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A. Derivation of the generalization error formula
The generalization error is defined as the average fraction of mislabeled instances

εgen =
1

4
Eynew,xnew,X,y

[
(ynew − ŷnew)

2
]
, (A.1)

where ynew is the label of a new observation xnew, and the estimator ŷnew is computed as

ŷnew = sign
(
w · xnew√

d
+ b

)
. (A.2)

Eq. (A.2) holds for every vector w = w (X,y) and bias b = b (X,y) computed on the training set {X,y}.

Using the fact that ynew, ŷnew = ±1, it is easy to show that (A.1) can be rewritten as

εgen =
1

2
(1− Eynew,xnew,X,y [ynewŷnew]) =

1

2

(
1− Eynew,xnew,X,y

[
ynewsign

(
w · xnew√

d
+ b

)])
. (A.3)

Let us consider the last term in (A.3). Using again ynew = ±1, we can bring ynew inside the sign function and rewrite

Eynew,xnew,X,y

[
ynewsign

(
w · xnew√

d
+ b

)]
= Eynew,xnew,X,y

[
sign

(
yneww · xnew√

d
+ ynewb

)]
. (A.4)

The term ynewxnew can be rewritten as

ynewxnew = ynew

(
ynew

v√
d

+
√

∆znew

)
=

v√
d

+
√

∆z′new, (A.5)

where z′new = ynewznew ∼ N (0, Id) has the same distribution as znew, since ynew and znew are independent. Hence

Eynew,xnew,X,y

[
sign

(
w · ynewxnew√

d
+ ynewb

)]
= Eynew,z′new,v,X,y

[
sign

(
w · v
d

+

√
∆

d
w · z′new + ynewb

)]
. (A.6)

The estimator w only depends on the training set, hence w and z′new are independent. We call their rescaled scalar product ς ,
a random variable distributed as a standard normal

ς =
1

‖w‖
w · z′new ∼ N (0, 1) . (A.7)
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By averaging over ς , we obtain

Eynew,v,X,y,ς

[
sign

(
w · v
d

+

√
∆

d
‖w‖ς + ynewb

)]

= Eynew,v,X,y,ς

[
sign

(
1√
∆

w

||w||
· v√

d
+ ς + ynewb

√
d√

∆||w||

)]
,

(A.8)

where we have used that
√

∆
d ‖w‖ > 0 to rescale the argument of the sign function. Finally, we obtain

εgen =
1

2
(1− Eynew,v,X,y [P (ς > −τ)− P (ς < −τ)]) = Eynew,v,X,y [Q(τ)] . (A.9)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt is the Gaussian tail function, and we have defined

τ =

√
d√

∆||w||

(w · v
d

+ ynewb
)
. (A.10)

In the large d limit, the overlaps concentrate:

w · v
d
−→
d→∞

m, (A.11)

||w||√
d
−→
d→∞

√
q. (A.12)

Hence the generalization error reads

εgen = ρQ
(m+ b√

∆q

)
+ (1− ρ)Q

(m− b√
∆q

)
, (A.13)

where ρ ∈ (0, 1) is the probability that ynew = +1.

B. Derivation of the Bayes-optimal error
In order to compute the Bayes-optimal error, we consider the distribution of a new data point xnew and the corresponding
new label ynew, given the estimate v of the true centroid v∗

p (xnew, ynew|v) ∝ p (xnew|ynew,v) py(ynew) ∝ exp

(
− 1

2∆

d∑
i=1

(
xinew −

ynewvi√
d

)2
)

py(ynew), (B.1)

where “∝” takes into account the normalization. Similarly, the posterior on v given the training set is

p (v|X,y) ∝ p (X|v,y) pv (v) ∝

[
n∏
µ=1

exp

(
− 1

2∆

d∑
i=1

(
xiµ −

yµvi√
d

)2
)]

exp

(
−1

2

d∑
i=1

(vi)2

)
, (B.2)

where we remind that v has i.i.d. components taken in N (0, 1), and “∝” takes into account the normalization over v. We
would like to find an explicit expression for

p (ynew|xnew,X,y) ∝ Ev|X,y [p (ynew,xnew|v)] , (B.3)

in order to estimate the new label as
ŷnew = argmax

y′=±1
log p (y′|xnew,X,y) . (B.4)

