
Randomized Block-Diagonal Preconditioning for Parallel Learning

Celestine Mendler-Dünner 1 Aurelien Lucchi 2

Abstract
We study preconditioned gradient-based optimiza-
tion methods where the preconditioning matrix
has block-diagonal form. Such a structural con-
straint comes with the advantage that the update
computation can be parallelized across multiple
independent tasks. Our main contribution is to
demonstrate that the convergence of these meth-
ods can significantly be improved by a randomiza-
tion technique which corresponds to repartition-
ing coordinates across tasks during the optimiza-
tion procedure. We provide a theoretical analysis
that accurately characterizes the expected conver-
gence gains of repartitioning and validate our find-
ings empirically on various traditional machine
learning tasks. From an implementation perspec-
tive, block-separable models are well suited for
parallelization and, when shared memory is avail-
able, randomization can be implemented on top
of existing methods very efficiently to improve
convergence.

1. Introduction
We focus on the task of parallel learning where we want to
solve the convex and smooth optimization problem

min
x∈Rn

f(x) (1)

on a multi-core machine with shared memory. In this context
we study iterative optimization methods where the repeated
computation of the incremental update

xt+1 ← xt + ∆x (2)

is parallelized across cores. Such methods traditionally
build on one of the following three approaches: i) they im-
plement a mini-batch algorithm (Dekel et al., 2012), where
a finite sample approximation to f is used to compute the

1University of California, Berkeley 2ETH Zürich. Correspon-
dence to: Celestine Mendler-Dünner <mendler@berkeley.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

update ∆x, ii) they implement asynchronous updates (Niu
et al., 2011; Liu et al., 2015), where stochastic updates are
interleaved, or iii) they compute block updates (Richtárik
& Takáč, 2016), where multiple coordinates of x are up-
dated independently and in parallel. The primary goal of all
these methods is to introduce parallel computations into an
otherwise stochastic algorithm in order to better utilize the
number of available cores.

Ioannou et al. (2019) argue that these methods are often not
able to utilize the full potential of parallel systems because
they make simplified modeling assumptions of the underly-
ing hardware: They treat a multi-core machine as a uniform
collection of cores whereas in fact it is a more elaborate
system with complex data access patterns and cache struc-
tures. As a consequence, memory contention issues and
false sharing can significantly impede their performance.

To resolve this the authors have proposed a novel approach
to parallel learning that relies on block-separable models,
so far solely used for distributed learning. Such models have
the advantage that, in addition to computational parallelism,
they implement a stricter separability between computa-
tional tasks which enables more efficient implementations.
This potentially comes at the cost of slower convergence.

Interestingly, this new application area of block-separable
models in a single machine setting with shared memory
opens the door to previously unstudied algorithmic opti-
mization techniques. Namely, we can relax strong commu-
nication constraints, as long as we do not compromise the
desired separability between computational tasks.

One such algorithmic technique that preserves separabil-
ity and can help convergence is repartitioning. It refers to
randomly assigning coordinates to tasks for each update
step. In a distributed setting repartitioning would involve ex-
pensive communication of large amounts of data across the
network and has thus not been considered as an option. But
in a single machine setting we can reassign coordinates to
cores without incurring significant overheads. This has been
verified empirically by Ioannou et al. (2019) who showed
that for the specific example of training a logistic regression
classifier using the COCOA method (Smith et al., 2018)
the convergence gains of repartitioning can significantly
prevail the overheads of reassign coordinates to cores in a
shared-memory setting.

Randomized Block-Diagonal Preconditioning for Parallel Learning

In this work we follow up on this interesting finding and
our main contribution is to provide the first theoretical study
of repartitioning. In particular, we frame repartitioning as
a radomization step applied to a block-diagonal precon-
ditioning matrix. This allows us to quantify the gain of
repartitioning over static partitioning in a general setting,
which covers a broad class of existing distributed methods,
including the COCOA method. We further validate our the-
oretical findings empirically for both ridge regression and
logistic regression on a variety of datasets with different
sizes and dimensions. Both our theoretical and empirical
results indicate that repartitioning can significantly improve
the sample efficiency of a broad class of distributed algo-
rithms and thereby turn them into interesting new candidates
for parallel learning.

2. Background
We begin by providing some background on distributed
methods. This helps us set up a unified framework for
analyzing repartitioning in later sections.

2.1. Distributed Optimization

Distributed optimization methods are designed for the sce-
nario where the training data is too large to fit into the
memory of a single machine and thus needs to be stored in
a distributed fashion across multiple nodes in a cluster. The
main objective when designing a distributed algorithm is to
define an optimization procedure such that each node can
compute its part of the update (2) independently. In addition,
this computation should only require access to local data
and rely on minimal interaction with other workers.

There are different approaches to achieve this computational
separability. They all rely on a second-order approximation
to the objective f around the current iterate xt:

f(xt + ∆x) ≈ f̃xt
(∆x;Qt) (3)

:= f(xt) +∇f(xt)
>∆x +

1

2
∆x>Qt∆x.

Note that Qt ∈ Rn×n can be a function of the iterate xt.
In a single machine case the optimal choice for Qt would
be the Hessian matrix ∇2f(xt). But in a distributed setting
we can not, or do not want to compute and store the full
Hessian matrix across the entire dataset.

One approach to nevertheless benefit from second-order in-
formation is to locally use a finite sample approximation
to∇2f(xt) for computing ∆xk on each machine k ∈ [K],
before aggregating these updates to get a global update ∆x.
This strategy has been exploited in methods such as DANE
(Shamir et al., 2014), GIANT (Wang et al., 2017), AIDE
(Reddi et al., 2016) and DISCO (Zhang & Lin, 2015). The
convergence of these methods typically relies on concentra-

tion results. Hence, they require the data to be distributed
uniformly across the machines, but are otherwise indifferent
to the specific partitioning of the data.

For studying repartitioning we focus on an orthogonal ap-
proach, where the computation of the individual coordinates
of ∆x is distributed across nodes. This includes methods
such as COCOA (Smith et al., 2018), ADN (Dünner et al.,
2018) and other distributed block coordinate descent meth-
ods such as (Lee & Chang, 2017; Hsieh et al., 2016; Ma-
hajan et al., 2017; Lee & Chang, 2017). All these methods
construct a separable auxiliary model of the objective func-
tion by enforcing a block-diagonal structure on Qt in (3).
As illustrated in Figure 1, this renders the computation of
the individual coordinate blocks of ∆x independent.

The partitioning of the coordinates across nodes determines
which elements of Qt are being ignored. While not all ele-
ments of Qt might be equally important, each partitioning
inevitably ignores a large subset of elements which can hurt
convergence. Ideally, we would like to maintain as much
information about Qt as possible. Therefore, repartitioning
offers an interesting alternative. It considers different ele-
ments of Qt for each update step and over the course of the
algorithm it gets information from all elements of Qt with
non-zero probability.

To gain intuition how repartitioning helps convergence, let
us investigate the specific structure of the matrix Qt at the
example of generalized linear models (GLMs).

2.1.1. GLM TRAINING

One attract of GLMs is the simple linear dependency on the
data imposed by the model. This makes them particularly
appealing in distributed settings where tasks can be sepa-
rated across data partitions. It most likely also explains why
so many distributed methods found in the literature have
been specifically designed for GLMs.

For GLMs, the objective f depends linearly on the data
matrix A ∈ Rm×n:

f(x) = `(Ax), (4)

where ` in general denotes the loss function. Let v := Ax
be the information that is periodically shared across nodes,
then the second-order model f̃xt(∆x;Qt) can be written as

`(vt) +∇`(vt)>A∆x +
1

2
∆x>A>Q̂tA∆x. (5)

In this case Qt = A>Q̂tA which makes the dependence of
f̃xt

on the data more explicit. It is not hard to see that sepa-
rability of (5) across coordinate blocks and corresponding
columns of A follows by making Qt block-diagonal and
setting elements outside the diagonal blocks to zero. This
is particularly easy to realize if Q̂t has diagonal form. This

Randomized Block-Diagonal Preconditioning for Parallel Learning

·
·
·
·
·
·

︸ ︷︷ ︸
xt+1

=

·
·
·
·
·
·

︸ ︷︷ ︸
xt

−η

· · 0 0 0 0

· · 0 0 0 0

0 0 · · 0 0

0 0 · · 0 0

0 0 0 0 · ·
0 0 0 0 · ·

︸ ︷︷ ︸

QPt

−1

·
·
·
·
·
·

︸ ︷︷ ︸
∇f(xt)

⇒

[
·
·

]
=

[
·
·

]
− η

[
· ·
· ·

]−1 [
·
·

]
[
·
·

]
=

[
·
·

]
− η

[
· ·
· ·

]−1 [
·
·

]
[
·
·

]
︸︷︷ ︸
xt+1

=

[
·
·

]
︸︷︷ ︸
xt

− η

[
· ·
· ·

]
︸ ︷︷ ︸
Qt[Pt

k,P
t
k]

−1 [
·
·

]
︸︷︷ ︸
∇f(xt)

Figure 1. Parallelism in the update computation induced by block-diagonal preconditioning as described in Algorithm 1.

observation has been the basis for many distributed methods
such as COCOA (Smith et al., 2018; Jaggi et al., 2014),
ADN (Dünner et al., 2018) and other block-separable meth-
ods such as (Lee & Chang, 2017). In COCOA, Q̂t is set to
γ`I – where γ` denotes the smoothness parameter of ` – thus
forming an over-approximation to ∇2`. In (Dünner et al.,
2018) and (Lee & Chang, 2017), it was observed that for
popular loss functions used in machine learning,∇2`(xt) is
a diagonal matrix. Hence, they keep Q̂t = ∇2`(xt) and di-
rectly enforce the block-diagonal structure onA>∇2`(xt)A
to preserve additional local second-order information. We
note that methods of the latter form are augmented by a line-
search strategy or a trust-region like approach (Nesterov &
Polyak, 2006) to guarantee sufficient function decrease and
ensure convergence. We will come back to this condition in
Section 4.3.

