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Abstract

We consider a high-dimensional mixture of two
Gaussians in the noisy regime where even an or-
acle knowing the centers of the clusters misclas-
sifies a small but finite fraction of the points. We
provide a rigorous analysis of the generalization
error of regularized convex classifiers, including
ridge, hinge and logistic regression, in the high-
dimensional limit where the number n of samples
and their dimension d go to infinity while their
ratio is fixed to « = n/d. We discuss surprising
effects of the regularization that in some cases
allows to reach the Bayes-optimal performances.
We also illustrate the interpolation peak at low reg-
ularization, and analyze the role of the respective
sizes of the two clusters.

1. Introduction

High-dimensional statistics where both the dimensionality d,
and the number of samples n are large with a fixed ratio
a = n/d has largely non-intuitive behaviour. A number
of the associated statistical surprises are for example pre-
sented in the recent, yet already rather influential papers
(Hastie et al., 2019; Sur & Candes, 2019) that analyze high-
dimensional regression for rather simple models of data.
The present paper subscribes to this line of work and stud-
ies high-dimensional classification in one of the simplest
models considered in statistics — the mixture of two Gaus-
sian clusters in d-dimensions, one of size pn and the other
(1 — p)n points. The labels reflect the memberships in the
clusters. In particular, there are two centroids localized at
i%, v* € R?, and we are given data points x;,2 =1...n
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generated as
v*

Vd

where both z; and v* have components taken in N(0, 1).
The labels y; € +1 are generated randomly with a fraction p
of +1 (and 1 — p of —1). We focus on the high-dimensional
limit where n,d — oo while « = n/d, p and A are fixed.
The factor v/d in (1) is such that a classification better than
random is possible, yet even the oracle-classifier that knows
exactly the centroid v* only achieves a classification error
bounded away from zero. We focus on ridge regularized
learning performed by the empirical risk minimization of
the loss:

X; =

yi + VAz,, (D

Z 1
Liw,b) =Y ¢ [yi(Fx]w+b)| + ZAIwlE @
i=1

where w and b are, respectively, the weight vector and
the bias to be learned, and A is the tunable strength of the
regularization. While our result holds for any convex loss
function £(.), we will mainly concentrate on the following
classic ones: the square ((v) = (1 — v)?, the logistic
£(v) = log (1 4+ e™"), and the hinge ¢(v) = max,{0,1 —
v}. We shall also study the Bayes-optimal estimator, i.e. the
one achieving the lowest possible test error on classification
given the n samples y;,x; and the model, including the
constants p and A. Crucially, the position of the centroid is
not known and can only be estimated from the data.

Our contributions and related works — The unsuper-
vised version of the problem is the standard Gaussian mix-
ture modeling problem in statistics (Friedman et al., 2001).
For the supervised model considered here, (Lelarge & Mi-
olane, 2019) recently computed rigorously the performance
of the Bayes-optimal estimator (that knows the generative
model of the data, but does not have access to the vector v*)
for the case of equally sized clusters. We generalize these
results for arbitrary cluster sizes to provide a baseline for
the estimators obtained by empirical risk minimization.

The model was recently under investigation in a number
of papers. In (Mai & Liao, 2019), the authors study the
same data generative model in the particular case of equally
sized clusters, and analyze non-regularized losses under the
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assumption that the data are not linearly separable. They
conclude that in that case the square loss is a universally
optimal loss function. Our study of the regularized losses
shows that the performance of the non-regularized square
loss can be easily, and drastically improved. (Deng et al.,
2019) studied the logistic loss, again without regularization
and for two clusters of equal size, and derive the linear
separability condition in this case. (Kini & Thrampoulidis,
2020) carried out the same analysis for the case of square
loss. The effect of data structure on learning a linearly
separable rule defined by a perceptron teacher was studied
in a model of two clusters of binary input data already in
(Maeangi et al., 1995).

