
Training Binary Neural Networks using the Bayesian Learning Rule: Appendix

A. Two equivalent forms of hysteresis function in Bop

The original update rule and the corresponding definition of the hysteresis function hyst(·) in Bop are (Helwegen et al.,
2019)

wr (1� ↵)wr + ↵g, (22)
y = hyst1 (wr, wb, �)

⌘
(
�wb if |wr| > � & sign(wr) = sign(wb),

wb otherwise.
(23)

One could obtain an alternative update rule wr (1� ↵)wr � ↵g, as shown in Step 3 of Bop in Table 1. In this case, the
update rule and the corresponding hysteresis function are as follows

wr (1� ↵)wr � ↵g, (24)
y = hyst2 (wr, wb, �)

⌘
(
�wb if |wr| > � & sign(wr) = �sign(wb),

wb otherwise.
(25)

It could be easily verified that the above two update rules with two different representations of the hysteresis function are
equivalent to each other: The only difference between (22) and (24) is the sign before the gradient g, i.e., the wr in (22)
is an exponential moving average (Gardner Jr, 1985) of g while in (24) it is an exponential moving average of �g. Such
difference is compensated by the difference between (23) and (25). The corresponding curve of y = hyst1 (wr, wb, �) is
simply a upside-down flipped version of y = hyst2 (wr, wb, �), which is shown in the rightmost figure in Figure 1 (b).

B. Experimental details

In this section we list the details for all experiments shown in the main text.

Note that after training BiNNs with BayesBiNN, there are two ways to perform inference during test time:

(1). Mean: One method is to use the predictive mean, where we use Monte Carlo sampling to compute the predictive
probabilities for each test sample xj as follows

p̂j,k ⇡
1

C

CX

c=1

p
⇣
yj = k|xj ,w

(c)
⌘
, (26)

where w(c) ⇠ q(w) are samples from the Bernoulli distributions with the natural parameters � obtained by BayesBiNN.

(2). Mode: The other way is simply to use the mode of the posterior distribution q(w), i.e., the sign value of the posterior
mean, i.e., ŵ = sign(tanh (�)), to make predictions, which will be denoted as C = 0.

B.1. Synthetic Data

Binary Classification We used the Two Moons dataset with 100 data points in each class and added Gaussian noise with
standard deviation 0.1 to each point. We trained a Multilayer Perceptron (MLP) with two hidden layers of 64 units and tanh

Training Binary Neural Networks using the Bayesian Learning Rule

activation functions for 3000 epochs, using Cross Entropy as the loss function. Additional train and test settings with respect
to the optimizers are detailed in Table 3. The learning rate ↵ was decayed at fixed epochs by the specified learning rate
decay rate. For the STE baseline, we used the Adam optimizer with standard settings.

Table 3. Train settings for the binary classification experiment using the Two Moons dataset.

Setting BayesBiNN STE

Learning rate ↵ 10�3 10�1

Learning rate decay 0.1 0.1
Learning rate decay epochs [1500, 2500] [1500, 2500]
Momentum(s) � 0.99 0.9, 0.999
MC train samples S 5 -
MC test samples C 0/10 -
Temperature ⌧ 1 -
Prior �0 0 -
Initialization � ±15 randomly -

Regression We used the Snelson dataset (Snelson & Ghahramani, 2005) with 200 data points to train a regression model.
Similar to the Binary Classification experiment, we used an MLP with two hidden layers of 64 units and tanh activation
functions, but trained it for 5000 epochs using Mean Squared Error as the loss function. Additionally, we added a batch
normalization layer (without learned gain or bias terms) after the last fully connected layer. The learning rate is adjusted
after every epoch to slowly anneal from an initial learning rate ↵0 to a target learning rate ↵T at the maximum epoch T using

↵t+1 = ↵t

✓
↵T

↵0

◆�T

. (27)

The learning rates and other train and test settings are detailed in Table 4.

Table 4. Train settings for the regression experiment using the Snelson dataset (Snelson & Ghahramani, 2005).

Setting BayesBiNN STE

Learning rate start ↵0 10�4 10�1

Learning rate end ↵T 10�5 10�1

Momentum(s) � 0.99 0.9, 0.999
MC train samples S 1 -
MC test samples C 0/10 -
Temperature ⌧ 1 -
Prior �0 0 -
Initialization � ±10 randomly -

B.2. MNIST, CIFAR-10 and CIFAR-100

In this section, three well-known image datasets are considered, namely the MNIST, CIFAR-10 and CIFAR-100 datasets.
We compare the proposed BayesBiNN with four other popular algorithms, STE Adam, Bop and PMF for BiNNs as well as
standard Adam for full-precision weights. For dataset and algorithm specific settings, see Table 9.