Therefore, we have to compute

Ev|X,y [p (ynew,xnew|v)] ∝ py (ynew)

∫ ( d∏
i=1

dvi e−
1
2 (vi)2

)
n∏
µ=0

e
− 1

2∆

∑d
i=1

(
xiµ−

yµvi
√
d

)2

, (B.5)
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where in the product over µ on the right-hand side we have used the notation y0 = ynew, x0 = xnew. Let us call Iv the
integral over v in (B.5):

Iv =

∫ d∏
i=1

dvi e
−
∑d
i=1

[
1

2∆

∑n
µ=0

(
xiµ−

yµvi
√
d

)2

+ 1
2 (vi)2

]
=

d∏
i=1

∫
dv e−

1
2∆

∑n
µ=0

(
xiµ−

yµv
√
d

)2
− 1

2 v2

, (B.6)

where in the last equality we have dropped the index i from the components of v for simplicity, since they are all independent.
Computing the integral over v, we obtain

Iv = C (α,∆, d)

d∏
i=1

n∏
µ=0

exp

(
− 1

2∆
(
α+ ∆ + 1

d

) ((α+ ∆)(xiµ)2 − α

n
xiµyµ

n∑
ν=0

xiνyν

))

= C (α,∆, d) exp

(
− 1

2∆
(
α+ ∆ + 1

d

) d∑
i=1

(
(α+ ∆)(xinew)2 − α

n
ynewx

i
new

n∑
ν=1

xiνyν −
α

n
(xinew)2

))

× exp

(
− 1

2∆
(
α+ ∆ + 1

d

) n∑
µ=1

d∑
i=1

(
(α+ ∆)(xiµ)2 − α

n
yµx

i
µ

n∑
ν=1

xiνyν −
α

n
yµx

i
µynewx

i
new

))

= C (α,∆, d) C̃ (X,y,xnew, α,∆, d) exp

(
α

∆
(
α+ ∆ + 1

d

)ynewxnew ·
1

n

n∑
µ=1

yµxµ

)
,

(B.7)

where the first two factors C and C̃ contain all the terms that do not depend on ynew. Therefore

ŷnew = argmax
y=±1

[
α

∆
(
α+ ∆ + 1

d

)yxnew ·
1

n

n∑
µ=1

yµxµ + log py (y)

]
. (B.8)

Using the fact that yµxµ = v∗√
d

+
√

∆zµ, zµ ∼ N (0, Id) and v∗ is the true realization of v, the first term in (B.8) in the
limit where n, d→∞ can be rewritten as

1

n

n∑
µ=1

xnew · yµxµ −→
n,d→∞

ynew +

√
∆

(
1 +

∆

α

)
z′new, (B.9)

where z′new ∼ N (0, 1). Therefore, in the large d limit we find that

ŷnew = argmax
y=±1

[
α

∆ (α+ ∆)
y

(
ynew +

√
∆

(
1 +

∆

α

)
z′new

)
+ log py (y)

]
. (B.10)

It is useful to rewrite the generalization error as

εgen =
1

4
EX,y,xnew,ynew

[
(ŷnew − ynew)2

]
=

∑
ynew=−1,1

P (ŷnew 6= ynew) py(ynew). (B.11)

Using (B.10), we can compute

P (ŷnew 6= ynew) = P
(
ynewz

′
new < −

√
α

∆(α+ ∆)

(
1 +

(
1 +

∆

α

)
∆

2
log

py(ynew)

py(−ynew)

))
. (B.12)

If ynew = 1, (B.12) gives

P (ŷnew 6= 1) = Q

 α
∆+α + ∆

2 log ρ
1−ρ√

∆ α
∆+α

 , (B.13)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt is the Gaussian tail function. If ynew = −1, (B.12) gives

P (ŷnew 6= −1) = Q

 α
∆+α −

∆
2 log ρ

1−ρ√
∆ α

∆+α

 . (B.14)
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Using the fact that ρ = py(1) and 1− ρ = py(−1), we get that

εBO
gen = ρQ

 α
∆+α + ∆

2 log ρ
1−ρ√

∆ α
∆+α

+ (1− ρ)Q

 α
∆+α −

∆
2 log ρ

1−ρ√
∆ α

∆+α

 , (B.15)

which is indeed the formula given in Eq. 19 of the main text.