As a first contribution, we provide rigorous closed-form
asymptotic formulas for the generalization and training er-
ror in the noisy high-dimensional regime, for any convex
loss /(.), that include the effects of regularization, and for
arbitrary cluster size. Our proof technique uses Gordon’s
inequality technique (Gordon, 1985; 1988; Thrampoulidis
etal., 2015), as in (Deng et al., 2019; Kini & Thrampoulidis,
2020) for the case of Gaussian mixture, and in (Salehi et al.,
2019; Montanari et al., 2019) for the case of i.i.d. Gaussian
input data and labels generated by a single-layer teacher
network. We show through numerical simulations that the
formulas are extremely accurate even at moderately small
dimensions.

Secondly, we present a systematic investigation of the ef-
fects of regularization and of the cluster size, discussing
in particular how far estimators obtained by empirical risk
minimization fall short of the Bayes-optimal one, with sur-
prising conclusions where we illustrate the effect of strong
and weak regularizations. In particular, when data are lin-
early separable, Rosset et al. (2004) proves that all mono-
tone non-increasing loss functions depending on the margin
find a solution maximizing the margin. This is indeed ex-
emplified in our model by the fact that for « < a*(A, p)
(the location of transition for linear separability) the hinge
and logistic losses converge to the same test error as the
regularization tends to zero. This is related to the implicit
regularization of gradient descent for the non-regularized
minimization (Soudry et al., 2018), and we discuss this in
connection with the “double-descent” phenomenon that is
currently the subject of intense studies (Belkin et al., 2019).

The existence of a sharp transition for perfect separability
in the model, with and without bias, is interesting in itself.
Recently (Candes & Sur, 2018) analyzed the maximum
likelihood estimate (MLE) in high-dimensional logistic re-
gression. While they analyzed Gaussian data (whereas we
study Gaussian mixture) their results on the existence of the
MLE being related to the separability of the data and having
a sharp phase transition are of the same nature as ours, and
similar to earlier works in statistical physics (Gardner, 1988;

Gardner & Derrida, 1989; Krauth & Mézard, 1989).

Finally, we note that the formulas proven here can also be
obtained from the heuristic replica theory from statistical
physics. Indeed, a model closely related to ours was studied
in this literature (Del Giudice et al., 1989; Franz et al., 1990)
and our rigorous solution thus provides a further example
of a rigorous proof of a result obtained by this technique.

All these results show that the Gaussian mixture model stud-
ied here allows to discuss, illustrate, and clarify in a unified
fashion many phenomena that are currently the subject of
intense scrutiny in high-dimensional statistics and machine
learning.

2. Main theoretical results
2.1. Performance of empirical risk minimization

Our first result is a rigorous analytical formula for the gen-
eralization classification error obtained by the empirical
risk minimization of (2). Define ¢ as the length of the vec-
tor w and m as its overlap with v*, both rescaled by the
dimensionality d

1 1 * 1
q= EHWH%7 m=_v' w, 3
then we have the following:

Theorem 1 (Asymptotics of ¢ and m) In the high dimen-
sional limit when n,d — oo with a fixed ratio « = n/d, the
length q and overlap m of the vector w obtained by the em-
pirical risk minimization of (2) with a convex loss converge
to deterministic quantities given by the unique fixed point of
the system:

m = % @)
q= m 5)
y= : ﬁ = ©

i = Byl h) = h D)
j= ‘i—ny,ﬁ [y, hyv) =h)?], (®)
i= BB beha)),  ©

5

where h ~ N (m + yb, Aq), p € (0,1) is the probability

with which y; = 1, v is the solution of

(UJ — h(y7 m,q, b))2
2y

and the bias b, defined in (2), is the solution of the equation

Eynlylv—h)]=0. (1)

v = arg min +/l(w), (10)
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This is proven in the next section using Gordon’s minimax
approach. Once the fixed point values of the overlap m and
length ¢ are known, then we can express the asymptotic
values for the generalization error and the training loss:

Theorem 2 (Generalization and training error) In the
same limit as in Theorem 1, the generalization error
expressed as fraction of wrongly labeled instances is given

by
ne(").,  ay

m-+0b
e =005 ) + =00 (T
> o=t*/24t is the Gaussian tail func-

_ 1
where Q(x) = &= /.
tion. The value of the training loss rescaled by the data
dimension reads

Ltraln = hm -5 = q + aEy,h [l(?)(y, h7’7))] . (13)
dsoo d 2

2.2. MLE and Bayes-optimal estimator

The maximum likelihood estimation (MLE) for the con-
sidered model corresponds to the optimization of the non-
regularized logistic loss. This follows directly from the
Bayes formula:

p(x|y)py(y)
Z p(X|y)py( ) (14)

y==

—log (1 + exp(—c¢)),

log p(y|x) = log

where ¢ = Ay (IV X+ 5 S log £ 7= ) therefore a simple
redefinition of the variables leads to the logistic cost function
that turns out to be the MLE (or rather the maximum a
posteriori estimator if one allows the learning of a bias to

account for the possibility of different cluster sizes).

The Bayes-optimal estimator is the “best” possible one in
the sense that it minimizes the number of errors for new
labels. It can be computed as

Gnew = arg max logp (Y{X,y}, Xnew),  (15)

ye£1
where {X,y} is the training set and Xpey is a previously
unseen data point. In the Bayes-optimal setting, the model
generating the data (1) and the prior distributions py, pz,

pv+ are known. Therefore, we can compute the posterior
distribution in (15):

p (ynew‘XnSW7 X, Y> X Ev\X,y [p (yneW7 Xnew|v)] ,  (16)

and we have

p (Xnew|ynewav) (17)

1
X exp <_2A
i=1

Hence, we can compute the Bayes-optimal generalization
error using

Egen = P (gnew 7é ynew) . (18)

This computation yields

BO mpo + bo mpo — bpo
50 — p("mokinoy 1 _ ("m0 _buoy,
& VAgpo ( ) VAgpo (9)
where mpo = qgo = x5 and bpo = %log ﬁ. This
formula is derived in the supplementary material. The case
p = 1/2 was also discussed in (Dobriban et al., 2018;

Lelarge & Miolane, 2019).

Finally, it turns out that in this problem, one can reach the
performances of the Bayes-optimal estimator, usually diffi-
cult to compute, efficiently using a simple plug-in estimator
akin to applying the Hebb’s rule (Hebb, 2005). Consider
indeed the weight vector averaged over the training samples,
each multiplied by its label and rescaled by v/d

Vi > i (20)
A

It is straightforward to check that, for Wepp,, one has in
large dimension limit m = 1 and ¢ = (1 + £). In the
case of balanced clusters, the Hebb estimator is unbiased
by definition, since the noise has zero mean. In the more
interesting case of non balanced mixture of Gaussians, one
further needs to optimize the intercept b in the linear fit
ax + b. Since the minimizer of the generalization error
with respect to the bias is unique, this parameter can be
optimized in a number of ways, including gradient descent
or cross validation. For instance, we obtain that k-fold cross
validation can get extremely close to the optimal value b =

WHebb =

ATZ log £
bias in eq. (12) one reaches the Bayes-optimal performance
epelb — 80, Since there exists a plug-in estimator that

reaches the Bayes-optimal performance, it is particularly
interesting to see how the ones obtained by empirical risk
minimization compare with the optimal results.

2.3. High-Dimensional Landscapes of Training Loss

Our analysis also leads to an analytical characterization of
the high-dimensional landscapes of the training loss. First,
we let

Lalgm,b) L w )] 4 s

mln Z Lly;(
. 2 1 T %
subject to g = g||w|| and m = A
2y
to denote the normalized training loss when we restrict the

weight vector to satisfy the two conditions in (21). In what
follows, we refer to £ (g, m, b) as the “local training loss”
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at fixed values of ¢, m and b. The “global training loss” can
then be obtained as

L3 & min Lx(q,m,b), (22)
m2<q,b
where the constraint that m? < ¢ is due to the Cauchy-

T, * *
Schwartz inequality: |m| = % < % H;EH = /4.