2.1.2. STATIC PARTITIONING

All the distributed methods we found in the literature as-
sume a static partitioning of data across nodes. In that
way, expensive communication of data across the network
can be avoided. When distributing the computation of ∆x
coordinate-wise across nodes, this implies a static alloca-
tion of data columns to nodes (hence coordinates to blocks)
throughout the optimization.

In this work, motivated by the recent trend in parallel learn-
ing, we take a different approach. We study the setting
where one can randomly reassign coordinates to blocks for
each repeated computation of ∆x. To the best of our knowl-
edge, a formal study of such a repartitioning approach in the
context of block-separable methods does not yet exist in the
literature. This is likely due to the fact that block-diagonal
approximations to Qt have only been studied in the context
of distributed learning where data repartitioning seems un-
reasonable. In addition, the theoretical analysis of existing
methods can not readily be extended to explain the effect
of repartitioning because they look at the function decrease
in each individual iteration in isolation. Therefore, we will
resort to analysis tools from the literature on preconditioned
gradient descent methods.

2.2. Preconditioned Gradient Methods

Any optimization method that relies on a second-order aux-
iliary model of the form (3) can be interpreted as a precon-
ditioned gradient descent method where

xt+1 = xt − ηQ−1t ∇f(xt) (6)

and η > 0 denotes the step size. Various choices for the
matrix Qt have been discussed in the literature on precondi-
tioning (Nocedal & Wright, 1999). The simplest example
is standard gradient descent where Qt is equal to the iden-
tity matrix and η is chosen to be inversely proportional to
the smoothness parameter of f . On the other side of the
spectrum, the classical Newton method defines Qt via the
Hessian matrix∇2f(xt). Since the computation of the ex-
act Hessian is often too computationally expensive, even
in a single machine setting, various approximation meth-
ods have been developed. Such methods typically rely on
finite sample approximations to the Hessian using sketching
techniques (Pilanci & Wainwright, 2016), sub-sampling (Er-
dogdu & Montanari, 2015) or some quasi-Newton approxi-
mation (Dennis & Moré, 1977). They can also be combined
with various line-search or trust-region-like strategies as
in (Blanchet et al., 2016; Kohler & Lucchi, 2017). How-
ever, all these methods are either first-order methods, or
they do not induce a block-diagonal structure on Qt. Hence,
our approach has also not been studied in the context of
preconditioning methods until now.

3. Method
We introduce a general framework for studying repartition-
ing with the goal to cover the different distributed methods
introduced in Section 2.1. The common starting point in all
these methods is a second-order approximations f̃xt(· ;Qt)
to f as defined in (3). The methods then differ in their
choice of Qt and the mechanisms they implement to guar-
antee sufficient function decrease when preconditioning on
a block-diagonal version of Qt. To focus on repartitioning
in isolation we abstract these technicalities into assump-
tions in Section 4. For now, let us assume a good local
second-order model f̃xt(· ;Qt) is given and walk through

Randomized Block-Diagonal Preconditioning for Parallel Learning

the block-diagonal preconditioning method outlined in Al-
gorithm 1. We first need to introduce some notation.

3.1. Notation

We write i ∈ [n] for i = 1, 2, ..., n and we denote
x? = arg minx f(x) to refer to the minimizer of f which is
written as f? = f(x?).
Definition 1 (Partitioning). We denote the partitioning of
the indices [n] into K disjoint subsets as P := {Pi}i∈[K]

where ∪i∈[K]Pi = [n] and Pi ∩ Pj = ∅, ∀i 6= j. If the
partitioning is randomized throughout the algorithm we use
the superscripts Pt to refer to the partitioning at iteration t.

Further, we write x[Pk] ∈ Rn to refer to the vector with
elements (x[Pk])i = xi for i ∈ Pk and zero otherwise.
Similarly, we use M[Pi,Pj] ∈ Rn×n to denote the masked
version of the matrix M ∈ Rn×n, with only non-zero ele-
ments for Mk,` with k ∈ Pi and ` ∈ Pj .

3.2. Block-Diagonal Preconditioning

In each step t ≥ 0 of Algorithm 1 we select a partitioning
Pt and construct a block-diagonal version QPt from Qt
according to Pt:

QPt :=
∑
k∈[K]

Qt[Pt
k,P

t
k]
. (7)

This matrix then serves as a preconditioning matrix in the
update step (line 7) of Algorithm 1. Note that we will for
illustration purposes, and without loss of generality, refer
to QPt as a block-diagonal matrix. Although QPt is not
necessarily block-diagonal for all Pt, it can be brought into
block-diagonal form by permuting the rows and columns of
the matrix.

3.3. Dynamic Partitioning

In a classical distributed method, the partitioning Pt is
fixed throughout the entire algorithm, as discussed in Sec-
tion 2.1.2. This corresponds to option (i) in Algorithm 1.
The novel feature in our study is to allow for a different
random partitioning in each iteration t and use the induced
block-diagonal preconditioning matrix to perform the up-
date step. This randomized procedure, also referred to as
repartitioning, is summarized as option (ii) in Algorithm 1.

4. Convergence Analysis
We now turn to the main contribution of our work which
consists in analyzing and contrasting the convergence rate
of Algorithm 1 for the two different partitioning techniques.
To convey our main message in the most transparent way,
we start by analyzing a quadratic function where the second-
order model f̃xt in (3) is exact and no additional assump-
tions are needed. We then extend this result to GLMs and to

Algorithm 1 Block-Diagonal Preconditioning for (1)
with (i) static and (ii) dynamic partitioning

1: Input: f̃xt
(·, Qt), step size η, partitioning P

2: Initialize: x0 ∈ Rn

3: for t = 0 to T − 1 do
4: (i) use default partitioning Pt = P
5: (ii) choose a random partitioning Pt of the i ∈ [n]

6: for k ∈ [K] on each processor in parallel do
7: xt+1 ← xt − ηQ−1[Pt

k,P
t
k]
∇f(xt)

8: end for
9: end for

10: Return: xT

more general second-order auxiliary models. All proofs can
be found in the appendix.

4.1. Quadratic Functions

Let us consider the setting where f : Rn → R is a quadratic
function of the following form:

f(x) =
1

2
x>Hx− c>x, (8)

where H ∈ Rn×n is a symmetric matrix and c ∈ Rn.
The natural choice is to define Qt = H when working
with the auxiliary model (3). Obviously, using the full
matrix H for preconditioning would yield convergence in a
single step. But under the constraint of Algorithm 1 that the
preconditioning matrix QPt has block-diagonal structure
this in general does not hold true.

Theorem 1. Assume f is defined as (8), and Qt := H .
Then Algorithm 1 with a fixed step size η = 1

K converges at
a linear rate

E [f(xt+1)− f(x?)] ≤ (1− ρ)
t
[f(x0)− f(x?)]

with
ρ :=

1

K
λmin

(
E[H−1Pt]H

)
. (9)

The expectations are taken over the randomness of the par-
titioning Pt.

One of the key insights is that the convergence rate of Al-
gorithm 1 depends on the partitioning scheme through the
term E[H−1Pt]. Ideally, for optimal convergence we want
ρ to be as large as possible, and hence E[H−1Pt] ≈ H−1.
How well E[H−1Pt] is able to approximate H−1 is measured
by the spectrum of E[H−1Pt]H which determines the con-
vergence rate of the respective partitioning scheme. For
fixed partitioning the expectation E[H−1Pt] reduces to H−1P
induced by the default partitioning P , whereas for reparti-
tioning it is an average over all possible partitionings. As a

Randomized Block-Diagonal Preconditioning for Parallel Learning

consequence the convergence of repartitioning is superior
to static partitioning whenever the average of H−1P over all
partitionings is able to better approximates H−1 compared
to any individual term.