B.1. Bayes-optimal estimator

It is worth noting that the optimal error in (B.15) can be achieved by the plug-in estimator

ŵ =

√
d

n

n∑
µ=1

yµxµ. (B.16)

This result was already shown in (Lelarge & Miolane, 2019) for the case of symmetric clusters. The optimal bias is obtained
from the minimization of the generalization error (A.13) with respect to b, at fixed m, q. This yields:

b̂ = argmin
b

εgen(q,m) =
q

m

∆

2
log

(
ρ

1− ρ

)
. (B.17)

Substituting (B.16) in the definition of the overlaps (3) in the main text, we obtain that the values of m and q associated to
the plugin estimator are

m = 1, q =
(
1 + ∆

α

)
. (B.18)

Hence, the generalization error of the plug-in estimator is

εplugin
gen = P

(
ynew

(
1√
d
ŵ · xnew + b̂

)
< 0

)
= P

(
ynewz

′
new < −

√
α

∆(α+ ∆)

(
1 + ynew

(
1 +

∆

α

)
∆

2
log

ρ

1− ρ

))
,

(B.19)

where we have used (B.9) in the last equality. The probability in (B.19) is the same as in (B.12). Hence, the plug-in estimator
achieves the Bayes-optimal error.

C. Derivation of the training loss formula
In what follows, we provide more technical details for several key results stated in Section 3. They serve as the basis of the
proof of Proposition 1.

C.1. Proof of Proposition 3

Recall from the main text that

Lλ(q,m, b) =
λq

2
+ min

w∈Sq,m
max
u

1

d

n∑
i=1

[
ui

(w>v∗
d

+
√

∆
yiz
>
i w√
d

+ byi

)
− ˜̀(ui)]

=
λq

2
+ min

w∈Sq,m
max
u

1

d

n∑
i=1

[
ui(m+ byi)− ˜̀(ui) +

√
∆

d
uiyiz

>
i w
]
,

where in reaching the second equality we have used the fact that any w ∈ Sq,m satisfies the equalitym = 1
dw
>v∗. Introduce

an auxiliary problem

L̃λ(q,m, b) =
λq

2
+ min

w∈Sq,m
max
u

{
1

d

n∑
i=1

[
ui(m+ byi)− ˜̀(ui)]+

√
∆

d
‖u‖g

>w

d
+
√

∆q
(1

d

n∑
i=1

uiyisi

)}

=
λq

2
+ min

w∈Sq,m
max
u

{
1

d

n∑
i=1

[
uihi − ˜̀(ui)]+

√
∆

d
‖u‖g

>w

d

}
,
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where g = (g1, g2, . . . , gd)
> and s = (s1, s2, . . . , sn) are two independent random vectors whose entries are drawn from

the i.i.d. standard normal distribution, and hi =
√

∆q(yisi) +m+ byi. As yi ∈ {±1}, independent of si, we note that hi
has the same probability distribution as the quantity defined in (32) in the main text.

Gordon’s minimax inequalities (Gordon, 1985; 1988; Thrampoulidis et al., 2015) allow us to make the following comparison:
For any constants c and δ > 0, we have

P(Lλ(q,m, b) < c) ≤ 2P(L̃λ(q,m, b) < c). (C.1)

To connect this to the statements in Proposition 3, we note that

L̃λ(q,m, b) ≥ λq

2
+ max

u
min

w∈Sq,m

{
1

d

n∑
i=1

[
uihi − ˜̀(ui)]+

√
∆

d
‖u‖g

>w

d

}

=
λq

2
+ max

u

{
1

d

n∑
i=1

[
uihi − ˜̀(ui)]−√∆‖u‖2(q −m2)

d

‖g‖√
d

}
= E(d)

λ (q,m, b).

It follows that
P(L̃λ(q,m, b) < c) ≤ P(E(d)

λ (q,m, b) < c).