In the high-dimensional limit when n, d — oo with a fixed
ratio « = n/d, many properties of the local training loss
can be characterized by a deterministic function, defined as

Aq

EA(Q7 m, b) déf OZIE[E('U,Y* )] —+ 7 (23)

Here, for any v > 0, v, denotes a random variable whose
cumulative distribution function is given by

vf’(v)—kv—m—b)
VAq

v (v)+v—m+b
VAq

Moreover, v* in (23) is the unique solution to the equation

P(vy <v) = PQ(

+ (1= p)Q( )-
a’E[(€ (v4))?] = A(g — m?). (24)

Proposition 1 Let ) be an arbitrary
{(g,m,b) : m? < q}. We define

subset of

Lx(Q)= inf L b

N = nf @ mb)
and

Ex() = inf & b).

)\( ) (q,'riLI,lb)EQ )\(Q7 m, )

For any constant § > 0 and as n,d — oo with o = n/d
fixed, it holds that

]P’(EA(Q) > E0(Q) — 6) 1. (25)
Moreover,
£i= &% wmf &(qm,b), (26)
m2<gq,b

where L is the global training loss defined in (22).

The characterization in (26) shows that the global training
loss will concentrate around the fixed value £5. Meanwhile,
(25) implies that the deterministic function &, (g, m,b)
serves as a high-probability lower bound of the local train-
ing loss £ (€2) over any given subset §2. This latter property
allows us to study the high-dimensional landscapes of the
training loss as we move along the 3-dimensional space of
the parameters ¢, m and b.

In particular, by studying €, (g, m,b), we can obtain the
phase transition boundary characterizing the critical value of
a below which the training data become perfectly separable.

Proposition 2 Let A = 0. Then

N {> 0, ifa>a"
&= .

0, ifa < a*,
where
* def

= 2
o Ogg§7bn(ry b) 27)
1—1r2

n(r)=

Jouwlpf(u+ 75 =)+ = p)flu+ Jx +b)du

and f(x) is the probability density function of N'(0, 1).

3. Proof Sketches

In this section, we sketch the proof steps behind our main
results presented in Section 2. The full technical details are
given in the supplementary materials.

Roughly speaking, our proof strategy consists of three main
ingredients: (1) Using Gordon’s minimax inequalities (Gor-
don, 1985; 1988; Thrampoulidis et al., 2015), we can show
that the random optimization problem associated with the
local training loss in (21) can be compared against a much
simpler optimization problem (see (31) in Section 3.1) that
is essentially decoupled over its coordinates; (2) we show
in Section 3.2 that the aforementioned simpler problem
concentrates around a well-defined deterministic limit as
n,d — oo; and (3) by studying properties of the determinis-
tic function, we reach the various characterizations given in
Theorem 1, Proposition 1 and Proposition 2.

3.1. The dual formulation and Gordon’s inequalities

The central object in our analysis is the local training loss
L (g, m,b) defined in (21). The challenge in directly ana-
lyzing (21) lies in the fact that it involves a d-dimensional
(random) optimization problem where all the coordinates
of the weight vector w are fully coupled. Fortunately, we
can bypass this challenge via Gordon’s inequalities, which
allow us to characterize £ (g, m,b) by studying a much
simpler problem. To that end, we first need to rewrite (21)
as a minimax problem, via a Legendre transformation of the
convex loss function £(v):

L(v) = max {vu - Z(u)} , (28)

where /(u) is the convex conjugate, defined as

(u) = max {uv —£(v)}.

For example, for the square, logistic, and hinge losses de-
fined in Section 1, their corresponding convex conjugates
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are given by

gsquare(u) = I +u (29)
~ —H(—u), for —1<u<0
glogistic(u) = { ( ) . 5 (30)
0, otherwise
where H (u) &ef —ulogu — (1 —u)log(l — u) is the binary

entropy function, and

~ u, for —1<u<0
ghinge(u) = .
oo, otherwise,

respectively.