Note that even in cases where there exists a single fixed
partitioning that is better than repartitioning, it could still
be combinatorially hard to discover it and repartitioning
provides an appealing alternative. We will provide several
empirical results that support this claim in Section 6 and in-
vestigate the properties of the matrix E[H−1Pt]H analytically
for some particular H in Section 5.

4.2. Smoothness Upper-bound for GLMs

As a second case study we focus on GLMs, as defined in
(4), where ` is a γ`-smooth loss function. In this setting we
analyze Algorithm 1 for the second-order model f̃xt

(· ;Qt)
defined through

Qt := γ`A
>A. (10)

This model forms a global upper-bound on the objective
function f . It is used in (Smith et al., 2018) and related
algorithms. It can intuitively be understood that in this case
the quality of the auxiliary model depends on the correla-
tion between data columns residing in different partitions;
these are the coordinates of Qt that are being ignored when
enforcing a block-diagonal structure for achieving separa-
bility. Let us for simplicity denote M := A>A. Then, the
expected function decrease in each iteration of Algorithm 1
can be bounded as:
Lemma 2. Assume f is γ-smooth, has the form (4), and Qt
is chosen as in (10). Then, in each step t ≥ 0 of Algorithm 1
with a fixed step size η = 1

K the objective decreases as

E [f(xt)− f(xt+1)] ≥ γ

K
λmin(AE[M−1Pt]A>)‖∇f(xt)‖2

where expectation are taken over the randomness of the
partitioning Pt.

The dependence on the partitioning is captured by the term
λmin(AE[M−1Pt]A>), which is optimized for E[M−1Pt] ≈
M−1 and simplifies to λmin(E[M−1Pt]M) for symmetric A.

To translate Lemma 2 into a convergence rate for Algo-
rithm 1 we need a lower bound on the curvature of f in
order to relate the gradient norm to the suboptimality. The
following standard assumption (Polyak, 1963) allows us to
do this:
Assumption 1 (Polyak Lojasiewicz). Assume the function
f satisfies the following inequality for some µ > 0

1

2
‖∇f(x)‖2 ≥ µ(f(x)− f(x?)). (11)

Note that this assumption is weaker than strong-convexity
as shown by Karimi et al. (2016). The following linear
convergence rate for Algorithm 1 follows:

Theorem 3. Consider the same setup as in Lemma 2 where
f in addition satisfies Assumption 1 with constant µ > 0.
Then, Algorithm 1 with a fixed step size η = 1

K converges
as

E [f(xt+1)− f(x?)] ≤ (1− ρ)
t
[f(x0)− f(x?)] .

with
ρ :=

2µ

Kγ
λmin

(
AE[M−1Pt]A>

)
, (12)

where MPt denotes the masked version of M := A>A
given by the partitioning Pt and expectations are taken
over the randomness of the partitioning.

4.3. General Auxiliary Model

For the most general case we do not pose any structural
assumption on f . We only assume the auxiliary model
f̃xt

(· , Qt) is a reasonably good approximation to the func-
tion f and satisfies the following assumption.

Assumption 2. f̃xt
(· ;Qt) is such that ∀∆x and some ξ ∈

(0, 1] it holds that

f(xt + ∆x) ≤ ξf̃xt
(∆x;Qt) + (1− ξ)f(xt). (13)

Approximations f̃xt(· ;Qt) that satisfy (13) can easily be
obtained for smooth functions by taking a Taylor approxi-
mation truncated at order p and combined with a bound on
the p-th derivative, see e.g. (Birgin et al., 2017; Nesterov &
Polyak, 2006). In our case where we want a quadratic model
we choose p = 2 and, because smoothness gives us an upper-
bound, the inequality (13) holds for ξ = 1. Another popular
approach to guarantee sufficient function decrease in the
spirit of (13) are backtracking line-search methods, such
as used in (Lee & Chang, 2017). Here ξ directly maps to
the control parameter in the Armijo-Goldstein condition
(Armijo, 1966) if Qt is PSD. In the appendix we discuss
these connections further and explain how our setting could
be extended to also cover trust region like approaches (Cartis
et al., 2011) such as used in ADN (Dünner et al., 2018).

For methods that build on auxiliary models that satisfy (13)
we can quantify the dependence of the function decrease on
the partitioning scheme using the following lemma.

Lemma 4. Consider a convex objective f and a quadratic
approximation f̃xt

(· ;Qt) satisfying (13). Then, in each
step of Algorithm 1 the function value decreases as

E[f(xt)− f(xt+1)] ≥ ρt‖∆x̃t
?‖2

where
ρt :=

ξ

2K
λmin(Q>t E[Q−1Pt]Qt), (14)

with ∆x̃t
? := arg minx f̃xt(x, Qt) denoting the optimal

next iterate according to f̃xt .

Randomized Block-Diagonal Preconditioning for Parallel Learning

Hence, even in the most general case, the dependency
of the convergence rate on the partitioning scheme can
be explained through a simple quantity involving the
expected block-diagonal preconditioning matrix E[Q−1Pt]:
λmin(Q>t E[Q−1Pt]Qt).

The auxiliary model f̃xt
, on the other hand, and hence its

minimizer x̃t? are independent of the partitioning. Hence,
how we translate Lemma 4 into a convergence results solely
depends on the distributed method we deploy. Here, we
make the following assumption.

Assumption 3 (Sufficient function decrease). The method
defines Qt such that sufficient function decrease of the opti-
mal update ∆x̃t

? can be guaranteed:

f(xt + ∆x̃?t)− f(x?) ≤ α[f(xt)− f(x?)] (15)

for some α ∈ [0, 1).

This assumption can be satisfied with a preconditioned gra-
dient descent step and appropriate rescaling of Qt for any
PSD matrix Qt. Importantly, such a rescaling affects every
partitioning scheme equally.

We note that alternative assumptions would also lead to
convergence results. For example, techniques found in the
trust-region and cubic regularization literature (see e.g. (Car-
tis et al., 2011; Dünner et al., 2018)) have proposed to adapt
the optimization algorithm instead to guarantee sufficient
function decrease in the spirit of (15).

Building on Assumption 3 we get the following rate of
convergence for Algorithm 1.

Theorem 5. Assume f is γ-smooth and L-Lipschitz. Then,
Algorithm 1 with f̃xt

(· ;Qt) satisfying Assumption 3 and a
fixed step size η = 1

K converges as

E[f(xt+1)− f(x?)] ≤
(

1−min
t
ρt

(1−α)
L

)t
ε0

where ε0 = f(x0)− f(x?) and ρt defined in (14).

Note that the step size η = 1
K is required throughout our

analysis because we pose assumption (13) on f̃x and need
to guarantee convergence uniformly across partitionings
for a method that uses a block-diagonal version of Qt. To
dynamically adapt to each partitioning Algorithm 1 could
be augmented with a line-search procedure. We omitted this
to preserve clarity of our presentation.

Similarly, all our results from this section can readily be
extended to the case where the local subproblem (3) is not
necessarily solved exactly but only θ-approximately (in the
sense of Assumption 1 used by Smith et al. (2018)). This
provides additional freedom to trade-off overheads of repar-
titioning and sample efficiency for optimal performance.

5. Effect of Randomization
Let us return to the quadratic case where the auxiliary model
f̃xt is exact and focus on the dependence of ρ on the parti-
tioning scheme. We recall that the value of ρ as defined in
(9) is determined by the smallest eigenvalue of

ΛP := Q−1P Q. (16)

In the following we will evaluate λmin(E[ΛP]) analytically
for some particular choices of Q to quantify the gain of
repartitioning over static partitioning predicted by Theo-
rem 1.

For simplicity, we assume Q does not depend on t and
the partitioning P is uniform, such that |Pi| = |Pj | =
nk ∀j, i ∈ [K] and nk = n

K denotes the number of coordi-
nates assigned to each partition.

5.1. Uniform Correlations

We start with the special case where all off-diagonal ele-
ments of Q are equal to α ∈ [0, 1). Thus, for n = 4 the
matrix Q would look as follows:

Q =

1 α α α
α 1 α α
α α 1 α
α α α 1

 .
Such a structure of Q would, for example, appear in a linear
regression problem, where all columns of the data matrix A
are equally correlated. In such a scenario it does not matter
which elements of Q we ignore and all fixed partitionings
are equivalent from an algorithmic perspective. We refer the
reader to Figure 6 in the appendix for an illustration of all
matrices involved in this example. Let us note that

ΛP = Q−1P Q = Q−1P (QP +QcP) = I +Q−1P QcP

where QcP := Q − QP . Given the specific structure of Q
considered in this example, the inverse Q−1P can be com-
puted from the individual blocks of QP and is again sym-
metric and block-diagonal. As a consequence the diagonal
blocks of Q−1P QcP are zero and by symmetry all other ele-
ments are equal. We denote the value of these elements by
ε, where an exact derivation as a function of α can be found
in Appendix C.1. In the following we will evaluate

λmin(E[ΛP]) = 1 + λmin(E[Q−1P QcP])

for the case of static as well as dynamic partitioning.