Combining this inequality with (C.1) gives us the first inequality in Proposition 3. To obtain the second inequality in the
proposition, we use the fact that the unconstrained optimization problem in (22) for the global training loss L∗ is convex.
Following exactly the same strategy as used in (Thrampoulidis et al., 2015), we can interchange the order of min and max
in the dual formulation of (22), which then allows us to reach the result in the main text. Indeed, in applying Gordon’s
inequalities to analyze high-dimensional random optimization problems, one can exchange the order of the min and the max
and thus obtain a two sided inequality by using the following arguments. Let

Φ = min
w∈Sw

max
u∈Su

{
w>Zu + f(w)− g(u)

}
,

where Z is a random matrix with i.i.d. standard Gaussian entries, and f(·), g(·) are two convex functions. (Note that the
quantity Lλ(q,m, b) in our proof is a special case of the above formulation). In the proof of Proposition 3, we applied
Gordon’s inequality to show that Φ has a high-probability lower bound given by L̃λ(q,m, b). Now to exchange the order of
the min and the max, we consider

−Φ = max
w∈Sw

min
u∈Su

{
w>(−Z)u− f(w) + g(u)

}
= min

u∈Su
max
w∈Sw

{
w>(−Z)u− f(w) + g(u)

}
, (C.2)

where the second equality holds if Sw and Su are convex sets. Note that the constraint set w ∈ Sq,m as used in the proof
of Proposition 3 is not convex, and that’s exactly the reason why we only state an inequality for Lλ(q,m, b) and ε(d)

λ in
Proposition 3. However, when we study L∗λ, there is no longer any restriction on w given by q and m. It follows that
the corresponding constraint set Sw is convex. Consequently, we can now apply Gordon’s inequalities to (C.2) to get a
high-probability lower bound for −Φ and thus a high-probability upper bound for Φ.

C.2. Proof of Lemma 1

We first rewrite the optimization problem in (31) as

max
µ≥0

max
‖u‖2/d=µ

{
−
√

∆µ(q −m2) +
u>h

d
− 1

d

n∑
i=1

˜̀(ui)} . (C.3)

For the inner maximization, the constraint on the squared norm ‖u‖2 weakly couples different coordinates of u together. To
fully decouple these coordinates, we introduce a Lagrangian function

u>h

d
− 1

d

n∑
i=1

˜̀(ui)− γ

2d
(‖u‖2 − µd),



The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture: Supplementary Material

where γ > 0 is the Lagrange multiplier. For any fixed γ, the optimal solution uγ ∈ Rn can be obtained by setting the
gradient of the Lagrangian function to zero, which gives us

∇˜̀(uγ) + γuγ = h.

Since there is a one-to-one correspondence between the Lagrange multiplier γ and the normalized squared norm µ =
‖uγ‖2/d, it is thus equivalent to solve (C.3) in terms of

max
γ>0

{
−
√

∆(q −m2)‖uγ‖2
d

+
u>γ h

d
− 1

d

n∑
i=1

˜̀(uγ,i)}
and thus we get (33).

C.3. Proof of Proposition 1

We first establish (25) for the special case where the subset Ω is a singleton. In this case, we just need to show

P
(
Lλ(q,m, b) ≥ Eλ(q,m, b)− δ

)
→ 1. (C.4)

for any fixed q,m and b.

Recall the characterization of E(d)
λ (q,m, b) given in Lemma 1. The problem in (33) reaches its maximum at a point γ∗d

where the derivative of the function to be maximized is equal to 0. In calculating this derivative, we need the quantity duγ,i
dγ ,

which can be obtained as ˜̀′′(uγ,i)duγ,i
dγ

+ uγ,i + γ
duγ,i
dγ

= 0

and thus duγ,i
dγ =

−uγ,i˜̀′′(uγ,i)+γ . Using this expression and after some simple manipulations, we get

α(γ∗d)2
‖uγ∗d‖

2

n
= ∆(q −m2). (C.5)

Moreover,

E(d)
λ (q,m, b) =

∑n
i=1

[
uγ∗d ,i

˜̀′(uγ∗d ,i)− ˜̀(uγ∗d ,i)]
d

+
λq

2
. (C.6)

Next, we introduce the following scalar change of variables: vγ,i = ˜̀′(uγ,i). It is easy to verify from properties of Legendre
transformations that

uγ,i = `′(vγ,i) and uγ,i ˜̀′(uγ,i)− ˜̀(uγ,i) = `(vγ,i).