Substituting (28) into (21) and recalling the data model (1),
we can rewrite (21) as the following minimax problem

A
£a(g.m,b) = T+

1 n T, * ; T -
min maxg 2 uz_(wdv I\/Ky f/’gw eryi)E(ui),

wWES;m u

where S, ,, & {w:q=1iw|?andm = Iw'v*}.

Proposition 3 For every (q,m, b) satisfying ¢ > m?, let

de A
&(q.m,b) £ 7]
Alul?2(g=m?) uTh 15
(3D
where
h = \/Aqs—l—ml+b[y1,y2,...7yn]T (32)

and s ~ N(0,1,) is an i.i.d. Gaussian random vector.
Then for any constant ¢ and 6 > 0, we have

P(Lx(g,m,b) < c) < 2P(5>(\d) (g,m,b) < c)
and

Mm;-q>5ygmumig@@m%m—q>5)
q,m,

The proof of Proposition 3, which can be found in the sup-
plementary material, is based on an application of Gordon’s
comparison inequalities for Gaussian processes (Gordon,
1985; 1988; Thrampoulidis et al., 2015). Similar techniques
have been used by the authors of (Deng et al., 2019) to study
the Gaussian mixture model for the non-regularized logistic
loss for two clusters of the same size.

3.2. Asymptotic Characterizations

The definition of £ f\d) (g, m,b) in (31) still involves an op-
timization with an n-dimensional vector u, but it can be
simplified to a one-dimensional optimization problem with
respect to a Lagrange multiplier :

Lemma 1

£ (g, m,b) = 4

2
Alg—m?)u,|?  ugh 1~
—|—max{—\/ ¥ + ¥ —d;Z(umz)},

v>0
(33)

where u., € R™ is the solution to

Vi(u) +yu = h,
with h defined as in (32).

One can show that the problem in (33) reaches its maximum
at a point v* that is the unique solution to
2
2 [y |l 2
T’Y = A(qg — m”~).

ay (34)

Moreover,
£ (g, m, b) = Yicy [y it (i) = luy )] Mg

d 2
(35)

In the asymptotic limit, as n,d — oo, both (34) and (35)
converge towards their deterministic limits:

ay’Elul] = A(g —m?) (36)

and
d i T Aq
£ (g m,b) = aBluyF (uy) — lu)] + 5
where ., is a random variable defined through the implicit

(37)

equation ' (u.) 4+ Yy = h.

Note that (36) and (37) already resemble their counterparts
(24) and (23) given in our main results. The precise connec-
tion can be made by introducing the following scalar change
of variables: v = ¢'(u). It is easy to verify from properties
of Legendre transformations that

w="0(v) and ul'(u)—l(u) = L(v).

Substituting these identities into (36) and (37) then gives us
the characterizations (24) and (23) as stated in Section 2.

Finally, the fixed point characterizations given in Theorem 1
can be obtained by taking derivatives of £y (g, m, b) with
respect to ¢, m, b and setting them to 0. Similarly, the phase
transition curve given in Proposition 2 can be obtained by
quantifying the conditions under which the deterministic
function £, (g, m, b) reaches its minimum at a finite point.
We leave the details to the supplementary materials.
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Figure 1. Left (equal cluster size). Generalization error as a function of « at low regularization (A = 10™7) and fixed A = 1, p = 0.5.
The dashed vertical lines mark the interpolation thresholds. The generalization error achieved by the square and logistic losses is compared
to the Bayes-optimal one. In this symmetric clusters case, it is possible to tune X in order to reach the optimal performance. In the inset,
the training loss as a function of a.. The training loss is close to zero up to the interpolation transition. We compare our theoretical
findings with simulations, at d = 1000. Right (unequal cluster size) Generalization error as a function of « at fixed A = 1, p = 0.2.
The performance of the square loss at low (A = 10 ") and optimal regularization is compared to the Bayes-optimal performance. In
this non-symmetric case p # 0.5, the Bayes-optimal error is not achieved by the optimally regularized losses under consideration. We
compare our results with numerical simulations at d = 1000. Additionally, we illustrate that the Bayes-optimal performance can be
reached by the optimal plug-in estimator defined in eq. (20) (here with d = 5000).