(i) Static Partitioning. We have E[ΛP] = ΛP and we com-
pute λmin(ΛP) by exploiting the symmetry of the matrix
Q−1P QcP . The eigenvector corresponding to the smallest
eigenvalue will be v = ePi − ePj for any i 6= j and the
corresponding eigenvalue with multiplicity K − 1 is

λmin(Q−1P QcP) = −εnk ⇒ λmin(ΛP) = 1− εnk.

Randomized Block-Diagonal Preconditioning for Parallel Learning

0.0 0.2 0.4 0.6 0.8 1.0
λmin(Λ)

α= 0.05
α= 0.1
α= 0.2
α= 0.4

separable data

λmin(𝔼[Λ])
λmin(Λ ⋆)

10−4 10−3 10−2 10−1 100

λmin(Λ)

covtype

mushrooms

gisette

public datasets

λmin(𝔼[Λ])

Figure 2. Violin plot of the distribution of λmin(ΛP) across 1000 random partitions on different datasets for K = 5 partitions. We
compare λmin(ΛP) that determines the rate of static partitioning to λmin(E[ΛP]) that governs the rate of dynamic partitioning. In the
case of synthetic data where the best partitioning P? is known, we also show λmin(ΛP?).

(ii) Dynamic Partitioning. The matrix E[Q−1P QcP] is an
expectation over the block-diagonal matrices arising from
different partitionings. The probability that a particular off-
diagonal element is non-zero for any random partitioning
is p = nk(K − 1)/(n− 1). This yields a matrix where the
diagonal elements are zero and all off-diagonal elements
are equal to pε. Hence, again, by symmetry, the eigenvector
corresponding to the smallest eigenvalue will be v = ei−ej
for any i 6= j and the corresponding eigenvalue is

λmin(E[Q−1P]QcP) = −εp ⇒ λmin(E[ΛP]) = 1− εp.

We conclude that for K > 1 and nk > 1 we have

0 < λmin(ΛP) ≤ λmin(E[ΛP]) ≤ 1

where the inequality is strict for any α > 0. Hence,
repartitioning moves the smallest eigenvalue by a factor of
K−1
n−1 ≈

1
nk

closer to 1 compared to any static partitioning.
By inspecting ε we also see that the potential convergence
gain of repartitioning increases as the weight α in the off-
diagonal elements gets larger. This directly translates into a
significantly better convergence rate as by Theorem 3. We
later verify this empirically in Section 6. For an illustration
of the sensitivity of the eigenvalues w.r.t α and K we refer
to Figure 8 in Appendix D.

5.2. Separable Data

Let us consider a second extreme case, where Q has block-
diagonal structure by definition. We again assume that all
non-zero off-diagonal elements are equal to α ∈ [0, 1). For
n = 4,K = 2 the matrix Q would look as follows:

Q =

1 α 0 0
α 1 0 0
0 0 1 α
0 0 α 1

This could, for example, correspond to a linear regres-
sion setting where the data is perfectly separable and data

columns within partitions are equally correlated. In this
case, the best static partitioning P? is aligned with the block
structure of the matrix. In this case Q = QP? , and hence
λmin(ΛP?) = 1. We can show that for K > 1 it holds that

min
P

λmin(ΛP) ≤ λmin(E[ΛP]) ≤ max
P

λmin(ΛP) (17)

and equality is achieved for α = 0. Recall that the conver-
gence rate of Algorithm 1 as by Theorem 1 is proportional
to E[ΛP]. Hence, the order in (17) implies that the conver-
gence rate of repartitoning lies between the best and the
worst static partitioning.

To investigate where on this spectrum the convergence of
repartitiong actually is, we compute the distribution of
λmin(ΛP) and the corresponding value of λmin(E[ΛP]) nu-
merically for different values of α. Results are illustrated in
the left plot of Figure 2. The violin plot suggests that even
in the perfectly separable case, repartitioning achieves a
significantly better convergence rate than static partitioning
with probability close to 1. Hence, if we do not know the
best partitioning a priori repartitioning might be the best
choice.

5.3. Real Datasets

We conclude this section by considering a more practical
choice of Q. Therefore, we consider a ridge regression
problem with Q = A>A + λI . We choose λ = 1 and we
evaluate λmin(ΛP) numerically for some popular datasets.
We have chosen the gisette, the mushroom and the covtype
dataset that can be downloaded from (Dua & Graff, 2017)
and whose statistics are reported in Table 1.

In the right plot of Figure 2 we compare the distribution of
λmin(ΛP) for the three datsets across random partitionings
P with λmin(E[ΛP]). We see that across all datasets ρ for
random partitioning is higher than for any fixed partitioning
with very high probability which implies superior conver-
gence of repartitioning as by our theory. This observation
is also consistent across different choices of regularizer as
shown in Figure 12 in the appendix for completeness.

Randomized Block-Diagonal Preconditioning for Parallel Learning

α = 0.1 1
K
λmin(E[ΛP]) 1

K
λmin(ΛP)

K = 2 0.498 0.040
K = 4 0.247 0.038
K = 8 0.122 0.034

K = 5 1
K
λmin(E[ΛP]) 1

K
λmin(ΛP)

α = 0.01 0.199 0.142
α = 0.1 0.197 0.037
α = 0.5 0.196 0.005

(a) sensitivity w.r.t. K (α = 0.1) (b) sensitivity w.r.t. α (K = 5)

Figure 3. Linear regression on synthetic data (n = 200) with uniform correlations of strength α. We compare the empirical convergence
of Algorithm 1 for static (dashed) and dynamic (solid) partitioning to the corresponding values of ρ = 1

K
λmin(E[ΛP]) that determine the

respective theoretical convergence rate (see Theorem 1) across different values of K and α. Confidence intervals show min-max intervals
over 100 runs and the regularization parameter is λ = 1.

6. Performance Results
Finally, we compare the convergence gains of repartitioning
predicted by our theory, with the actual convergence of
Algorithm 1 with and without repartitioning. We consider
two popular machine learning problems. First, we consider
linear regression where

f(x) =
1

2
‖Ax− y‖2 +

λ

2
‖x‖2

and the second-order model f̃x is exact with Qt = A>A+
λI . This allows us to analyse the scenarios discussed in
Section 5 and the gains predicted by Theorem 1. As a second
application we consider L2-regularized logistic regression

f(x) =
∑
i∈[n]

log (1 + exp(−yiAi,:x)) +
λ

2
‖x‖2

with yi ∈ {±1} where we use the second-order Taylor
expansion for defining f̃x(· , Qt). This corresponds to the
general case analyzed in Theorem 5 where Qt depends on
the model xt and changes across iterations. If not stated
otherwise we use λ = 1

6.1. Validation of Convergence Rates

Let us revisit the synthetic examples from Section 5 and
verify the convergence of Algorithm 1 empirically. We
start with the uniform correlation example from Section 5.1
and generate a synthetic data matrix A = Q1/2 together
with random labels y. We then train a linear regression
model and investigate the convergence of Algorithm 1 for (i)
static and (ii) dynamic partitioning. In Figure 3 we contrast

Table 1. Size of the datasets used in our experimental results.

Dataset # datapoints # features
mushroom 8124 112

covtype 581012 54
gisette 6000 5000
rcv1 20’242 677399
url 2396130 3231961

synthetic 200 200

the convergence results to the theoretical rate predicted by
Theorem 1 which we can evaluate using the expressions
derived in Section 5.1. We perform this experiment for
different values of K and α. The tables on the top contain
the values of the convergence rate ρ = 1

Kλmin(E[ΛP]) for
the corresponding figures at the bottom. We observe a very
close match between the relative gain of repartitioning over
static partitioning predicted by the theory and the empirical
behavior. This supports that λmin(E[ΛP]) indeed captures
the effect of repartitioning accurately.

We further verify the empirical convergence for the sepa-
rable data from Section 5.2 as well as the ridge regression
setting from Section 5.3. The convergence results of Algo-
rithm 1 are depicted in Figure 4 for a subset of the parameter
settings. Again, we observe a strong correlation between
the empirical convergence gains and the values of λmin(ΛP)
evaluated numerically in Figure 2 across all datasets.