Substituting these identities, we can characterize vγ,i via the implicit equation

vγ,i + γ`′(vγ,i) = hi. (C.7)

Moreover, (C.5) can now be rewritten as

α(γ∗d)2 1

n

n∑
i=1

[`′(vγ∗d ,i)]
2 = ∆d(q −m2) (C.8)

and more importantly, (C.6) can be simplified as

E(d)
λ (q,m, b) =

α

n

n∑
i=1

`(vγ∗d ,i) +
λq

2
.

Let vγ be a random variable defined via the implicit equation

vγ + γ`′(vγ) = h, (C.9)
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where h =
√

∆qs+m+ by with S ∼ N (0, 1) and y being a random variable independent of s such that

P(y = 1) = ρ and P(y = −1) = 1− ρ.

Since the loss function `(·) is convex, the function v + γ`′(v) is strictly increasing. It follows that the distribution function
of vγ is given as in the main text. As n, d→∞ with d/n fixed at α, we have

1

n

n∑
i=1

[`′(vγ,i)]
2 → E[(`′(vγ))2]

uniformly over any compact subset of γ. It follows that γ∗d as defined in (C.8) converges to γ∗, which is the unique solution
of (24). Moreover, we have

E(d)
λ (q,m, b)→ Eλ(q,m, b) = αE[`(vγ∗)] +

λq

2
. (C.10)

For any δ > 0, we can apply Proposition 3 to get

P(Lλ(q,m, b) < Eλ(q,m, b)− δ) ≤ 2P(E(d)
λ (q,m, b) < Eλ(q,m, b)− δ).

As the right-hand side tends to 0 due to (C.10), we have (C.4).

Let Ω be an arbitrary compact subset of
{

(q,m, b) : m2 ≤ q
}

. We denote by ΩK a finite subset of Ω consisting of K points,
i.e., ΩK = {(qk,mk, bk) ∈ Ω : 1 ≤ k ≤ K}.

P(Lλ(ΩK) < Eλ(Ω)− δ) = P(∪Kk=1 {Lλ(qk,mk, bk) < Eλ(Ω)− δ})

≤
K∑
k=1

P(Lλ(qk,mk, bk) < Eλ(Ω)− δ)

≤
K∑
k=1

P(Lλ(qk,mk, bk) < Eλ(qk,mk, bk)− δ).

As n→∞, the right-hand side of the inequality tends to 0. It follows that P(Lλ(ΩK) ≥ Eλ(Ω)− δ)→ 1. Note that this
characterization holds for any finite K. From the smoothness of the optimization problem (21), one can construct a family of
subsets {ΩK} such that Lλ(ΩK)→ Lλ(Ω) as K →∞, and thus we have (25). This strategy follows closely the approach
used in (Thrampoulidis et al., 2015). Finally, to get (26), we first note that (25) implies that

P
(
L∗λ ≥ E∗λ − δ

)
→ 1.

The “other direction”, i.e., P
(
L∗λ ≤ E∗λ + δ

)
→ 1 can be obtained by exploiting the convexity of the loss function `(·),

which allows us to interchange the order of min and max in the dual formulation of (22). We omit the details as they follow
exactly the same strategy as used in (Thrampoulidis et al., 2015).

C.4. Proof of Proposition 2

We start with the fixed-point equation for the Lagrange multiplier given in (24). For our proof, it will be more convenient to
rewrite this equation in terms of the random variable uγ

def
= `′(vγ). It is a well-known property of Legendre transformations

that we can write the “symmetric equation” vγ = ˜̀′(uγ). Since vγ is determined via the implicit equation (C.9), we have

˜̀′(uγ) + γuγ = h.

It follows that the cumulant distribution function of uγ is given by

P(uγ ≤ u) = ρQ

( ˜̀′(u) + γu−m− b√
∆q

)
+ (1− ρ)Q

( ˜̀′(u) + γu−m+ b√
∆q

)
,



The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture: Supplementary Material

where Q(·) is the distribution function of a standard normal random variable. Writing (24) in terms of uγ , we have

αγ2E[u2
γ ] = ∆(q −m2). (C.11)

Our assumption of the loss function `(·) is that it is convex and monotonically decreasing, with `(+∞) = `′(+∞) = 0. It
follows that `′(−∞) < uγ < 0. Introducing the changes of variables θ def

= m/
√
q, b̃ def

= b/
√
q and γ̃ = γ/

√
q, and using the

identity E[u2
γ ] = (−2)

∫ 0

`′(−∞)
uP(uγ ≤ u)du, we can rewrite (C.11) as

αS(γ̃, q, θ) = ∆(1− θ2), (C.12)

where

S(γ̃, q, θ)
def
= γ̃2

∫ −`′(−∞)

0

(2u)

(
ρQ
( ˜̀′(−u)√

∆q
+
−γ̃u− θ − b̃√

∆

)
+ (1− ρ)Q

( ˜̀′(−u)√
∆q

+
−γ̃u− θ + b̃√

∆

))
du.

