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Abstract

System identification is a key step for model-
based control, estimator design, and output pre-
diction. This work considers the offline identi-
fication of partially observed nonlinear systems.
We empirically show that the certainty-equivalent
approximation to expectation-maximization can
be a reliable and scalable approach for high-
dimensional deterministic systems, which are
common in robotics. We formulate certainty-
equivalent expectation-maximization as block
coordinate-ascent, and provide an efficient im-
plementation. The algorithm is tested on a simu-
lated system of coupled Lorenz attractors, demon-
strating its ability to identify high-dimensional
systems that can be intractable for particle-based
approaches. Our approach is also used to iden-
tify the dynamics of an aerobatic helicopter. By
augmenting the state with unobserved fluid states,
a model is learned that predicts the acceleration
of the helicopter better than state-of-the-art ap-
proaches. The codebase for this work is available
athttps://github.com/sisl/CEEM.

1. Introduction

The performance of controllers and state-estimators for
nonlinear systems depends heavily on the quality of the
model of system dynamics (Hou & Wang, 2013). System-
identification addresses the problem of learning or calibrat-
ing dynamics models from data (Ljung, 1999), which is
often a time-history of observations of the system and con-
trol inputs. In this work, we address the problem of learn-
ing dynamics models of partially observed systems (shown
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Figure 1. A graphical model representing a partially observed dy-
namical system. Gray-box identification algorithms attempt to
search a model class of dynamics and observation models for the
model that maximizes the likelihood of the observations.

in Figure 1) that are high-dimensional and nonlinear. We
consider situations in which the system’s state cannot be
inferred from a single observation, but instead requires in-
ference over time-series of observations.

The problem of identifying systems from partial observa-
tions arises in robotics (Punjani & Abbeel, 2015; Cory &
Tedrake, 2008; Ordonez et al., 2017) as well as domains
such as chemistry (Gustavsson, 1975) and biology (Sun
et al., 2008). In many robotic settings, we have direct mea-
surements of a robot’s pose and velocity, but in many cases
we cannot directly observe relevant quantities such as the
temperature of actuators, the state the environment around
the robot, or the intentions of other agents. For example,
Abbeel et al. (2010) attempted to map the pose and velocity
of an aerobatic helicopter to its acceleration. They found
their model to be inaccurate when predicting aggressive
maneuvers because of the substantial airflow generated by
the helicopter that affected the dynamics. Since it is of-
ten impossible to directly measure the state of the airflow
around a vehicle, identification must be with only partial
observability.

System identification is a mature field with a rich his-
tory (Ljung, 1999; 2010). A variety of techniques have
been proposed to learn predictive models from time-series
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data. Autoregressive approaches directly map a time-history
of past inputs to observations, without explicitly reasoning
about unobserved states (Billings, 2013), and are the state-
of-the-art approach to the aforementioned problem of mod-
eling the aerobatic helicopter (Punjani & Abbeel, 2015). In
contrast, state-space models (SSM) assume an unobserved
state x; that evolves over time and emits observations y; that
we measure, as shown in Figure 1. Recurrent Neural Net-
works (RNNs) (Bailer-Jones et al., 1998; Zimmermann &
Neuneier, 2000) are a form of black-box nonlinear SSM that
can be fit to observation and input time-series, and Subspace
Identification (SID) methods (Van Overschee & De Moor,
1994) can be used to fit linear SSMs.

However, in many cases, prior knowledge can be used to
specify structured, parametric models of the system (Gupta
et al., 2019; 2020) in state-space form, commonly refered
to as gray-box models. Such models can be trained with
less data and used with a wider array of control and state-
estimation techniques than black-box models (Gupta et al.,
2019; 2020; Lutter et al., 2019b;a).

To identify partially observed gray-box models, the unob-
served state-trajectory is often considered as missing data,
and techniques based on Expectation-Maximization (EM)
are used (Dempster et al., 1977; Schon et al., 2011; Kantas
et al., 2015; Ghahramani & Roweis, 1999). The smoothing
step (E-step) deals with state inference—the current sys-
tem dynamics estimate is used to infer the distribution of
unobserved state-trajectories conditioned on the observa-
tions p(x1.7 | y1.7). This distribution is sometimes called
the joint smoothing distribution in the literature, and it is
used to estimate the expected log-likelihood of the observa-
tions. In the learning step (M-step), the system’s dynamics
estimate is updated such that it maximizes the expected log-
likelihood. The smoothing step can typically be approached
with particle approximations of p(z1.7 | y1.7), but naive im-
plementations of particle smoothers can be computationally
intensive and become rapidly intractable in high dimensions.
Across various fields and disciplines, numerous methods
have been developed to alleviate this computational burden,
several of which are discussed in Section 2.3.