To be consistent with the assumptions used in our theorems,
we have implemented Algorithm 1 with a fixed step size
η. Alternatively, the algorithm could also be augmented
with backtracking line search (Armijo, 1966). This would
potentially improve the performance of good partitionings
even further, but it is not expected to significantly change

Randomized Block-Diagonal Preconditioning for Parallel Learning

Figure 4. Empirical performance of Algorithm 1 for linear regression on a selection of the datasets analyzed in Figure 2. The relative
convergence of Alg 1 with and without repartitioning closely match the values predicted by our theory as given through λmin(ΛP) (see
Theorem 1) whose values are illustrated for the respective datasets in Figure 2. Confidence intervals show min-max intervals over 10 runs.

(a) CoCoA–dual (Smith et al., 2018) (b) LS (Lee & Chang, 2017) (c) ADN (Dünner et al., 2018)

Figure 5. Combining existing distributed methods with repartitioning: Training of a logistic regression classifier with λ = 1 using three
different algorithms and datasets for K = 8. Confidence intervals show min-max intervals over 10 runs. Experiments on additional
datasets and different values of K can be found in Figure 10 in the appendix.

the relative behavior of static versus dynamic partitioning
which is the main study of this paper. To support this claim
we compare the convergence of Algorithm 1 for the two par-
titioning schemes with and without backtracking line-search
on three synthetic examples in Figure 9 in the appendix.

6.2. Existing Algorithms

To complete our study we have implemented three popular
existing distributed methods and combined them with repar-
titioning. These are COCOA (Smith et al., 2018) with a
dual solver, ADN (Dünner et al., 2018) and the line-search-
based approach by Lee & Chang (2017), referred to as LS.
We have trained a logistic regression classifier using all
three algorithms on three different datasets and illustrate the
respective convergence with and without repartitioning in
Figure 5. Additional results for ADN on two more datasets
can be found in Figure 10 in the appendix. Overall, we see a
consistent and significant gain of repartitioning for all three
optimization methods. We find that the potential conver-
gence gain of repartitioning mostly depends on the statistics
of the datasets (which definesQt) and it is similarly large for
all methods. For the url data repartitioning with a dual solver
reduces sample complexity by several orders of magnitude,
for gisette the gain is around 30× and for the rcv1 dataset
it is 2×. When inspecting the properties of the datasets we

find that the gain of repartitioning grows with the density
and the dimension of the columns of the data matrixA. This
is expected, because it implies stronger correlations and
hence more weight in the off-diagonal elements of Qt.

7. Conclusion
We have demonstrated theoretically, as well as empirically,
that repartitioning can improve the sample complexity of ex-
isting block-separable optimization methods by potentially
several orders of magnitude. The gain crucially depends on
the problem at hand and is accurately captured by a simple
analytical quantity identified in our theoretical analysis. The
repartitioning technique discussed in this manuscript is ver-
satile and our analysis is intentionally kept general to cover
different types of algorithms and preconditioning matrices.

Together with prior work (Ioannou et al., 2019) that em-
phasized the implementation efficiency of block-separable
models on modern hardware, our results highlight that repar-
titioning turns existing distributed methods into promising
candidates for parallel learning. In addition. these methods
have the important benefit that they come with convergence
guarantees for arbitrary degrees of parallelism without prior
assumptions on the data. This allows them to be scaled to
any number of available cores.

Randomized Block-Diagonal Preconditioning for Parallel Learning

Acknowledgements
We wish to acknowledge support from the Swiss National
Science Foundation Early Postdoc.Mobility Fellowship Pro-
gram.

References
Armijo, L. Minimization of functions having lipschitz con-

tinuous first partial derivatives. Pacific J. Math., 16(1):
1–3, 1966.

Birgin, E. G., Gardenghi, J., Martínez, J. M., Santos, S. A.,
and Toint, P. L. Worst-case evaluation complexity for
unconstrained nonlinear optimization using high-order
regularized models. Mathematical Programming, 163
(1-2):359–368, 2017.

Blanchet, J., Cartis, C., Menickelly, M., and Scheinberg,
K. Convergence rate analysis of a stochastic trust re-
gion method for nonconvex optimization. arXiv preprint
arXiv:1609.07428, 5, 2016.

Cartis, C., Gould, N. I. M., and Toint, P. L. Adaptive cubic
regularisation methods for unconstrained optimization.
part i: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, Apr 2011.
ISSN 1436-4646.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L.
Optimal distributed online prediction using mini-batches.
J. Mach. Learn. Res., 13:165–202, January 2012. ISSN
1532-4435.

Dennis, Jr, J. E. and Moré, J. J. Quasi-newton methods,
motivation and theory. SIAM review, 19(1):46–89, 1977.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Dünner, C., Lucchi, A., Gargiani, M., Bian, A., Hofmann,
T., and Jaggi, M. A distributed second-order algorithm
you can trust. In Proceedings of the 35th International
Conference on Machine Learning, volume 80, pp. 1358–
1366, 2018.

Erdogdu, M. A. and Montanari, A. Convergence rates
of sub-sampled newton methods. arXiv preprint
arXiv:1508.02810, 2015.

Hsieh, C.-J., Si, S., and Dhillon, I. S. Communication-
Efficient Parallel Block Minimization for Kernel Ma-
chines. arXiv, August 2016.

Ioannou, N., Dünner, C., and Parnell, T. Syscd: A system-
aware parallel coorindate descent algorithm. NeurIPS,
2019.

Jaggi, M., Smith, V., Takáč, M., Terhorst, J., Krishnan, S.,
Hofmann, T., and Jordan, M. I. Communication-efficient
distributed dual coordinate ascent. In Neural Information
Processing Systems, 2014.

Karimi, H., Nutini, J., and Schmidt, M. Linear convergence
of gradient and proximal-gradient methods under the
polyak-łojasiewicz condition. In Frasconi, P., Landwehr,
N., Manco, G., and Vreeken, J. (eds.), Machine Learning
and Knowledge Discovery in Databases, pp. 795–811,
Cham, 2016. Springer International Publishing.

Kohler, J. M. and Lucchi, A. Sub-sampled cubic regular-
ization for non-convex optimization. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 1895–1904. JMLR. org, 2017.

Lee, C.-p. and Chang, K.-W. Distributed block-diagonal
approximation methods for regularized empirical risk
minimization. arXiv preprint arXiv:1709.03043, 2017.

Liu, J., Wright, S. J., Ré, C., Bittorf, V., and Sridhar, S.
An Asynchronous Parallel Stochastic Coordinate Descent
Algorithm. Journal of Machine Learning Research, 16:
285–322, 2015.

Ma, C., Konečný, J., Jaggi, M., Smith, V., Jordan, M.,
Richtárik, P., and Takáč, M. Distributed optimization
with arbitrary local solvers. arXiv.org, 2015a.

Ma, C., Smith, V., Jaggi, M., Jordan, M. I., Richtárik, P.,
and Takáč, M. Adding vs. averaging in distributed primal-
dual optimization. International Conference on Machine
Learning, 2015b.

Mahajan, D., Keerthi, S. S., and Sundararajan, S. A dis-
tributed block coordinate descent method for training l 1
regularized linear classifiers. Journal of Machine Learn-
ing Research, 18(91):1–35, 2017.

Nesterov, Y. and Polyak, B. T. Cubic regularization of
newton method and its global performance. Mathematical
Programming, 108(1):177–205, 2006.

Niu, F., Recht, B., Ré, C., and Wright, S. J. Hogwild!:
A lock-free approach to parallelizing stochastic gradient
descent. In Neural Information Processing Systems, 2011.

Nocedal, J. and Wright, S. Numerical optimization. 1999.

Pilanci, M. and Wainwright, M. J. Iterative hessian sketch:
Fast and accurate solution approximation for constrained
least-squares. The Journal of Machine Learning Research,
17(1):1842–1879, 2016.

Polyak, B. T. Gradient methods for minimizing functionals
(in russian). Zh. Vychisl. Mat. Mat. Fiz, 1963.

http://archive.ics.uci.edu/ml

Randomized Block-Diagonal Preconditioning for Parallel Learning

Reddi, S. J., Konečnỳ, J., Richtárik, P., Póczós, B., and
Smola, A. Aide: Fast and communication efficient dis-
tributed optimization. arXiv preprint arXiv:1608.06879,
2016.

Richtárik, P. and Takáč, M. Parallel coordinate descent
methods for big data optimization. Mathematical Pro-
gramming, 156(1):433–484, 2016.

Shamir, O., Srebro, N., and Zhang, T. Communication-
efficient distributed optimization using an approximate
newton-type method. In International conference on
machine learning, pp. 1000–1008, 2014.

Smith, V., Forte, S., Ma, C., Takáč, M., Jordan,
M. I., and Jaggi, M. CoCoA: A General Frame-
work for Communication-Efficient Distributed Optimiza-
tion. Journal of Machine Learning Research (and
arXiv:1611.02189), 2018.

Wang, S., Roosta-Khorasani, F., Xu, P., and Mahoney,
M. W. Giant: Globally improved approximate new-
ton method for distributed optimization. arXiv preprint
arXiv:1709.03528, 2017.