3.3. Interpretation from the replica method

These same equations can be independently derived from
the non-rigorous replica method from statistical physics
(Mézard et al., 1987), a technique that has proven useful
in the study of high-dimensional statistical models, for in-
stance following (Franz et al., 1990; Lesieur et al., 2016).
Alternatively, these equations can also be seen as a special
case of the State Evolution equation of the Approximate
Message Passing algorithm (Donoho et al., 2009; Bayati &
Montanari, 2011; Lesieur et al., 2016). Both interpretations
can be useful, since the various quantities enjoy additional
heuristic interpretations that allow us to obtain further in-
sight. For instance, the parameter ~y in (6) is connected to
the rescaled variance of the estimator w:

v i Exo [IWIE] — Exy [Ilwllz]?
d—oo d

(38)

The zero temperature limit of the fixed point equations ob-
tained with the replica method corresponds to the loss mini-
mization (Mézard et al., 1987; Mézard & Montanari, 2009).
In this limit, the behaviour of the rescaled variance V at
penalty going to zero (A — 0) is an indicator of data separa-
bility. In the non-separable regime, the minimizer of the loss
is unique and V' — 0 at temperature 7' — 0. The parameter
~ turns out to be simply v = limr_,o V/T. However, in
the regime where data are separable there is a degeneracy
of solutions at A = 0, and the variance at zero temperature
is finite, V' > 0. Hence the parameter  has a divergence at
the transition, and this provides a very easy way to compute
the location of the phase transition.

4. Applications

In this section we evaluate the above formulas and investi-
gate how does the test error depend on the regularization
parameter )\, the fraction taken by the smaller cluster p, the
ratio between the number of samples and the dimension
« and the cluster variance A. Keeping in mind that min-
imization of the non-regularized logistic loss corresponds
in the considered model to the maximum likelihood esti-
mation (MLE), we thus pay a particular attention to it as
a benchmark of what the most commonly used method in
statistics would achieve in this problem. Another important
benchmark is the Bayes-optimal performance that provides
a threshold that no algorithm can improve.

Weak and strong regularization — Fig. 1 summarizes
how the regularization parameter A and the cluster size p
influence the generalization performances. The left panel
of Fig. 1 is for the symmetric case p=0.5, the right panel
for the non-symmetric case p = 0.2. Let us recall that o™ is
defined as the value of « such that for « < a* the training
loss for hinge and logistic goes to zero (in other words, the
data are linearly separable (Candes & Sur, 2018)), see (27).
In the left part of Fig. 1 we depict (in green) the performance
of the non-regularized logistic loss a.k.a. the maximum
likelihood. For o > «a*(p,A) the training data are not
linearly separable and the minimum training loss is bounded
away from zero. For o < a*(p,A) the data are linearly
separable, in which case properly speaking the maximum
likelihood is ill-defined (Sur & Candes, 2019), the curve
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Figure 2. Generalization error as a function of « for different values of A, at fixed A = 1 and p = 0.5, for the square loss (left), the hinge
loss (right) and the logistic loss (inset), compared to the Bayes-optimal error. If the two clusters have the same size, the Bayes-optimal
error can be reached by increasing the regularization. Notice how regularization smoothens the curves and makes the “peak’ or “kink”

disappear in all cases.

that we depict is the limiting value reached as A — 0. The
points are results of simulations with a standard scikitlearn
(Pedregosa et al., 2011) package. As shown in (Soudry
et al., 2018), even though the logistic estimator does not
exist, gradient descent actually converges to the max-margin
solution in this case, or equivalently to the minimal norm
solution classifying all samples correctly, a phenomenon
called “implicit regularization”, which is well illustrated
here.