This work is motivated by robotics applications, in which
the following assumptions are often valid:

e Systems evolve nearly deterministically, which implies
that the process noise is small and unimodal, and,

e The distribution of states conditioned on the observa-
tions p(z1.7 | y1.7) is unimodal.

We study the benefits of making the certainty-equivalent
approximation in the E-step of the EM procedure, and we
refer to this approach as CE-EM. Specifically, we use nonlin-
ear programming to tractably find the maximum-likelihood
(ML) point-estimate of the unobserved states, and use it

in lieu of a fully characterized approximate distribution.
The contributions of this paper are to describe an efficient
implementation of CE-EM, and to test the approximation
against state-of-the-art approaches on a variety of system-
identification problems. We demonstrate on a system of
Lorenz attractors that:

e CE-EM can be faster and more reliable than approaches
using particle approximations,

e CE-EM scales to high-dimensional problems, and,

e CE-EM learns unbiased parameter estimates on deter-
ministic systems with unimodal p(z1.7 | y1.7)-

We also demonstrate the algorithm on the problem of identi-
fying the dynamics of an aerobatic helicopter. We show that
a nonlinear SSM can be trained with CE-EM that outper-
forms various approaches including the most recent work
done on this dataset (Punjani & Abbeel, 2015). A codebase
implementing CE-EM and other supplementary material
can be found at our website: https://sites.google.
com/stanford.edu/ceem/.

2. Background

This section states the nonlinear system-identification prob-
lem with partial observations and discusses approaches that
use EM to solve it.

2.1. Formal Problem Statement

In this work, we assume that we are given a batch of trajecto-
ries containing observations y1.7 € R™*7 of a dynamical
system as it evolves over a time horizon 7', possibly forced
by some known input sequence u;.7. We assume that this
dynamical system has a state x € R"™ that evolves and gen-
erates observations according to the following equations,

wy ~ P (*)
Ut ~ pv(')

Tt+1 = f(l't,’dt,t) + wy,

(D
yr = g(@e, ue, t) + vy,

where wy is referred to as the process noise and v; as the
observation noise. Both w; and v; are assumed to be ad-
ditive for notational simplicity, but this is not a required
assumption.! Without loss of generality, we can drop the
dependence on u,, absorbing it into the dependence on t.

We further assume that we are provided a class of parame-
terized models fy(x,t) and gg(x,t) for § € © that approx-
imate the dynamical system’s evolution and observation
processes. The goal of our algorithm is to find the parame-
ters 6 that maximize the likelihood of the observations. That

'In order to substitute w; or vy in the arguments of p, and p.,,
the only requirement is to be able to express them as functions of
the other terms. Hence, the formulation is amenable to any method
of injecting noise into the system, so long as we can estimate the
probability of the noise given the other terms in their respective
equations.
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is, we seek to find:

O = arg Imax p(y1.T | 0)
= argimax /p(?Jl:T,»Tl:T ‘ e)dxlzT
6

= argénax /p(ylzT | z1.7, 0)p(x1.7 | O)da1.r
2

Using the graphical model shown in Figure 1, we can rewrite
this integral as:

T

O = arg;nax /Hp(yt | 2, 0)-
=1
T

-1
H p($t+1 ‘ $t79)p(1’1 | 9)d$1:T
t=1
(3)

Finally, using the notation chosen to describe a dynamical
system in Equation (1), we obtain:

T
aML = arggnax / <Hpv(yt - 99(Itat))> '
t=1

-1
<p($1) H Puw(Ter1 — fa(dft,t))> dz1.m

t=1
“4)
The Expectation-Maximization (EM) algorithm has been
used in the literature to solve problems of this form.