MNIST All algorithms have been trained using the same MLP detailed in Table 5 on mini-batches of size 100, for a
maximum of 500 epochs. The loss used was Categorical Cross Entropy. We split the original training data into 90% train and
10% validation data and no data augmentation except normalization has been done. We report the best accuracy (averaged
over 5 random runs) on the test set corresponding to the highest validation accuracy achieved during training (we do not
retrain using the validation set). Note that we tune the hyper-parameters such as learning rate for all the methods including the
baselines. The search space for the learning rate is set to be

⇥
10�2, 3 · 10�3, 10�3, 3 · 10�4, 10�4, 3 · 10�5, 10�5, 10�6

⇤

Training Binary Neural Networks using the Bayesian Learning Rule

for all methods. Moreover, Table 6 and Table 7 shows the results of MNIST with BayesBiNN for different choices of
learning rate and temperature.

Table 5. The MLP architecture used in all MNIST experiments, adapted from (Alizadeh et al., 2019).

Dropout (p = 0.2)
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout (p = 0.2)
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout (p = 0.2)
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout (p = 0.2)
Fully Connected Layer (units = 2048, bias = False)

Batch Normalization Layer (gain = 1, bias = 0)
Softmax

Table 6. Test accuracy of MNIST for different initial learning rates. The temperature is 10�10. Results are averaged over 5 random runs.

Learning rate 10�1 3 · 10�3 10�3 3 · 10�4

Training Accuracy 99.46± 0.15 % 99.58± 0.16 % 99.67± 0.09 % 99.76± 0.09 %

Validation Accuracy 98.90± 0.14 % 98.94± 0.17 % 98.96± 0.13 % 98.97± 0.12 %

Test Accuracy 98.73± 0.11 % 98.81± 0.07 % 98.83± 0.05 % 98.84± 0.08 %
Learning rate 10�4 3 · 10�5 10�5 10�6

Training Accuracy 99.85± 0.05 % 99.83± 0.06 % 99.76± 0.09 % 99.78± 0.03 %

Validation Accuracy 99.02± 0.13 % 99.02± 0.13 % 99.04± 0.11 % 99.02± 0.17 %

Test Accuracy 98.86± 0.05 % 98.86± 0.05 % 98.84± 0.08 % 98.85± 0.05 %

CIFAR-10 and CIFAR-100 We trained all algorithms on the Convolutional Neural Network (CNN) architecture detailed
in Table 8 on mini-batches of size 50, for a maximum of 500 epochs. The loss used was Categorical Cross Entropy. We split
the original training data into 90% train and 10% validation data. For data augmentation during training, the images were
normalized, a random 32 ⇥ 32 crop was selected from a 40 ⇥ 40 padded image and finally a random horizontal flip was
applied. In the same manner as Osawa et al. (2019), we consider such data augmentation as effectively increasing the dataset
size by a factor of 10 (4 images for each corner, and one central image, and the horizontal flipping step further doubles
the dataset size, which gives a total factor of 10). We report the best accuracy (averaged over 5 random runs) on the test
set corresponding to the highest validation accuracy achieved during training. In addition, we tune the hyper-parameters,
such as the learning rate, for all the methods including the baselines. The search space for the learning rate is set to be⇥
10�2, 3 · 10�3, 10�3, 3 · 10�4, 10�4, 3 · 10�5, 10�5, 10�6

⇤
for all methods.

B.3. Comparison with LR-net

We also compare the proposed BayesBiNN with the LR-net method in Shayer et al. (2018) for MNIST and CIFAR-10. As
the code for the LR-net is not open-source, we performed experiments with BayesBiNN following the same experimental

Training Binary Neural Networks using the Bayesian Learning Rule

Table 7. Test accuracy of MNIST for different temperatures. The initial learning rate is 10�4. Results are averaged over 5 random runs.