Another interesting phenomenon is the non-monotonicity of
the curve. This is actually an avatar of the so-called “double
descent” phenomenon where the generalization “peaks” to
a bad value and then decays again. This was observed and
discussed recently in several papers (Geiger et al., 2019;
Belkin et al., 2019; Hastie et al., 2019; Mitra, 2019; Mei &
Montanari, 2019), but similar observations appeared as early
as 1996 in (Opper & Kinzel, 1996). Indeed, we observed
that the generalization error of the non-regularized square
loss (in red) has a peak at « = 1 at which point the data
matrix in the non-regularized square loss problem becomes
invertible. It is interesting that for o > a* the generalization
performance of the non-regularized square loss is better than
the one of the maximum likelihood. This has been proven
recently in (Mai & Liao, 2019), who showed that among
all the convex non-regularized losses, the square loss is
optimal.

Fig. 1 further depicts (in purple) the Bayes-optimal error in
eq. (19). We have also evaluated the performance of both the
logistic and square loss at optimal value of the regularization
parameter A. This is where the symmetric case (left panel)

differs crucially from the non-symmetric one (right panel).

While in the high-dimensional limit of the symmetric case
the optimal regularization At — 00 and the corresponding

error matches exactly the Bayes-optimal error, for the non-
symmetric case 0 < Agp¢ < oo and the error for both losses
is bounded away from the Bayes-optimal one for any o> 0.

We give a fully analytic argument in the supplementary
material for the perhaps unexpected property of achieving
the Bayes-optimal generalization at Ap¢ — 0o and p = 0.5
for any loss that has a finite 2nd derivative at the origin. In
simulations for finite value of d we use a large but finite
value of )\, details on the simulation are provided in the
supplementary material.
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> —o— a;=10.1
0.22
0.20
0.18 ~
107° 1077 1073 1073 107! 10t
A

Figure 3. Generalization error as a function of \ for the hinge and
logistic losses, at fixed A = 1, p = 0.5 and two different values
of v 1 = 2,02 = 10. As A — 07, the error of the two losses
approaches the same value if the data are separable (a1 < o).
This is not true if the data are not separable (a2 > «™). At large A,
the error of both losses reaches the Bayes-optimal, for all «.

Regularization and the interpolation peak — In Fig. 2
we depict the dependence of the generalization error on
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Figure 4. Generalization error as a function of A for different val-
ues of p close to 0.5, at fixed A = 0.3 and o = 2, for the square
loss. Atall p < 0.5, the error exhibits a minimum at finite A = \*,
and reaches a plateau at A > \*. The value of the error at the
plateau is €gen = min{p, 1 — p}, which is the error attained by the
greedy strategy of assigning all points to the larger cluster. We com-
pare our analytical results with simulations for p = 0.4, 0.49, 0.5.
Simulations for p = 0.4 are done at d = 1000. Simulations for
p = 0.5,0.49 are done at d = 10000. Since the dimensionality
d is finite in the simulations, effectively p < 0.5 in the numerics.
Therefore, the error in simulations always reaches a plateau at
large ).

the regularization A for the symmetric p = 0.5 case for
the square, hinge and logistic loss. The curves at small
regularization show the interpolation peak/cusp at & = 1
for the square loss and a* for all the losses that are zero
whenever the data are linearly separable. We observe a
smooth disappearance of the peak/cusp as regularization is
added, similarly to what has been observed in other models
that present the interpolation peak (Hastie et al., 2019; Mei
& Montanari, 2019) in the case of the square loss. Here we
thus show that a similar phenomena arises with the logistic
and hinge losses as well; this is of interest as this effect has
been observed in deep neural networks using a logistic/cross-
entropy loss (Geiger et al., 2019; Nakkiran et al., 2019). In
fact, as the regularization increases, the error gets better
in this model with equal-size clusters, and one reaches the
Bayes-optimal values for large regularization.

