experiments, respectively. 

Projective preferential feedback 

Given a projective preferential query, (ξ, x) ∈ Ξ × X ⊂ RD × RD, the projective preferential feedback is obtained as a 
minimizer over the possible scalar projections, 

α ∗ = argmin f(αξ + x), 
α∈Iξ 

where Iξ ≡ {α ∈ R|αξ + x ∈ X}. The set Iξ is independent of the reference vector x, since x has the property that xd = 0 
for all d ∈ {1, ..., D} such that ξd 6= 0. In fact, it holds that Iξ = [maxξd 6=0{ad }, minξd 6 }].=0{ bd 

ξd ξd 

2 2In principle, the minimizer α∗ is not necessarily unique. For instance, α∗ = {−2, 2} when X = [−2, 2], f(x) = −x1 − x2, 
ξ = (1, 1) and x = (0, 0). However, in practice, the minimizer α∗ is always unique. For instance, when f is a numerical test 
function, then α∗ is obtained by using a numerical optimization algorithm that outputs a unique value α∗ . In theory, the non-
uniqueness issue can be also fxed by assuming that ties are broken non-arbitrarily, that is, (ξ, x) 7→ argminα∈Iξ 

f(αξ + x) 
is forced to be a single-valued function through a non-stochastic tiebreaker-policy. For example, we may follow the 
tiebreaker-policy that picks the smallest element from the set of minimizers. 

Likelihood 

Given two alternatives (αξ + x), (βξ + x) ∈ X , we assume that αξ + x � βξ + x, if and only if f(αξ + x) + W (α) > 
f(βξ+x)+W (β), where W is a Gaussian white noise process with zero-mean and autocorrelation E(W (t)W (t+τ )) = σ2 

if τ = 0, and zero otherwise. We would like to fnd the likelihood for an observation (α, (ξ, x)) that corresponds to 
uncountably infnite pairwise comparisons, αξ + x � βξ + x for β 6= α. For each comparison we condition on W (α), so 
the following probability measure (for fxed w ∈ R) should be interpreted as a regular conditional probability, 

P (αξ + x � βξ + x | W (α) = w) = P (W (β) > f(βξ + x) − f(αξ + x) − w | W (α) = w)� � � � 
W (β) f(βξ + x) − f(αξ + x) − w f(βξ + x) − f(αξ + x) − w 

= P > W (α) = w = 1 − Φ ,
σ σ σ 

where Φ is the cumulative distribution function of the standard normal distribution. Hence, for a comparison we have Z ∞ � � 
f(βξ + x) − f(αξ + x)

P (αξ + x � βξ + x) = P (αξ + x � βξ + x | W (α) = w) N (w|0, σ2)dw = 1 − [Φ ∗ φ] ,
σ−∞ 
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where φ is the probability density of the standard normal distribution and ∗ is the convolution operator. In the last equation, 
the change of variables v = σw is used in the integration. For infnite comparisons, we frst consider a fnite number of 
comparisons m. By the independence of W (β) (uncorrelated jointly Gaussian, thus the independence follows), we have 

m � � ��Y f(βj ξ + x) − f(αξ + x)
P (αξ + x � β1ξ + x, ..., αξ + x � βmξ + x) = 1 − [Φ ∗ φ] . 

σ 
j=1 

By letting the number of points m in an increasing sequence β1, ..., βm of the partition of the interval Iξ\{α} to approach 
infnity, we can interpret this as a Volterra (product) integral � � � Z �Y � � � �f(βξ + x) − f(αξ + x) f(βξ + x) − f(αξ + x)

1 − [Φ ∗ φ] dβ = exp − [Φ ∗ φ] dβ 
σ 

β∈Iξ\{α} 
σ Iξ\{α}� Z �� �f(βξ + x) − f(αξ + x) 

= exp − [Φ ∗ φ] dβ . 
σIξ 

This corresponds to the likelihood of an observation (α, (ξ, x)). 

Monte-Carlo sampling distribution 

Here, we give more details about the form of sampling distribution used in a Monte-Carlo integral that approximates the 
likelihood. 