Temperature 10�3 10�4 10�5 10�6 10�7

Training Accuracy 89.25± 0.22 % 87.55± 0.50 % 90.22± 0.42 % 97.37± 0.13 % 98.27± 0.10 %

Validation Accuracy 90.06± 1.04 % 90.28± 0.43 % 93.35± 0.48 % 98.10± 0.17 % 98.55± 0.16 %

Test Accuracy 90.40± 0.97 % 90.72± 0.42 % 93.67± 0.50 % 98.01± 0.05 % 98.41± 0.10 %
Learning rate 10�8 10�9 10�10 10�11 10�12

Training Accuracy 99.48± 0.08 % 99.75± 0.14 % 99.85± 0.05 % 99.81± 0.04 % 99.82± 0.07 %

Validation Accuracy 98.92± 0.13 % 99.00± 0.13 % 99.02± 0.14 % 99.02± 0.12 % 99.02± 0.13 %

Test Accuracy 98.82± 0.05 % 98.81± 0.08 % 98.86± 0.05 % 98.86± 0.06 % 98.84± 0.04 %

Figure 6. Training/Validation accuracy for MNIST, CIFAR-10 and CIFAR100 with BayesBiNN optimizer (Averaged over 5 runs).

settings in Shayer et al. (2018) and then compared the results with the reported results in their paper. In specific, the
network architectures for MNIST and CIFAR-10 are the same as Shayer et al. (2018), except that we added BN after the
FC layers. However, we kept all layers binary and did not learn the BN parameters, nor did we use dropout as in Shayer
et al. (2018). The dataset pre-processing follows the same settings in Shayer et al. (2018) and is similar to that described in
subsection 4.2, except that there is no split of the training set into training and validation sets. As a result, as in Shayer et al.
(2018), we report the test accuracies after 190 epochs and 290 epochs for MNIST and CIFAR-10, respectively. Note that the
hyper-parameter settings of BayesBiNN are the same as those in Table 9 for MNIST and CIFAR-10. The results are shown
in Table 11. The proposed BayesBiNN achieves similar performance (slightly better for CIFAR-10) to the LR-net. Note
that the LR-net method used pre-trained models to initialize the weights of BiNNs, while BayesBiNN trained BiNNs from
scratch without using pre-trained models.

B.4. Continual learning with binary neural networks

For the continual learning experiment, we used a three-layer MLP, detailed in Table 12, and trained it using the Categorical
Cross Entropy loss. Specific training parameters are given in Table 13. There is no split of the original MNIST training data
in the continual learning case. No data augmentation except normalization has been performed.

C. Author Contributions Statement

M.E.K. conceived the idea of training Binary neural networks using the Bayesian learning rule. X.M. derived the BayesBiNN
algorithm, studied its connections to STE and Bop, and wrote the first proof-of-concept experiments. R.B. fixed a few issue
with the original implementation and re-organized the PyTorch code. R.B. also designed and performed the experiments on
synthetic data presented in Section 4.1. X.M. did most of the experiments with some help from R.B. All the authors were
involved in writing, revising and proof-reading the paper.

Training Binary Neural Networks using the Bayesian Learning Rule

Table 8. The CNN architecture used in all CIFAR-10 and CIFAR-100 experiments, inspired by VGG and used in Alizadeh et al. (2019).

Convolutional Layer (channels = 128, kernel-size = 3 ⇥ 3, bias = False, padding = same)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 128, kernel-size = 3 ⇥ 3, bias = False, padding = same)

ReLU
Max Pooling Layer (size = 2 ⇥ 2, stride = 2 ⇥ 2)
Batch Normalization Layer (gain = 1, bias = 0)

Convolutional Layer (channels = 256, kernel-size = 3 ⇥ 3, bias = False, padding = same)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 256, kernel-size = 3 ⇥ 3, bias = False, padding = same)

ReLU
Max Pooling Layer (size = 2 ⇥ 2, stride = 2 ⇥ 2)
Batch Normalization Layer (gain = 1, bias = 0)

Convolutional Layer (channels = 512, kernel-size = 3 ⇥ 3, bias = False, padding = same)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 512, kernel-size = 3 ⇥ 3, bias = False, padding = same)

ReLU
Max Pooling Layer (size = 2 ⇥ 2, stride = 2 ⇥ 2)
Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 1024, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 1024, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 1024, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

Softmax

Training Binary Neural Networks using the Bayesian Learning Rule

Table 9. Algorithm specific train settings for MNIST, CIFAR-10, and CIFAR-100.