2.2. Expectation-Maximization for SSM Identification

The EM algorithm is a two-step procedure that copes with
the missing state information by forming an approxima-
tion (0, ;) of the joint state and observation likelihood
po(z1.7, y1.7) at the kth iteration of the algorithm:

Q0,0,) = /108; p(xr.r,yrr | 0):

p(@1r | yir, Ok)derr

&)

Classical proofs show that maximizing Q(6,6%) with re-
spect to 6 results in increasing pg(x1.7,y1.7) (Dempster
et al., 1977). The EM algorithm iteratively performs two
steps:

1. Compute Q(6, 0y)
2. Update 6.1 = arg max Q(0, 6,)
0

The evaluation of Q(0, 6y) in the E-step requires the esti-
mation the p(x1.7 | y1.7, 0k ), as well as the integration of
the likelihood over this distribution. In the linear Gaussian
case, EM can be performed exactly using Kalman smooth-
ing (Rauch et al., 1965; Ghahramani & Hinton, 1996). In
the more general case, there is no analytic solution, and
previous work on approximating the E-step is summarized
in the next section.

2.3. Related Work

There are general approaches that are based on particle
representations of the joint states-observations likelihood
that use Sequential Monte-Carlo (SMC) methods such as
Particle Smoothing (PS) (Schon et al., 2011; Kantas et al.,
2015). With enough particles, PS can handle any system and
any joint distribution of states and observations. However,
PS suffers from the curse of dimensionality, requiring an
intractably large number of particles if the state space is
high-dimensional (Snyder et al., 2008; Kantas et al., 2015).
In the simplest form, both the E-step and the M-step can be
quadratic in complexity with respect to the number of parti-
cles (Schon et al., 2011). An important body of work has
attempted to alleviate some of this burden by using Nested
SMC (Naesseth et al., 2015) and forward filtering-backward
simulation (FFBSi), (Lindsten & Schon, 2013), and condi-
tional particle filtering (Lindsten, 2013) in the E-step. PS
can also require variance reduction techniques, such as full-
adaptation, to perform reliably, and likelihood estimates in
the E-step can be noisy (Svensson et al., 2018). Stochastic
Approximation EM can be used to stabilize learning in the
presence of this noise (Delyon et al., 1999; Svensson &
Lindsten, 2018).

Another group of methods is based on linearizing the dy-
namics around the current state estimates to obtain a time-
dependant linear Gaussian dynamical system, to which we
can apply Kalman smoothing techniques. Ghahramani &
Roweis (1999) use Extended Kalman Smoothing (EKS) for
a fast E-step and show that, when using radial basis func-
tions to describe the system dynamics, no assumption is
required in the M-step. The drawbacks of this approach
are that the number of radial basis functions required to
accurately represent a function grows exponentially with
the input dimension, that the user cannot specify a gray-box
SSM, and that EKS performance can vary dramatically with
the hyperparameters. Goodwin & Aguero (2005) proposed
a method called MAP-EM, which linearizes around the
state-trajectory that maximizes joint state and observation
likelihood, approximates process and observation noise as
Gaussian, and performs a local version of EM using this lin-
earization. In comparison, the method we consider assumes
that the maximum likelihood state-trajectory estimate con-
centrates all of the probability mass. Goodwin & Aguero
(2005) call this simplification Certainty Equivalent EM (CE-
EM) and report worse results than their approach on simple
examples.

This paper shows that CE-EM can actually be a fast, simple,
and reliable approach. The method we use here is tailored to
systems that are not dominated by process noise, in which
the state-trajectory distribution is unimodal, and whose high
dimensional state-space make other methods intractable.
Such scenarios are regularly encountered in robotics, but
perhaps less so in other applications domains of system
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identification such as chemistry, biology, or finance.

3. Methodology

This section introduces the CE-EM approximation and
presents an efficient algorithm to identify high-dimensional
robotic systems.

3.1. Certainty-Equivalent Expectation Maximization

Under the certainty-equivalence condition, the distribution
of states conditioned on observations is assumed to be a
Dirac delta function. That is, we assume:

p(@rrlyrr, 0) = S () (T1:7) (6)
where
21'7(0) = argmaxp(er.7 | yur, )
= ar%f;axp(xl:Tayl:T 10)/p(y1r 1 0)  (7)

= argmax p(xy.7,y1.7 | 0)
T1:T

In other words, this assumption implies that there is only
one state trajectory that satisfies the system dynamics, and
is coherent with the data.