We further denote by γ̂∗(q, θ) the solution to (C.12). We can show that, for any fixed γ̃ and θ, the function S(γ̃, q, θ) is
monotonically decreasing as we increase q. Moreover,

lim
q→∞

S(γ̃, q, θ) = S∗(γ̃, θ)
def
=

∫ −γ̃`′(−∞)

0

(2u)
[
ρQ
(−u− θ − b̃√

∆

)
+ (1− ρ)Q

(−u− θ + b̃√
∆

)]
du.

Clearly, S∗(γ̃, θ) is monotonic with respect to γ̃, but it has a finite limit as γ̃ →∞, i.e.,

lim
γ̃→∞

S∗(γ̃, θ) = ∆

∫ ∞
0

duu2
[
ρf
(
u+

θ + b̃√
∆

)
+ (1− ρ)f

(
u+

θ − b̃√
∆

)]
,

where f(·) is the probability density function of N (0, 1). An implication of this limit being finite is that, although the
Lagrange multiplier γ̂∗(q, θ) remains finite for any fixed q, it tends to∞ as q →∞ if

α <
∆(1− θ2)

S∗(∞, θ)
. (C.13)

It follows from (C.9) that, as γ →∞, `′(vγ)→ 0 and thus vγ →∞. Consequently,

lim
q→∞

Eλ=0(q,m, b) = lim
q→∞

αE[`(vγ∗(q,θ))]→ 0.

This characterization can be interpreted as follows: If there exists a θ that satisfies (C.13), then as we move along the “ray”
of constant slope θ = m/

√
q, the training loss Eλ=0(q,m, b) will tend to 0. The critical threshold α∗ can then be obtained

by maximizing the right-hand side of (C.13), which gives us the final expression as stated in Proposition 2.

C.5. Derivation of Theorem 1 from Gordon’s characterization

In this section, we show that the fixed point equations in Theorem 1 can be mapped to Gordon’s characterization, namely
(24) and (26) in the main text. First of all, we observe that (24) is trivially satisfied by the solution of system (4)-(9). Then,
we consider the minimization of Eλ(q,m, b), derived in (C.10), with respect to q,m, b. This simply amounts to setting the
derivatives to zero. Note that the partial derivatives of v and γ∗ can be computed by taking the derivatives of both sides of
(C.7) and (24) respectively. The minimization leads to the following system of equations:

α

√
∆

q
Ey,s [`′(vγ∗)s] + λ =

∆

γ
, (C.14)

m = −α γ
∆
Ey,s [`′(vγ∗)] , (C.15)

Ey,s [y`′(vγ∗)] = 0, (C.16)
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where s ∼ N (0, 1), y = +1 with probability ρ ∈ (0, 1) and y = −1 otherwise. We observe that (C.16) is the same as (11)
and (C.15) is equivalent to (4) and (6). Using again (6), we can rewrite (C.14) as

γ̂ = α

√
∆

q
Ey,s [`′(vγ∗)s] . (C.17)

Note that `′(vγ∗(h(s))) is a function of s, and `′′ is well defined. Therefore, we can apply Stein’s lemma and rewrite

γ̂ = α

√
∆

q
Ey,s [∂svγ∗`

′′(vγ∗)] , (C.18)

which leads to an identity if we substitute the definition of γ̂ provided in (9).

D. Evaluation of the fixed point equations
In this section we will compute the fixed-point equations for the square and hinge loss. The equations for the logistic loss
cannot be computed analytically and require numerical integration.