The pseudo-observations (βj ξ)
m
j for j = 1, ..., m are sampled from the family of truncated generalized normal (TGN) 

distributions (see e.g. [3]), since it provides a continuous transformation from the uniform distribution to the truncated 
normal distribution such that the locations of distributions can be specifed. The principal idea is to concentrate the 
pseudo-observations more densely around the optimal value αξ as time proceeds (measured as a number of passed queries). 

More precisely, a sequence (βj )
m
j=1 is sampled independently and identically from the probability density function, 

φ( x−α )I{x∈[min Iξ ,max Iξ ]}σ̃(γ) 
pβ (x) = � � , (1)

max Iξ −α min Iξ−α
σ̃(γ) Φ( ) − Φ( )σ̃(γ) σ̃(γ) 

γwhere φ(x) ≡ exp(−|x|γ ) is the density of the centralized reduced generalized normal distribution (with the 2Γ(1/γ) 

form parameter γ), Φ its the cumulative distribution function of the standard normal distribution, and σ̃(·) is a positive 
function of the parameter γ. The latter function describes the shape of the distribution, and we assume that it takes the 

| max Iξ−min Iξ|following form: σ̃(γ) = Γ(γ) . Note that the location parameter is set to the optimal value α, so that the 10 
pseudo-observations are concentrated around that. The form parameter γ is tied to the current iteration (n) of the Bayesian 
optimization loop. At the beginning (n = 1) we set γ to some relatively high value, say γ1 = 5. As n →∞, the density 
(1) approaches the truncated normal distribution, since we force γn → 2. For instance, this can be achieved by setting 
γn ≡ 3/(max{n + 1 − D, 1})s + 2, where the parameter s ∈ (0, 1] controls the speed of the transformation. In the 
numerical experiments, we used s = 0.4. Given (βj )

m
j=1, the pseudo-observations can be obtained by scaling, (βj ξ)

m
j=1. 

Hyperparameter optimization 

We adapt the type II maximum likelihood scheme. The hyperparameters, θ = (σ, σf , l) , are optimized by maximizing the 
marginal likelihood P(D) = P(D|θ), which can be expressed as �q �−1 

P(D|θ) = exp(T (fMAP)) (2π)D|Σ|P(fMAP|D) , 

since the functional T can be written as, �q � 
T (f ) = log (2π)D|Σ|P(f |D)P(D) . � � 

From the Laplace approximation we have that f |D is distributed as N fMAP, (Σ−1 + Λ)−1 . Thus, the marginal likelihood 
simplifes to the expression, 

2 .P(D|θ) = exp(T (fMAP))|I + ΣΛ|− 1 
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After the kernel k has been fxed, the gradient of the marginal likelihood can be derived analytically. Gradient-based methods 
can be used in the optimization of the marginal likelihood. Due to numerical instabilities, the logarithm of the marginal 
likelihood may be preferred, 

1 
log P(D|θ) = T (fMAP) − log |I + ΣΛ|. 

2 

Covariance matrix 

The covariance matrix Σ has a high condition number. We used a shrinkage method as described in [2] to reduce the 
condition number of Σ. There is available an implementation of this method in the Python’s scikit-learn -package: 
https://scikit-learn.org/stable/modules/covariance.html#shrunk-covariance. 

Optimization of acquisition functions 

Since the reference vector x has the property that xd = 0 for all d ∈ {1, ..., D} such that ξd =6 0, we have to take that into 
account in the optimization of acquisition functions (this applies to PPBO-EI, PPBO-EXR, and PPBO-EXT). Along the same 
line as the preferential coordinate descent (PPBO-PCD), we rotate the non-zero coordinates of ξ in a cyclical order for each 
query. In particular, we set ξ = (ξ1, ..., ξd−1, 0, ξd+1, ..., ξD), and rotate d in a cyclical order for each query. This means that 
the reference vector is x = (0, ..., 0, xd, 0, ..., 0). Then, the pair of vectors (ξ, x) (that is the values ξ1, ..., ξd−1, ξd+1, ..., ξD 

and xd) are optimized by maximizing the chosen acquisition function as described in the paper. 

This optimization, in principle, can be carried out by using any numerical global optimization algorithm. We found that 
Bayesian optimization1 is a good option for that, since it is prudent in the number of acquisition function evaluations. 
Thus, it speeds up the optimization at the cost of fnding only approximately optimal global maximum. In the numerical 
experiments, we limit the number of Bayesian optimization iterations to 30. 