The E-step can be rewritten as:

Q8,0,) = /log p(z1.r, Y17 | 6)-
oM (o,) (T1:7)dT1T

= 1ogp(x11v{lj“(9k)7yl:T | 0)

®)

By observing the maximization of the expression in Equa-
tion (7) as the E-step, and maximizing the expression in
Equation (8) as the M-step, we see that CE-EM is simply
block coordinate-ascent on the single joint-objective:

J(Ilvae) :1ng(x1:T7y1:T | 0)

T
=logp(x1) + > _ logpy(ye — go(we,t))
t=1 9)
T-1
+ Z log puw(ze+1 — fo(ze, 1))
t=1

Jointly maximizing this objective over x1.7 and 6 yields
9ML'

Though this objective can be optimized as is by a nonlinear
optimizer, it is not necessarily efficient to do so since 6 and
z1.7 are highly coupled, leading to inefficient and poten-
tially unstable updates. For this reason, we still opt for the
block coordinate-ascent approach similar to EM, where
and x1.7 are each sequentially held constant while the other

Algorithm 1. CE-EM Implementation
Input: observations y;.7, control inputs 1.7, stopping
criterion tol
Initialize: model parameters 6
Initialize: hidden state estimates x 1.7

repeat
‘]k — ‘](xllc:T’ 9/6)
ol argmax J (1.1, 0F) — pul|Frr — 28013
Z1:T
01— arg max J(x¥3E0) — pgl|0—6%(|3+1og p(6)
0

until J* — J(2¥ 5 0F+1) < tol

is optimized. By viewing EM as block coordinate-ascent,
we may also borrow good practices typically employed
when running the algorithm (Shi et al., 2016). In particular,
we employ trust-region regularization in order to guaran-
tee convergence to a local optimum, even in non-convex
settings (Grippo & Sciandrone, 2000).

3.1.1. SMOOTHING

At iteration k, we first perform smoothing by holding 6 con-
stant and finding the ML point-estimate for 1.7 as follows:

"), = argmax J (z1.7,0%D) — p a1 — 25013

T1:T

xT

(10)
where p, scales a soft trust-region regularizer similar
to damping terms found in Levenberg-Marquardt meth-
ods (Levenberg, 1944; Marquardt, 1963). We note that
the Hessians of this objective with respect to ;.7 are block-
sparse, and as a result this step can be efficiently solved with
a second-order optimizer in O(n®T).

If the cost function J(z1.7, 8) is a sum of quadratic terms,
i.e. if all stochasticity is Gaussian, then the smoothing
can be solved with a Gauss-Newton method, where the
Hessian matrix is approximated using first-order (Jacobian)
information. In this case, the solution to the smoothing
step is equivalent to iteratively performing EKS (Aravkin
et al., 2017). However, EKS typically involves forward
and backward passes along each trajectory, performing a
Riccati-like update at each time step. Though square-root
versions of the algorithm exist to improve its numerical
stability (Bierman, 1981), solving the problem with batch
nonlinear least-squares as opposed to iteratively performing
a forward-backward method can improve stability for long
time-series (Van Dooren, 1981).

3.1.2. LEARNING
In the learning step, we hold z1.7 constant and find:
k _
o) = arg max J (217, 0) = poll0 — 6|3 + log p(6)

(an
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Again, py scales a soft trust-region regularizer, and speci-
fying log p(0) allows us to regularize 6 toward a prior. The
above optimization problem can be solved using any non-
linear optimizer. We find the Nelder-Mead (Gao & Han,
2012) scheme well-suited for small parameter spaces, and
first-order schemes such as Adam (Kingma & Ba, 2015), or
quasi-second-order schemes such as L-BFGS (Liu & No-
cedal, 1989) suited for larger parameter spaces such as those
of neural networks. The routine, summarized in Algorithm
1, iterates between the smoothing and learning steps until
convergence.

It should be noted that making the certainty-equivalent
approximation is generally known to bias parameter esti-
mates (Celeux & Govaert, 1992), but can yield the correct
solutions under the assumptions we make (Neal & Hinton,
1998).

4. Experiments

Readers of Goodwin & Aguero (2005) will likely be left
with the incorrect impression that CE-EM is an inferior
method that would perform poorly in practice. The objec-
tive of our experiments is to demonstrate that the CE-EM
algorithm is capable of identifying high-dimensional non-
linear systems in partially observed settings. We do so in
simulation by identifying the parameters of a system of
partially observed coupled Lorenz attractors, as well as by
identifying the dynamics of a real aerobatic helicopter. In
the second experiment, we build on previous analysis of the
dataset (Abbeel et al., 2010; Punjani & Abbeel, 2015) by
attempting to characterize the interaction of the helicopter
with the fluid around it, without having any direct obser-
vation of the fluid state. Instructions for reproducing all
experiments are included in the supplementary material.