D.1. Square loss

In this case, `(ω) = 1
2 (ω − 1)2 and the fixed point equations (4)-(9) can be inverted analytically. The minimizer v, defined

as

v ≡ argmin
ω

(ω − h(y,m, q, b))2

2γ
+

1

2
(ω − 1)2, (D.1)

is simply

v = h− γl′(v) =
h+ γ

1 + γ
, (D.2)

where h ∼ N (m+ yb,∆q). Hence, we obtain

m̂ =
α

γ
Ey,h [v(y, h, γ)− h] =

α

1 + γ
(1−m− (2ρ− 1)b) , (D.3)

q̂ =
α∆

γ2
Ey,h

[
(v(y, h, γ)− h)2

]
=

α∆

(1 + γ)2

(
∆q + Ey

[
(1−m− yb)2

])
, (D.4)

γ̂ =
α∆

γ
(1− Ey,h [∂hv(y, h, γ)]) =

α∆

1 + γ
. (D.5)

To compute the bias b, we have to solve

0 = Ey,h [y(v − h)] =
γ

1 + γ
Ey,h [y(1− h)] , (D.6)

which simply gives
b = (2ρ− 1)(1−m). (D.7)

We can plug (D.3)-(D.5) in the equations for m, q, γ to obtain

γ =
∆

λ+ γ̂
=

∆(1− α)− λ+
√

(∆(1− α)− λ)2 + 4λ∆

2λ
, (D.8)

m =
m̂

λ+ γ̂
=

4αγρ(1− ρ)

∆(1 + γ) + 4αγρ(1− ρ)
, (D.9)

q =
q̂ + m̂2

(λ+ γ̂)2
=

1

(1 + γ)2 − αγ2

(
αγ2

∆
((1−m)2 − b2) + (1 + γ)2m2

)
. (D.10)
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D.2. Hinge loss

In this case, `(ω) = max{0, 1− ω} and the minimizer

v ≡ argmin
ω

(ω − h(y,m, q, b))2

2γ
+ max{0, 1− ω}, (D.11)

is piece-wise defined as

v =


h if h > 1

1 if 1− γ < h < 1

h+ γ if h < 1− γ
. (D.12)

From (4)-(9), it follows that

γ =
γ

Kγ
, (D.13)

m =
α

∆

Km

Kγ
, (D.14)

q =
α

∆K2
γ

(
Kq +

α

∆
K2
m

)
, (D.15)

where we have defined

Kγ =
λγ

∆
+ α

(
1− Ey

[
Q

(
1−m− yb√

∆q

)
+Q

(
γ − (1−m− yb)√

∆q

)])
, (D.16)

Km =

√
∆q

2π
Ey
[
exp

(
− (1−m− yb)2

2∆q

)
− exp

(
− (γ − (1−m− yb))2

2∆q

)]
+Ey

[
(1−m− yb)

(
1−Q

(
1−m− yb√

∆q

)
−Q

(
γ − (1−m− yb)√

∆q

))
+ γQ

(
γ − (1−m− yb)√

∆q

)]
,

(D.17)

Kq =

√
∆q

2π
Ey
[
(1−m− yb) exp

(
− (1−m− yb)2

2∆q

)
− (γ + 1−m− yb) exp

(
− (γ − (1−m− yb))2

2∆q

)]
+Ey

[(
∆q + (1−m− yb)2

)(
1−Q

(
1−m− yb√

∆q

)
−Q

(
γ − (1−m− yb)√

∆q

))
+ γ2Q

(
γ − (1−m− yb)√

∆q

)]
.

(D.18)

The equation to determine the bias is√
∆q

2π
Ey
[
y exp

(
− (1−m− yb)2

2∆q

)
− y exp

(
− (γ − (1−m− yb))2

2∆q

)]
+ γEy

[
yQ

(
γ − (1−m− yb)√

∆q

)]
+Ey

[
y(1−m− yb)

(
1−Q

(
1−m− yb√

∆q

)
−Q

(
γ − (1−m− yb)√

∆q

))]
= 0.