In the random acquisition (PPBO-RAND) everything is random: the number of non-zero coordinates (N ∼ Unif({1, .., D})),�
D
� 

what are the non-zero coordinates (uniformly random combination ), and the values of the non-zero coordinates (each N 
coordinate sampled from Unif(0, 1)). 

Gradient and Hessian of the functional T 

For notational convenience, defne 

f(βj
i ξi + xi) − f(αiξi + xi)

Δi,j (f) ≡ . 
σ 

So, that means, 

∂ 1 
Δi,j (f) = − 

∂f(αiξi + xi) σ 

∂ 1 
Δi,j (f) = . 

∂f(βj
i ξi + xi) σ 

Recall the form of the functional T , 

N mXX1 1 � � 
T (f) ≈ − f>Σ−1f − [Φ ∗ φ] Δi,j (f) . 

2 m 
i=1 j=1 

We need the two frst derivatives of the convolution [Φ ∗ φ]. These are [Φ ∗ φ]0(x) = φ2(x) and [Φ ∗ φ]00(x) = − x φ2(x),√ 2
where φ2 is the density function of N(0, 2 ). 

The gradient of T : 

1We used a Python open-source library, GPyOpt, for Bayesian Optimization [4]. The library is developed by the Machine Learning 
group of the University of Sheffeld. 

2 
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rT = −Σ−1f + β, and the vector β is given by the following partial derivatives: 

N m m m 
∂ 1 XX � � 1 X � � 1 X � � 

− [Φ ∗ φ] Δi,j (f) = [Φ ∗ φ]0 Δi,j (f) = φ2 Δi,j (f)
∂f(αiξi + xi) m σm σm 

i=1 j=1 j=1 j=1 

N m 
∂ 1 XX � � 1 � � 1 � � 

− [Φ ∗ φ] Δi,j (f ) = − [Φ ∗ φ]0 Δi,j (f) = − φ2 Δi,j (f) . 
f(βi ξi + xi) m σm σm 

j i=1 j=1 

The Hessian of T : 

rrT = −Σ−1 + Λ, and a symmetric matrix Λ is given by the following partial derivatives: 
m 

∂2 ∂ 1 X � � 
= [Φ ∗ φ]0 Δi,j (f)

∂f(αiξi + xi)f(αiξi + xi) ∂f(αiξi + xi) σm 
j=1 

m m 
1 X � � 1 X � � 

= − [Φ ∗ φ]00 Δi,j (f) = Δi,j (f)φ2 Δi,j (f)
σ2m 2σ2m 

j=1 j=1 

m
∂2 ∂ 1 X � � 

= [Φ ∗ φ]0 Δi,j (f)
∂f(αiξi + xi)f(βi ξi + xi) ∂f(βi ξi + xi) σm 

j j j=1 

1 � � 1 
= [Φ ∗ φ]00 Δi,j (f ) = − Δi,j (f)φ2(Δi,j (f))

σ2m 2σ2m 

∂2 ∂ 1 � � 
= − [Φ ∗ φ]0 Δi,j (f)

∂f(βi ξi + xi)f(βi ξi + xi) ∂f(βi ξi + xi) σm 
j j j 

1 � � 1 � � 
= − [Φ ∗ φ]00 Δi,j (f) = Δi,j (f)φ2 Δi,j (f) . 

σ2m 2σ2m 

Numerical experiments 

In the numerical experiments, we consider a following variant of a dueling-Thompson sampling acquisition strategy 
described in Subsection 3.3. of [5]. In PBO-DTS, we choose Z 

0 xnext = argmax h ̃ (x), where h ̃ (x) := π ̃ ([x, x 0]; Dj )dx .f f f 
x∈X X 

Given (f ,̃ x), the integral h ̃ (x) is approximated by Monte-Carlo. We optimize h ̃ (x) with respect to x by using Bayesian f f 
0optimization to the stochastic objective h ̃ (x) (since f̃  is stochastic). We choose the duel x as described in [5].f next 
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Figure 1. The meaning of the legends of the plots. 