4.1. Identification of Coupled Lorenz Systems

In this experiment, we show that:

1. CE-EM learns unbiased parameter estimates of sys-
tems that are close to deterministic, and,

2. CE-EM scales to high-dimensional problems in which
particle-based methods can be intractable.

To justify these claims, we use a system that is sufficiently
nonlinear and partially observable to make particle-based
smoothing methods intractable. We choose a system of
coupled Lorenz attractors for this purpose, owing to their
ability to exhibit chaotic behavior and their use in non-
linear atmospheric and fluid flow models (Bergé et al.,
1984). Arbitrary increases in state dimensionality can be
achieved by coupling multiple individual attractors. The
state of a system with K coupled Lorenz attractors is
v € R¥ = {\.. 21,22k, 23, ..}. The dynamics of

Table 1. Mean parameter estimates and standard errors for a single
Lorenz system simulated with various o, and o,.

ow  ou | o p p
0.001 0.01 || 10.011(0.012) 28.000(0.001) 2.667(0.000)
0.010 0.01 || 10.017(0.012) 28.000(0.001)  2.668(0.001)
0.100  0.01 || 10.064(0.036) 27.996(0.013)  2.676 (0.004)
0.001 0.05 || 10.006(0.016) 27.998(0.002) 2.666(0.001)
0.001 0.10 || 9.998(0.022)  27.995(0.004) 2.665(0.001)

the system are as follows:

ﬂél,k = O'k(xQ,k - iL’l,k)

Top = o1 k(pr — T3 k) — Ta g

. (12)
T3k = T1,kT2,k — BrTa.k
t=2+ Hzx
where H is an R3¥*3K matrix.

We nominally set the parameters (o, px, Ok ) to the values
(10,28,8/3), and randomly sample the entries of H from a
normal distribution to generate chaotic and coupled behavior
between attractors, while avoiding self-coupling. These
parameters are estimated during identification. In order to
make the system partially observed, the observation y €
RGE=2) is derived from z as follows:

y=Cx+v, v~N(00T) (13)

where C' € RGBE=2)x3K j5 a known matrix with full row-
rank, and v is the observation noise sampled from a Gaus-
sian with diagonal covariance o21. The entries of C' are
also randomly sampled from a standard normal distribution.
In the following experiments, we simulate the system for
T = 128 timesteps at a sample rate of At = 0.04s, and inte-
grate the system using a 4th-order Runge-Kutta method.
Initial conditions for each trajectory are sampled such
that T,k ™~ N(—6,2.52),$2’k ~ N(—6,2.52),$3’k ~
N(24,2.5%).

4.1.1. UNBIASED ESTIMATION IN DETERMINISTIC
SETTINGS

To test the conditions under which CE-EM learns unbiased
parameter estimates, we simulate a single Lorenz system
with H = 0 and known C' € R2*3, We introduce and vary
the process noise w ~ N(0, 2 1), and vary the observation
noise coefficient o,, and then attempt to estimate the pa-
rameters (o, p, ). Using initial guesses within 10% of the
system’s true parameter values, we run CE-EM on a single
sampled trajectory. For each choice of o, and o,,, we repeat
this process for 10 random seeds.

Table 1 shows the mean and standard errors of parameter
estimates for various o, and o,. We highlight in red the
mean estimates that are not within two standard errors of
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their true value. We see that o and p are estimated without
bias for all scenarios. However, the estimate of 3 appears
to become biased as the process noise is increased, but not
as the observation noise is increased. This supports the
assumption that the objective used in CE-EM is sound when
systems evolve close to deterministically, but can be biased
if it is not.

4.1.2. COMPARISON TO PARTICLE BASED METHODS

In Section 2, we discussed methods for parameter estimation
in state-space systems that are based on particle-filtering and
smoothing (Kantas et al., 2015). Since these methods ap-
proximate the distribution over unobserved state-trajectories
in their E-step, as opposed to only their point estimate, such
methods can be asymptotically unbiased. However, for a
finite number of particles, such methods can result in high-
variance estimates. In this experiment, we compare the bias
resulting from using CE-EM with the variance of using a
state-of-the-art Particle EM algorithm.