Algorithm Setting MNIST CIFAR-10 CIFAR-100

BayesBiNN

Learning rate start ↵0 10�4 3 · 10�4 3 · 10�4

Learning rate end ↵T 10�16 10�16 10�16

Learning rate decay Cosine Cosine Cosine
MC train samples S 1 1 1
MC test samples C 0 0 0
Temperature ⌧ 10�10 10�10 10�8

Prior �0 0 0 0
Initialization � ±10 randomly ±10 randomly ±10 randomly

STE Adam

Learning rate start ↵0 10�2 10�2 10�2

Learning rate end ↵T 10�16 10�16 10�16

Learning rate decay Cosine Cosine Cosine
Gradient clipping Yes Yes Yes
Weights clipping Yes Yes Yes

Bop

Threshold ⌧ 10�8 10�8 10�9

Adaptivity rate � 10�5 10�4 10�4

�-decay type Step Step Step
�-decay rate 10

�3
500 0.1 0.1

�-decay interval (epochs) 1 100 100

PMF

Learning rate start 10�3 10�2 10�2

Learning rate decay type Step Step Step
LR decay interval (iterations) 7k 30k 30k
LR-scale 0.2 0.2 0.2
Optimizer Adam Adam Adam
Weight decay 0 10�4 10�4

⇢ 1.2 1.05 1.05

Adam (Full-precision)
Learning rate start ↵0 3 · 10�4 10�2 3 · 10�3

Learning rate end ↵T 10�16 10�16 10�16

Learning rate decay Cosine Cosine Cosine

Training Binary Neural Networks using the Bayesian Learning Rule

Table 10. Detailed results of different optimizers trained on MNIST, CIFAR-10 and CIFAR-100 (Averaged over 5 runs).

Dataset Optimizer Train Accuracy Validation Accuracy Test Accuracy

MNIST

STE Adam 99.78± 0.10 % 99.02± 0.11 % 98.85± 0.09 %
Bop 99.23± 0.04 % 98.55± 0.05 % 98.47± 0.02 %
PMF 99.06± 0.01 % 98.80± 0.06 %
BayesBiNN (mode) 99.85± 0.05 % 99.02± 0.13 % 98.86± 0.05 %
BayesBiNN (mean) 99.85± 0.05 % 99.02± 0.13 % 98.86± 0.05 %

Full-precision 99.96± 0.02 % 99.15± 0.14 % 99.01± 0.06 %

CIFAR-10

STE Adam 99.99± 0.01 % 94.25± 0.42 % 93.55± 0.15 %
Bop 99.79± 0.03 % 93.49± 0.17 % 93.00± 0.11 %
PMF 91.87± 0.10 % 91.43± 0.14 %
BayesBiNN (mode) 99.96± 0.01 % 94.23± 0.41 % 93.72± 0.16 %
BayesBiNN (mean) 99.96± 0.01 % 94.23± 0.41 % 93.72± 0.15 %

Full-precision 100.00± 0.00 % 94.54± 0.29 % 93.90± 0.17 %

CIFAR-100

STE Adam 99.06± 0.15 % 74.09± 0.15 % 72.89± 0.21 %
Bop 90.09± 0.57 % 69.97± 0.29 % 69.58± 0.15 %
PMF 69.86± 0.08 % 70.45± 0.25 %
BayesBiNN (mode) 98.02± 0.18 % 74.76± 0.41 % 73.68± 0.31 %
BayesBiNN (mean) 98.02± 0.18 % 74.76± 0.41 % 73.65± 0.41 %

Full-precision 99.89± 0.02 % 75.89± 0.41 % 74.83± 0.26 %

Table 11. Test accuracy of BayesBiNN and LR-net trained on MNIST, CIFAR-10. Results for BayesBiNN are averaged over 5 random
runs.

Optimizer MNIST CIFAR-10

LR-net Shayer et al. (2018) 99.47 % 93.18%
BayesBiNN (mode) 99.50± 0.02 % 93.97± 0.11 %

Table 12. The MLP architecture used for continual learning (Nguyen et al., 2018)

Fully Connected Layer (units = 100, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 100, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 100, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Softmax

Training Binary Neural Networks using the Bayesian Learning Rule

Table 13. Algorithm specific train settings for continual learning on permuted MNIST.

Algorithm Setting Permuted MNIST

BayesBiNN

Learning rate start ↵0 10�3

Learning rate end ↵T 10�16

Learning rate decay Cosine
MC train samples S 1
MC test samples C 100
Temperature ⌧ 10�2

Prior �0 learned � of the previous task
Initialization � ±10 randomly
Batch size 100
Number of epochs 100