Zhang, Y. and Lin, X. Disco: Distributed optimization for
self-concordant empirical loss. In International confer-
ence on machine learning, pp. 362–370, 2015.

Randomized Block-Diagonal Preconditioning for Parallel Learning

A. Convergence Proof of Section 4
A.1. Proof Theorem 1

For a quadratic function f as in (8) the second order Taylor expansion is exact and

f(x + ∆) = f(x) +∇f(xt)
>∆ +

1

2
∆>H∆. (18)

Furthermore, the update ∆∗ = −H−1∇f(x) is optimal, in the sense that f(x + ∆∗) = f∗. We will now analyze the
update step ∆ = −ηH−1Pt∇f(xt) of Algorithm 1. Recall that HPt denotes the block-diagonal version of H induced by the
partitioning Pt at iteration t. Plugging in the update we find

f(xt+1)− f∗ = f(xt − ηH−1Pt∇f(xt))− f(xt −H−1∇f(xt))

(18)
= ∇f(xt)

> (H−1 − ηH−1Pt

)
∇f(xt)−

1

2
∇f(xt)

>[H−>HH−1 − η2H−>Pt HH
−1
Pt]∇f(xt) (19)

Further, using the bound x>Hx ≤ Kx>HPtx we find

f(xt+1)− f∗ = ∇f(xt)
>
(
−ηH−1Pt +

1

2
H−1 +

η2

2
H−>Pt HH

−1
Pt

)
∇f(xt)

≤ ∇f(xt)
>
(
−ηH−1Pt +

1

2
H−1 +K

η2

2
H−>Pt HPtH−1Pt

)
∇f(xt)

= ∇f(xt)
>
(

1

2
H−1 + [K

η2

2
− η]H−1Pt

)
∇f(xt)

=
1

2
∇f(xt)

> (I + [Kη2 − 2η]H−1Pt H
)
H−1∇f(xt) (20)

Now, using the fact that ∇f(x?) = 0 and plugging in the exact expression of the gradient (∇f(x) = Hx − c) and the
Hessian (∇2f(x) = H) we find

f(xt+1)− f∗ ≤ 1

2
(∇f(xt)−∇f(x?))>

(
I + [Kη2 − 2η]H−1Pt H

)
H−1(∇f(xt)−∇f(x?))

=
1

2
(xt − x?)>H

(
I + [Kη2 − 2η]H−1Pt H

)
(xt − x?)

Now, using η = 1
K and take expectation w.r.t. the randomness of the partitioning we find

E[f(xt+1)− f∗] ≤ 1

2
(xt − x?)>H

(
I − 1

K
E[H−1Pt]H

)
(xt − x?)

(i)

≤ 1

2
λmax

(
I − 1

K
E[H−1Pt]H

)
(xt − x?)>H(xt − x?)

=
1

2

[
1− 1

K
λmin(E[H−1Pt]H)

]
(xt − x?)>H(xt − x?)

=

[
1− 1

K
λmin(E[H−1Pt]H)

]
(f(xt)− f(x?)) . (21)

which concludes the proof. Note that in (i) we used the fact that H is symmetric and PSD. The last equality followed from
the definition of f in (8):

(xt − x?)>H(xt − x?) = xt
>Hxt + x?>Hx? − 2xt

>Hx?

= xt
>Hxt ± 2c>xt + x?>Hx? ± 2c>x? − 2xt

>Hx?

= 2f(xt) + x?>Hx? ± 2c>x?

= 2f(xt)− 2f(x?) + 2x?>Hx? − 2c>x?

= 2(f(xt)− f(x?)). (22)

Randomized Block-Diagonal Preconditioning for Parallel Learning

A.2. Proof of Theorem 3

We are given the quadratic auxiliary model (5) we have

f(xt + ∆x) ≤ f(xt) +∇f(xt)
>∆x +

γ

2
∆x>M∆x (23)

where M = A>A is a fixed symmetric matrix. Recall that we use the notation MPt to denote the block-diagonal version of
M induced by the partitioning Pt at iteration t. Using the block-diagonal matrix as preconditioning matrix in the update
step of Algorithm 1 we have

xt+1 = xt − ηM−1Pt ∇f(xt)

Plugging this into the auxiliary model yields

f(xt+1) ≤ f(xt)− η∇f(xt)
>M−1Pt ∇f(xt) +

η2

2
∇f(xt)

>M−1Pt MM−1Pt ∇f(xt)

(i)

≤ f(xt)− η∇f(xt)
>M−1Pt ∇f(xt) +

K

2
η2∇f(xt)

>M−1Pt MPtM−1Pt ∇f(xt)

= f(xt)− η∇f(xt)
>M−1Pt ∇f(xt) +

K

2
η2∇f(xt)

>M−1Pt ∇f(xt)

= f(xt)−
[
η − K

2
η2
]
∇f(xt)

>M−1Pt ∇f(xt) (24)

where we used the inequality x>Mx ≤ Kx>MPtx ∀x in (i). Now, subtracting f(xt) on both sides, using the step size
η = 1

K and changing signs we get

f(xt)− f(xt+1) ≥ 1

2K
∇f(xt)

>M−1Pt ∇f(xt)

=
1

2K
∇x`(Axt)

>AM−1Pt A
>∇x`(Axt) (25)

We can now take expectations w.r.t. the randomness of the partitioning on both sides which yields

f(xt)− E[f(xt+1)] ≥ 1

2K
∇x`(Axt)

>AE[M−1Pt]A>∇x`(Axt)

≥ 1

2K
λmin(AE[M−1Pt]A>)‖∇x`(Axt)‖2. (26)

Given that f satisfies the Polyak-Lojasiewicz inequality (11) we can lower bound the gradient norm by the suboptimality
which concludes the proof of Theorem 3.

A.3. Proof of Lemma 4

We assume the second-order model f̃x satisfies

f(xt + ∆x) ≤ ξf̂xt(∆x, Qt) + (1− ξ)f(xt)

≤ ξ[f(xt) +∇f(xt)
>∆x +

1

2
∆x>Qt∆x] + (1− ξ)f(xt)

≤ f(xt) + ξ[∇f(xt)
>∆x +

1

2
∆x>Qt∆x] (27)

Following the notation of the paper we will denote the block-diagonal version of Qt by QPt and use this as preconditioning
matrix. Plugging the update step xt+1 = xt − ηQ−1Pt∇f(xt) in the model (3) yields

f(xt+1) ≤ f(xt)− ξη∇f(xt)
>Q−1Pt∇f(xt) + ξ

1

2
η2∇f(xt)

>Q−1PtQtQ
−1
Pt∇f(xt) (28)

Randomized Block-Diagonal Preconditioning for Parallel Learning

we can further use that Qt ≤ KQPt which holds for every Pt and thus

f(xt+1) ≤ f(xt)− ξη∇f(xt)
>Q−1Pt∇f(xt) + ξ

K

2
η2∇f(xt)

>Q−1PtQPtQ−1Pt∇f(xt)

= f(xt)− ξη∇f(xt)
>Q−1Pt∇f(xt) + ξ

K

2
η2∇f(xt)

>Q−1Pt∇f(xt)

= f(xt)− ξ
[
η − K

2
η2
]
∇f(xt)

>Q−1Pt∇f(xt). (29)

Plugging in the step size η = 1
K , subtracting f(xt) on both sides and changing signs we get

f(xt)− f(xt+1) ≥ ξ 1

2K
∇f(xt)

>Q−1Pt∇f(xt) (30)

Now let us use the fact that

∇xt
f̃xt

(xt+1 − xt, Qt) = ∇f(xt) +Qt(xt+1 − xt) (31)

∇xt f̃xt(0, Qt) = ∇f(xt) (32)

and define ∆x̃t
? = arg minx f̃xt

(x) to be the optimizer of the quadratic approximation (3) around xt. This yields

f(xt)− f(xt+1) ≥ ξ 1

2K

[
∇xt f̃xt(0, Qt)−∇xt f̃xt(∆x̃t

?, Qt)
]>

Q−1Pt

[
∇xt f̃xt(0, Qt)−∇xt f̃xt(∆x̃t

?, Qt)
]

= ξ
1

2K
[Qt(xt − x̃t

?)]
>
Q−1Pt [Qt(xt − x̃t

?)]

= ξ
1

2K
(xt − x̃t

?)>Q>t Q
−1
PtQt(xt − x̃t

?). (33)

Now, taking expectations w.r.t, the randomness in the partitioning we get the expression from Lemma 4

E[f(xt)− f(xt+1)] ≥ ξ 1

2K
(xt − x̃t

?)>Q>t E[Q−1Pt]Qt(xt − x̃t
?)