We attempt to identify the parameters (o, p, 8) of the same
single Lorenz system as in Section 4.1.1. However, we
introduce process noise w ~ N(0,0.1%I) and observation
noise v ~ N(0,0.52I). We use a training dataset of four
trajectories sampled with conditions specified in Section 4.1.

The performance of Particle EM can vary substantially
depending on implementation of the particle filter and
smoother in the E-step, and implementation of the M-
step. We use a fully-adapted particle filter with systematic
and adaptive resampling, following the recommendations
of Doucet et al. (2000); Hol et al. (2006). Furthermore,
we use the FFBSi algorithm (Godsill et al., 2004; Lind-
sten & Schon, 2013) in order to generate iid samples of
smoothed state-trajectories, while avoiding complexity that
is quadratic in the number of particles experienced by the for-
ward filter-backward smoother (FFBSm) approach (Doucet
et al., 2000). We then use Stochastic Approximation EM
(SAEM) (Delyon et al., 1999) to perform the M-step.2 We
use IV, = 100 particles for filtering, and sample N, = 10
smoothed trajectories using FFBSi.

Figure 2 shows the estimated parameters versus EM epoch
using CE-EM and Particle EM. We plot learning curves
for 10 random seeds, each of which initializes parameter
estimates to within 10% of their true value, and uses a
different set of training trajectories. We see that CE-EM
consistently converges to accurate parameter estimates in
approximately 5 epochs. Estimates of Particle EM appear
to initially diverge but in all but one case converge to a
similar accuracy in 50 epochs. Furthermore, since the com-

>We have found that using FFBSi with SAEM performs more
reliably than FFBSm with the M-step recommended by (Schon
etal., 2011), and both implementations can be found in the associ-
ated codebase.

CE-EM Particle EM
11 11
6 10 o | [() o e i
9 T 9 T T
0 5 10 0 50 100
30.0 1 30.0 1
S o015 L7 27.5 —7“"““'
T T T
0 5 10 0 50 100
2.75 i 2.75
Na} e ] | r———;—.-—a——a-—.—-—
2.50 A 2.50 A
T T T
0 5 10 0 50 100
EM Epoch EM Epoch

Figure 2. Comparison of CE-EM and Particle EM on parameter
estimation of a single Lorenz system.

plexity of FFBSi is O(N,,N;),? the runtime per epoch of
Particle EM is 47x more than that of CE-EM.* Since the
variance of particle-based methods generally increases with
the effective dimension of the system, the bias induced by
CE-EM may be a worthwhile trade-off for fast and reliable
parameter estimation.

4.1.3. CONVERGENCE OF CE-EM ON
HIGH-DIMENSIONAL PROBLEMS

To demonstrate that CE-EM is capable of identifying high-
dimensional systems, we show that we can estimate the dy-
namics of an 18 dimensional system of six coupled Lorenz
attractors. Moreover, we test whether CE-EM converges
to more accurate estimates when more trajectories are pro-
vided. To test these claims, we sample 2, 4, and 8 trajecto-
ries from a deterministic system with parameters 6y, and
o, = 0.01. We randomly initialize each element of the
parameters being optimized (6 = [01.x, p1.x, B1.Kx, H]) tO
within 10% of the their value in 0y,.. We then run CE-EM
on each batch, tracking the error in the estimated dynamics
as training proceeds. We measure this error, which we call
€(0), as follows:

€(0) = Eonpay) [1fo(2) = fon(@)ll2] (14

3Variants of FFBSi algorithm improve on the O(N, Ns) com-
plexity (Lindsten & Schon, 2013).

“Experiments were run on a computer with an Intel® Core”
i7-6700K CPU @ 4.00GHz x 8 processor and 32GB of memory.
Operations are parallelized across trajectories for both implemen-
tations.

M
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Figure 3. Error in estimated dynamics as CE-EM trains on a var-
ied number of trajectories from a system of six coupled Lorenz
attractors.

In the learning step, we do not regularize 6 to a prior and
set pp = 0.

For comparison, we also run the same Particle EM imple-
mentation as in the previous experiment on this problem.
We use the same N,, N, and hyperparameters as before.

Figure 3 shows the results of this experiment for four ran-
dom seeds for each batch size. We can see that, as the
number of trajectories used in training increases, the error
in the estimated dynamics tends toward zero. Furthermore,
we see that CE-EM convergences monotonically to a local
optimum in all cases. In contrast, Particle EM appears to
initially improve but then converges to very poor parameter
estimates.