Max-margin and weak regularization — Fig. 3 illus-
trates the generic property that all monotone non-increasing
loss functions converge to the max-margin solution for lin-
early separable data as A\ — 0T (Rosset et al., 2004). Fig. 3
depicts a very slow convergence towards this result as a
function of regularization parameter A for the logistic loss.
While for o > a* both the hinge and logistic losses perfor-
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Figure 5. Critical value « = «*, defined by Proposition 2, at
which the linear separability transition occurs as a function of
A, for different values of p. Similarly as for what happens for
Gaussian data (Candes & Sur, 2018), the MLE does not exists on
the left the curve. The line indicates the location of the transition
from linearly separable to non-linearly separable data, that depends
on the data structure (the variance A and the fraction p).

mance is basically indistinguishable from the asymptotic
one already at log A =~ —3, for & < o the convergence of
the logistic loss still did not happen even at log A ~ —10.

Cluster sizes and regularization — In Fig. 4 we study
in greater detail the dependence of the generalization error
both on the regularization A and p as p — 0.5. We see that
the optimality of A — oo holds only strictly at p = 0.5 and
at any p only close to 0.5 the error at A\ — oo is very large
and there is a well delimited region of \ for which the error
is close to (but strictly above) the Bayes-optimal error. As
p — 0.5 this interval is getting longer and longer until it
diverges at p = 0.5. It needs to be stressed that this result is
asymptotic, holding only when n,d — oo while n/d = «
is fixed. The finite size fluctuations cause that the finite size
system behaves rather as if p was close but not equal to 0.5,
and at finite size if we set A arbitrarily large then we reach
a high generalization error. We instead need to optimize
the value of A for finite sizes either by cross-validation or
otherwise.

Separability phase transition — The position of the “in-
terpolation” threshold when data become linearly separable
has a well defined limit in the high-dimensional regime as
a function of the ratio between the number of samples n
and the dimension d. The kink in generalization indeed
occurs at a value a* when the training loss of logistic and
hinge losses goes to zero (while for the square loss the peak
appears at d = n when the system of n linear equations
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with d parameters becomes solvable). The position of o,
given by Proposition 2, is shown in Fig. 5 as a function
of the cluster variance for different values of p. For very
large cluster variance, the data become random and hence
a = 2 for equal-sized cluster, as famously derived in the
classical work by (Cover, 1965). When p < 1/2, however,
it is easier to separate linearly the data points and the lim-
iting value of a* gets larger and differ from Cover’s. For
finite A, the two Gaussian distributions become distinguish-
able, and the data acquires structure. Consequently, the o*
is growing as the correlations make data easier to linearly
separate again, similarly as described (Candes & Sur, 2018).
This phenomenology of the separability phase transition, or
equivalently of the existence of the maximum likelihood
estimator, thus seems very generic.

5. Conclusion

We have studied the performance of regularized convex clas-
sifiers at separating a mixture of two Gaussian clusters in
the noisy regime when even an oracle knowing the centers
of the clusters would make a finite fraction of mistakes. We
have derived rigorous closed-form formulas for the gener-
alization and training errors in the limit where the number
of samples and dimensions go to infinity, while their ratio
is a fixed control parameter. We have then applied our the-
oretical findings to shed light on the role of the different
model parameters on the generalization performance. We
have considered the setup with a generic bias b, two clusters
with generic sizes, showing that the case b = 0, p = 1/2
is singular and the generic case, p # 1/2, has qualitatively
different behavior when regularization is added. Finally, we
have obtained that the linear separability transition explicitly
depends on the cluster size.

In this work we focused on ridge regularization, however
the analysis framework can be generalized to handle other
separable convex regularizers. Moreover, our analysis can
be extended to the following multi-class Gaussian mixture
model:

X; = vy, + VAzZ;,

where {y;} are i.i.d. samples drawn from a finite set
{1,2,...,M},and {vy,va,..., v} is a collection of M
fixed vectors. The current model studied in the paper, eq.
(1), is a special case of this more general setting.
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