≥ ξ 1

2K
λmin(Q>t E[Q−1Pt]Qt)‖xt − x̃t

?‖2 (34)

Remark 1 (symmetric Qt). If Qt is symmetric, such as often the case in GLM applications such a logistic regression where
Qt is built from A>Q̂tA with Q̂t being a symmetric matrix, we have

E[f(xt)− f(xt+1)] ≥ ξ 1

2K
(xt − x̃t

?)>Q>t E[Q−1Pt]Qt(xt − x̃t
?)

≥ ξ 1

2K
λmin(Qt)λmin(E[Q−1Pt]Qt)‖xt − x̃t

?‖2 (35)

If Qt = Q ∀t we recover the GLM result of Theorem 3 where the term λmin(Qt) is hidden in γ`.

B. Proof of Theorem 5
Using the assumption from (15) which states

f(x̃t) ≤ αf(xt) + (1− α)f(x?)

we can relate ‖xt − x̃t
?‖2 to the suboptimality as follows:

f(xt)− f? = f(xt)− f(x̃t
?) + f(x̃t

?)− f?

≤ L‖xt − x̃t
?‖+ α(f(xt)− f?)

=⇒ (1− α)(f(xt)− f?) ≤ L‖xt − x̃t
?‖

Randomized Block-Diagonal Preconditioning for Parallel Learning

where we used the fact that f is L-Lipschitz continuous.
Now denoting

ξt := ξ
1

2K
λmin(Q>t E[Q−1Pt]Qt)

and going from (34) we have

E[f(xt+1)− f(xt)] ≤ −ξt
(1− α)

L
(f(xt)− f?)

=⇒ Ef(xt+1)− f? ≤ (f(xt)− f?)− ξt
(1− α)

L
(f(xt)− f?)

=

[
1− ξt

(1− α)

L

]
(f(xt)− f?).

Theorem 5 follows by unrolling the recursion:

Ef(xt+1)− f? ≤
[
1−min

t
ξt

(1− α)

L

]t
(f(x0)− f?). (36)

Randomized Block-Diagonal Preconditioning for Parallel Learning

C. Spectral Analysis
C.1. Uniform Correlation

Let us visualize the matrices involved in the uniform-data example discussed in Section 5.1 for n = 9, K = 3, nk = 3:

1 α α α α α α α α
α 1 α α α α α α α
α α 1 α α α α α α
α α α 1 α α α α α
α α α α 1 α α α α
α α α α α 1 α α α
α α α α α α 1 α α
α α α α α α α 1 α
α α α α α α α α 1

︸ ︷︷ ︸

Q

1 α α 0 0 0 0 0 0
α 1 α 0 0 0 0 0 0
α α 1 0 0 0 0 0 0
0 0 0 1 α α 0 0 0
0 0 0 α 1 α 0 0 0
0 0 0 α α 1 0 0 0
0 0 0 0 0 0 1 α α
0 0 0 0 0 0 α 1 α
0 0 0 0 0 0 α α 1

︸ ︷︷ ︸

QP

0 0 0 α α α α α α
0 0 0 α α α α α α
0 0 0 α α α α α α
α α α 0 0 0 α α α
α α α 0 0 0 α α α
α α α 0 0 0 α α α
α α α α α α 0 0 0
α α α α α α 0 0 0
α α α α α α 0 0 0

︸ ︷︷ ︸

QcP

c β β 0 0 0 0 0 0
β c β 0 0 0 0 0 0
β β c 0 0 0 0 0 0
0 0 0 c β β 0 0 0
0 0 0 β c β 0 0 0
0 0 0 β β c 0 0 0
0 0 0 0 0 0 c β β
0 0 0 0 0 0 β c β
0 0 0 0 0 0 β β c

︸ ︷︷ ︸

Q−1
P

0 0 0 ε ε ε ε ε ε
0 0 0 ε ε ε ε ε ε
0 0 0 ε ε ε ε ε ε
ε ε ε 0 0 0 ε ε ε
ε ε ε 0 0 0 ε ε ε
ε ε ε 0 0 0 ε ε ε
ε ε ε ε ε ε 0 0 0
ε ε ε ε ε ε 0 0 0
ε ε ε ε ε ε 0 0 0

︸ ︷︷ ︸

Q−1
P QcP

0 pε pε pε pε pε pε pε pε
pε 0 pε pε pε pε pε pε pε
pε pε 0 pε pε pε pε pε pε
pε pε pε 0 pε pε pε pε pε
pε pε pε pε 0 pε pε pε pε
pε pε pε pε pε 0 pε pε pε
pε pε pε pε pε pε 0 pε pε
pε pε pε pε pε pε pε 0 pε
pε pε pε pε pε pε pε pε 0

︸ ︷︷ ︸

E[Q−1
P QcP]

Figure 6. Illustration of individual matrices in Example 1 in Section 5.1

To derive β, c, ε from α we proceed as follows: Let Q, QP and QPc be given as in Figure 6. The elements of Q−1P can be
derived from the individual blocks of QP . Q−1P will have block-diagonal structure where the individual blocks satisfy1 α α

α 1 α
α α 1

−1 =

c β β
β c β
β β c

 .
We denote the diagonal values of each block by c and the off-diagonal elements by β, where we have

β = − 1

(nk − 2) + 1
α − (nk − 1)α

c =
1

α

(nk − 2)α+ 1

(nk − 2) + 1
α − (nk − 1)α

Derivation. Using QPQ−1P = I we can derive the values of β and c from α: We get the two equations c+ (nk − 1)αβ = 1
for the diagonal elements and β + cα+ (nk − 2)αβ = 0 for the off-diagonal elements. Solving these equations for c and β
yields the claimed values.

Further, multiplying Q−1P and QPc yields a matrix with zero-diagonal blocks and equal non-zero elements as illustrated in
Figure 6 where

ε =
1− α

(nk − 2) + 1
α − (nk − 1)α

=
1− α

(1− α)nk + α− 2 + 1
α

. (37)

Hence, with α+ 1
α ≥ 2 for α ≤ 1 we find ε ≤ 1

nk
.

The sensitivity of ε and the resulting eigenvalues λmin(ΛP) w.r.t. α and K is illustrated in Figure 8.

Randomized Block-Diagonal Preconditioning for Parallel Learning

C.2. Separable Data – Additional Example

Let us consider the toy example where n = 4, K = 2 and Q has the following separable form: 1 α 0 0
α 1 0 0
0 0 1 α
0 0 α 1

︸ ︷︷ ︸

Q

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

QP1

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

QP2

 1 α 0 0
α 1 0 0
0 0 1 α
0 0 α 1

︸ ︷︷ ︸

QP3

2
3

+ 1
3
c 1

3
β 0 0

1
3
β 2

3
+ 1

3
c 0 0

0 0 2
3

+ 1
3
c 1

3
β

0 0 1
3
β 2

3
+ 1

3
c

︸ ︷︷ ︸

E[Q−1
P]

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

Q−1
P1

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

Q−1
P2

 c β 0 0
β c 0 0
0 0 c β
0 0 β c

︸ ︷︷ ︸

Q−1
P3

Figure 7. Small example for separable data as discussed in Section 5.2.

Assuming all non-zero off diagonal elements are equal to α, there are three possible partitionings which are equally likely in
Algorithm 1. The three partitionings are illustrated in Figure 7. For the two partitionings P1 and P2 we have

λmin(ΛP1
) = λmin(ΛP2

) = 1− α

For the third partitioning P3 we have
λmin(ΛP3

) = 1

To contrast this with repartitioning, we need to first evaluate Q−1P3
where we find β = − 1

1−α2 and c = 1
1−α2 . Hence, we

have
λmin(E[ΛP]) =

1

3
+

2

3
(1− α)

As a consequence, repartitioning will perform better than static partitioning in two out of three cases for this separable toy
example. Hence if we are not able to recover the optimal partitioning P? we would be better off to use Algorithm 1 with
repartitioning.

Randomized Block-Diagonal Preconditioning for Parallel Learning

D. Additional Experiments
Sensitivity of λmin(ΛP) and λmin(E[ΛP]) computed in Section 5.1 w.r.t K and α

10 3 10 2 10 1 100

10 3

10 2

10 1

100

1 K
m

in
(

)

10 3 10 2 10 1 100

10 3

10 2

10 1

100

1 K
m

in
(E

[
])

10 3 10 2 10 1 100

10 3

10 2

10 1

100

K=1

K=n

Figure 8. Plotting value of ρ := 1
K
λmin(E[ΛP]) which determines the convergence rate of Algorithm 1 (see Theorem 1) . We show ρ

for fixed partitioning (left) and for repartitioning (middle), these values are determined by ε (right) as given in (37). We use n = 200,
α ∈ (0, 1) and K ∈ [1, 200]. We can make the following two observations: 1) For small K the rate of repartitioning does not change
much with α, whereas the rate for static partitioning significantly decreases with increasing α. 2) For large α the rate of static partitioning
does not change much with K whereas repartitioning significantly improves for smaller K. Both findings are verified in the empirical
performance of training a ridge regression model as illustrated in Figure 3 .