The experiments conducted thus far have demonstrated that
CE-EM can learn unbiased parameter estimates of nearly-
deterministic systems, and can scale to high-dimensional
problems for which particle-based methods are intractable.
In the next experiment, we use CE-EM to characterize the
effect of unobserved states on the dynamics of an aerobatic
helicopter.

4.2. Characterizing Aerobatic Helicopter Dynamics

Characterizing the dynamics of a helicopter undergoing ag-
gressive aerobatic maneuvers is widely considered to be a
challenging system-identification problem (Abbeel et al.,
2010; Punjani & Abbeel, 2015). The primary challenge is
that the forces on the helicopter depend on the induced state
of the fluid around it. The state of the fluid cannot be di-
rectly observed and its dynamics model is unknown. Merely
knowing the state of the helicopter and the control com-
mands at a given time does not contain enough information
to accurately predict the forces that act on it.

In order to address this issue, (Punjani & Abbeel, 2015) use
an approach based on Takens theorem, which suggests that

a system’s state can be reconstructed with a finite number
of time-lagged observations of it (Takens, 1981). Instead
of attempting to estimate the unobserved fluid state, they
directly learn a mapping from a 0.5 s history of observed
state measurements and control commands to the forces
acting on the helicopter.

This approach is equivalent to considering the past 0.5s of
observations as the system’s state. However, it can require
a very large number of lagged observations to represent
complex phenomena. In reality, the characteristic time of
unsteady flows around helicopters can easily be up to tens of
seconds. Having such a high dimensional state can make the
control design and state-estimation more complicated. To
avoid large input dimensions, a trade-off between the dura-
tion of the history and sample frequency is necessary. This
trade-off will either hurt the resolution of low-frequency
content or will alias high-frequencies. We attempt to instead
explicitly model the unobserved states affecting the system.

4.2.1. OBJECTIVE AND DATASET

The objective of this learning problem is to predict y;, the
helicopter’s acceleration at time ¢, from an input vector
containing the current measured state of the helicopter (its
velocity and rotation rates) and the control commands.

We use data collected by the Stanford Autonomous Heli-
copter Project (Abbeel et al., 2010). Trajectories are split
into 10s long chunks and then randomly distributed into
train, test, and validation sets according to the established
protocol (Abbeel et al., 2010; Punjani & Abbeel, 2015) and
summarized in Appendix A.1. The train, test, and validation
sets respectively contain 466, 100, and 101 trajectories of
500 time-steps each.

A simple success metric on a given trajectory is the root-
mean-squared prediction error,

T
_ 1 (measured) (pred) 2
RMSE = T;Hyt —y™ s

where ygmeasured)

is the measured force from the dataset,
P s the force predicted by the model, and T is the

number of time-steps in each trajectory.

4.2.2. PREVIOUS WORK AND BASELINES

Naive: We first consider a naive baseline that does not
attempt to account for the time-varying nature of the fluid-
state. We train a neural-network to map only the current
helicopter state and control commands to the accelerations:
y+ = NNy, (ut), where NNy is a neural-network with
parameters 6,,. We refer to this model as the naive model.

H25: We also compare to the work of Punjani & Abbeel
(2015). They predict y; using a time-history u;_f.; of
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Figure 4. (a): Test performance of optimized models on various trajectories. Error bars on SID represent the standard deviation of
performance of the 10 trained models. (b): Predicted acceleration along axis x, y and z in the body frame for one of the harder test set
trajectories. Larger versions of these plots, including rotational accelerations, can be found in Appendix A.3.

H = 25 lagged observations of the helicopter’s measured
state and control commands. This input is passed through a
ReLU-activated neural network with a single hidden-layer
combined with what they call a Quadratic Lag Model. As
a baseline, we reproduce their performance with a single
deep neural network y; = NNy, (ut—pr.¢) with parameters
0. We call this neural network model the H25 model.
Both of these models can be trained via stochastic gradient
descent to minimize the Mean-Squared-Error (MSE) of their
predictions for y. The optimization methodology for these
models is described in Appendix A.2.