(D.19)

E. Bayes-optimality at λ =∞, for ρ = 1
2

In this section we will show how the result on Bayes-optimality for balanced clusters at large regularization arises. First we
start by considering the square loss. At ρ = 1/2, it is straightforward to check from (11) that b = 0 and the generalization
error, given by (12) in the main text, is

εgen = Q

(
m√
∆q

)
, (E.1)

where m and q are given by (D.9)-(D.10), evaluated at ρ = 1
2 . The Bayes-optimal error for this problem is given by (19) in

the main text and reads

εBO
gen = Q

(√
α

∆(∆ + α)

)
. (E.2)
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Therefore, in order to reach Bayes-optimality, we need a weight vector w with an overlap m and a length q such that

√
α

(∆ + α)
=

m
√
q

=

(√
q̂

m̂2
+ 1

)−1

. (E.3)

By using (D.3)-(D.4) evaluated at ρ = 1
2 , (E.3) can be rewritten as

∆q

(1−m)2
= 0. (E.4)

Eq. (E.4) is verified by the fixed point equations only at λ→∞. Indeed in this limit we find that

γ =
∆

λ
+ o

(
λ−1

)
,

hence
m =

α

λ
+ o

(
λ−1

)
and

q =
α

λ2
(∆ + α) + o(λ−2),

so that
m
√
q
→
√

α

(∆ + α)
.

Therefore, as λ grows and while the `2 norm of the vector goes to zero, the vector aligns itself optimally to the hidden one
and the generalization error becomes optimal.

It is then easy to see why this remains correct for any differentiable loss: as long as the `2 norm vanishes when λ→∞,
then one can expand

`(yw>x) = `(0) + yw>x `′(0) +
1

2

(
w>x

)2
`′′(0) + o(q)

so that any loss will behave like the square one. This is the origin of the peculiar behavior of Bayes optimally observed at
λ→∞ for the symmetric case ρ = 1/2. We observed numerically that this result is not valid anymore as soon as ρ 6= 1/2.
This peculiar behaviour is shown in Fig. 1, which depicts the generalization error, computed from the solution of (4)-(11) in
the main text, as a function of ρ at zero, infinite and optimal regularization for the square and hinge losses.
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Figure 1. Generalization error as a function of ρ, at fixed α = 1.2 and ∆ = 1 (left) and α = 7 and ∆ = 0.3 (right), for the square
loss compared to the Bayes-optimal performance. In the inset, the same figure for the hinge loss. The vertical axis is rescaled by ρ for
convenience. The error is computed at low (λ = 10−7), high (λ = 105) and optimal regularization. We observe that Bayes-optimality at
infinite regularization holds strictly at ρ = 1/2.



The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture: Supplementary Material

F. Details on the numerics
F.1. Iteration of the fixed point equations

The solution (q,m, b, γ) of the fixed point equations (4)-(9) can be obtained analytically only in the case of square loss.
For the hinge and logistic losses, the equations must be iterated until convergence. In our codes, we used initialization
(qt=0, γt=0,mt=0, bt=0) = (0.5, 0.5, 0.01, 0). The stopping criterion for convergence consists in checking if the values of
the generalization error at two consecutive iterations differ less than a threshold eps. In all figures, we used eps ≤ 10−8.

F.2. Simulations

In order to check the validity of the fixed point equations (4)-(9) we computed numerically the solution of the optimization
problem defined in (2), and we averaged over multiple realizations of the noise. In the case of square loss, the solution is
simply

wsquare =
(
X>X + λId

)−1
X>y. (F.1)

In the case of logistic and hinge losses, the solution can be computed by a standard gradient descent algorithm. In Fig. 1
we used the Logistic Regression classifier provided by the scikitlearn package linear model (Pedregosa et al., 2011). In
particular, we used the “lbfgs” solver, with L2-penalty, tolerance tol = 10−5 for the stopping criterion and maximum number
of iterations max iter = 105. It is important to remind that all our analytic results are computed in the infinite-dimensional
limit d, n → ∞, while the ratio α = n/d remains finite. Therefore, all the simulations involve errors due to finite size
effects. However, we found a very good agreement bewteen theory and simulations already at relatively small dimensionality
(d ≤ 5000). The only case in which finite size effects prevent simulations to match our theoretical predictions is the behavior
of the generalization error at large regularization λ, at ρ = 1/2. Since at all finite dimensions d the effective clusters size
is ρ 6= 1/2, the result of reaching Bayes-optimality at λ→∞ cannot be obtained in simulations, since it holds strictly at
ρ = 1/2. However, we obtain greater and greater precision, i.e. the minimum of the generalization error moving towards
higher values of λ (see Fig. 4), as d increases.
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