Effect of using line search vs fixed step-size

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(a) separable (α = 0.6,K = 5)

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(b) uniform data (α = 0.4,K = 5)

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(c) random data (K = 8)

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(d) separable (α = 0.6,K = 5)

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(e) uniform data (α = 0.4)

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(f) random data (K = 8)

Figure 9. Investigating the effect of line search on the performance of Algorithm 1 with static and dynamic partitioning for three different
datasets: separable data as discussed in Section 5.2, data with uniform correlation as discussed in Section 5.1 and random data, where each
entry of A is drawn from a random normal distribution. Confidence intervals show min-max-intervals over 10 repetitions. The top line
shows performance with fixed step size η = 1

K
and the bottom line shows performance with line-search. We see that the relative behavior

of static and dynamic partitioning is preserved across all datasets, justifying the study of a fixed step size in the main part of the paper.

Randomized Block-Diagonal Preconditioning for Parallel Learning

Convergence of ADN (Dünner et al., 2018) with and without repartitioning as a function of the number of processes

0 100 200 300
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

rcv1
ADN
ADN + repartitioning

0 100 200 300
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

rcv1
ADN
ADN + repartitioning

0 100 200 300
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

rcv1
ADN
ADN + repartitioning

0 100 200 300
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

rcv1
ADN
ADN + repartitioning

0 500 1000 1500
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

mushrooms
ADN
ADN + repartitioning

0 500 1000 1500
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

mushrooms
ADN
ADN + repartitioning

0 500 1000 1500
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

mushrooms
ADN
ADN + repartitioning

0 500 1000 1500
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

mushrooms
ADN
ADN + repartitioning

0 20 40 60 80 100
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

gisette
ADN
ADN + repartitioning

0 20 40 60 80 100
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

gisette
ADN
ADN + repartitioning

0 20 40 60 80 100
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

gisette
ADN
ADN + repartitioning

0 20 40 60 80 100
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

gisette
ADN
ADN + repartitioning

0 100 200 300 400
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

covtype
ADN
ADN + repartitioning

(a) K = 2

0 100 200 300 400
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

covtype
ADN
ADN + repartitioning

(b) K = 4

0 100 200 300 400
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

covtype
ADN
ADN + repartitioning

(c) K = 8

0 100 200 300 400
iterations

10 8

10 5

10 2

101

104

su
bo

pt
im

al
ity

covtype

ADN
ADN + repartitioning

(d) K = 16

Figure 10. Convergence of ADN (Dünner et al., 2018) with and without repartitioning for different datasets and values of K. Confidence
intervals show min-max-intervals over 10 repetitions. We see that repartitioning achieves a significant gain over static partitioning across
all datasets and for different number of K. The performance of static partitioning can be sensitive to the quality of the partitioning. This is
the case for datasets with highly non-uniform features, such as covtype and mushroom. In the covtype dataset the features are a mix of 11
real valued and 43 categorical features. In the mushroom dataset, the sparsity of the features varies a lot; over 50% of the features are
more than 80% sparse and the other half of the features covers all the spectrum up to fully dense features.

Randomized Block-Diagonal Preconditioning for Parallel Learning

Theoretical and empirical convergence on random data

0.0 0.2 0.4 0.6 0.8 1.0
min()

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y

m
in

(
[

])

(a) α = 0.01

0.0 0.2 0.4 0.6 0.8 1.0
min()

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y

m
in

(
[

])

(b) α = 0.05

0.0 0.2 0.4 0.6 0.8 1.0
min()

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y

m
in

(
[

])

(c) α = 0.1

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(d) α = 0.01

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(e) α = 0.05

0 20 40 60 80 100
iterations

10 13

10 10

10 7

10 4

10 1

su
bo

pt
im

al
ity

static partitioning
repartitioning

(f) α = 0.1

Figure 11. Theoretical and empirical convergence of Algorithm 1 with and without repartitioning for random data with varying correlation
strength α. Data was generated by sampling the elements ofA>A ∼ N (α, α

2
) in a symmetric fashion. Top figures show the distribution of

λmin(ΛP) (determining the rate of Algorithm 1 for static partitioning) across 1000 random partitionings P in comparison to λmin(E[ΛP])
(determining the rate of Algorithm 1 for repartitioning). The figures on the bottom show the corresponding empirical convergence
for training a ridge regression classifier. We see that the ratio between the eigenvalues explains the convergence difference observed
empirically.

Effect of regularization on theoretical performance gain of repartitioning through λmin(E[ΛP])

10 6 10 5 10 4 10 3 10 2 10 1 100

min()

= 0.01
= 0.1
= 1
= 10

mushroom

min([])

10 3 10 2 10 1 100

min()

= 0.01
= 0.1
= 1
= 10

synthetic data

min([])
min()

Figure 12. Effect of regularization on the distribution of λmin(ΛP) across 1000 random partitions on different datasets with K = 5;
mushroom data (left) and synthetic data with A>A ∼ N (α, α

2
) for α = 0.5 (right). We consider Q = A>A + λI such as in linear

regression for varying λ. We compare λmin(ΛP) that determines the rate of static partitioning to λmin(E[ΛP]) that governs the rate of
dynamic partitioning and, if known, λmin(ΛP?) that determines the convergence of the best static partitioning. Note that for synthetic
data, adding regularization has the same effect than decreasing α.

Randomized Block-Diagonal Preconditioning for Parallel Learning

E. Discussion on Model Assumption
In Section 4 we consider the following assumption on the auxiliary model:

f(xt + ∆x) ≤ ξf̃xt
(∆x, Qt) + (1− ξ)f(xt) (38)

Recall that the model is defined as

f̃xt
(∆x;Qt) := f(xt) +∇f(xt)

>∆x +
1

2
∆x>Qt∆x.

In the following we will outline how some popular distributed methods fit into this framework:

E.1. CoCoA

The auxiliary model f̃x in CoCoA (Smith et al., 2018) is designed for GLMs and defines

Qt = γ`A
>A

where γ` denotes the smoothness parameter of the loss function. Crucial for the algorithm is that this choice guarantees that
the model forms a global upper bound on the function f . As a consequence it satisfies Assumption (38) for ξ = 1.

E.2. Line Search

Methods such as (Lee & Chang, 2017) use the true Hessian ∇2f(x) and deploy a line search strategy to rescale the update
by βt and guarantee sufficient function decrease. The rescaling of the update can be absorbed into Qt which then becomes

Qt :=
1

β t
∇2f(x).

In that way we offload the concerns about convergence to the choice of the auxiliary model which is outside the scope of our
study. The backtracking lines search control parameter α then corresponds exactly to ξ and βt is equal to the corresponding
step size satisfying the required stopping criteria.

To see this, consider the stopping criteria of line search:

f(x + ∆x) ≤ f(x) + α∇f(x)>∆x

and hence for all Q PSD and α > 0 it holds that

f(x + ∆x) ≤ f(x) + α∇f(x)>∆x + α
1

2
∆x>Qt∆x

= (1− α)f(x) + α

[
f(x) +∇f(x)>∆x +

1

2
∆x>Qt∆x

]
= (1− α)f(x) + αf̃x(∆x, Qt) (39)

E.3. Trust Region

A trust region approach such as ADN proposed in (Dünner et al., 2018) is not fully covered by our setting. The challenge
is that the trust region approach guarantees that the model decrease is close to the function decrease, it does however not
guarantee monotonic improvement. To be more precise, TR acts directly on the update computed by the diagonalized model
f̃x(·, QPt) and adjusts Qt accordingly. Theorem 4.5 in (Nocedal & Wright, 1999) shows that for all t sufficiently large,
there exists a finite constant 0 < c < 1 such that

|ρ− 1| =

∣∣∣∣∣f(xt)− f(xt + ∆x)− (f(xt)− f̃x(·, QPt))

f(xt)− f̃x(·, QPt)

∣∣∣∣∣ (40)

=

∣∣∣∣∣ f̃x(·, QPt)− f(xt + ∆x)

f(xt)− f̃x(∆x, QPt)

∣∣∣∣∣ < c. (41)

Randomized Block-Diagonal Preconditioning for Parallel Learning

Therefore,

f(xt + ∆x)− f̃x(·, QPt) < c(f(xt)− f̃x(·, QPt)) (42)

=⇒ f(xt + ∆x) ≤ (1− c)f̃x(∆x, QPt) + cf(xt) (43)

Our assumption (38), however requires the same bound to hold for f̃x(∆x, Qt) instead of f̃x(·, QPt). The analysis would
hence need to be extended and performed in the trust-region style (Nesterov & Polyak, 2006) which we do not expect to
pose major technical difficulties, nor change the effectiveness of repartitioning significantly. This has been confirmed by the
experimental results on ADN in Figure 10.