SID: As a third baseline, we compare with subspace-
identification methods (Van Overschee & De Moor, 1994).
We let g = y; — NNy, (u;) be the prediction errors of
the trained naive model. We use the MATLAB command
n4sid to fit a linear dynamical system of the following
form:

Tpp1 = Asxe + Bouy; U = Csxy + Dguy (16)

Here, € R? is the unobserved state with arbitrary dimen-
sion d. The learned parameters are 6; = [As, Bs, Cs, Dy].
We use a state dimension of 10 and call this model the SID
model. The n4sid algorithm scales super-linearly with
the amount of data supplied, and thus we train on 10 ran-
domly sampled subsets of 100 trajectories each, and report
the distribution in prediction performance. This approach
fits a linear system to the residual error of the naive model,
therefore the prediction of y; obtained from the SID model
is a nonlinear function of the states x;.

LSTM: We also train an LSTM (Hochreiter & Schmidhuber,
1997) on the residual time-series 1.7 and uy.7.

4.2.3. NONLINEAR UNOBSERVED STATE MODEL

We use CE-EM to train a nonlinear SSM. Similar to the
parameterization used for subpace-identification, we fit the
prediction errors of the naive model using the following
dynamical system:

Te41 = At + Baoue

_ A7
Jt = Cxixt + Dyue + NNgy (4, ut)

and Oy =
[Axe, By, Cxi, Dy, O] are the learned parameters. We
introduce nonlinearity only in the observation function be-
cause it is known from Koopman theory that a nonlinear
system can be approximated by a high-dimensional linear
system provided the correct nonlinear mapping between
them (Brunton et al., 2016).

where NNg ~is a neural network,

While learning, we assume that both process and observation
noise are distributed with diagonal Gaussian covariance
matrices 0,1 and o, 1 respectively. The values of ¢, and
o, are treated as hyperparmeters of CE-EM, and are both set
to 1. Here as well, we use a state dimension of 10 and call
this model the NL model. The optimization methodology
for this model is described in Appendix A.2.

It should be noted that the system we learn need not actu-
ally correspond to an interpretable model of the fluid-state,
but only of time-varying hidden-states that are useful for
predicting the accelerations of the helicopter. Expert knowl-
edge of helicopter aerodynamics could be used to further
inform a gray-box model trained with CE-EM.
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4.2.4. EVALUATION METHODOLOGY

The test RMSE of the naive, H25, and LSTM models can
be evaluated directly on the test trajectories using next-step
prediction. However, the SID and NL models require an
estimate of the unobserved state before making a predic-
tion. The natural analog of next-step prediction is extended
Kalman filtering (EKF), during which states are recursively
predicted and corrected given observations. At a given time-
step, a prediction of g; is made using the current estimate
of x4, and is used in the computation of RMSE. The state-
estimate is then corrected with the measured ;.

4.2.5. RESULTS

Figure 4a shows the RMSE of the compared models on
trajectories in the test-set. We see that the NL model is able
to consistently predict the accelerations on the helicopter
with better accuracy than any of the other models. The
naive model performs on average 2.9 times worse than the
H25 model, and its results can be found in Appendix A.3.
The LSTM model also performs poorly, on average 1.4
times worse than the H25 model. The SID model notably
outperforms the state-of-the-art H25 model, suggesting that
a large linear dynamical system can be used to approximate
anonlinear and partially observable system (Korda & Mezi¢,
2018). However, introducing nonlinearity as in the NL
model noticeably improves performance.

Figure 4b depicts the errors in prediction over a sample tra-
jectory in the test-set. Here, we also see that the NL model
is able to attenuate the time-varying error present in pre-
dictions made by the H25, suggesting that it has accurately
characterized the dynamics of unobserved, time-varying
states.

This experiment validates the effectiveness of CE-EM to
identify a nonlinear dynamical model of unobserved states
that affect the forces acting an aerobatic helicopter.

5. Conclusions

This paper presented an algorithm for system identification
of nonlinear systems given partial state observations. The
algorithm optimizes system parameters given a time his-
tory of observations by iteratively finding the most likely
state-history, and then using it to optimize the system pa-
rameters. The approach is particularly well suited for high-
dimensional and nearly deterministic problems.

In simulated experiments on a partially observed system
of coupled Lorenz attractors, we showed that CE-EM can
perform identification on a problem that particle-based EM
methods are ill-suited for. However, we also find that CE-
EM yields biased parameter estimates in the presence of
large process noise. This bias can be partially mitigated

by locally approximating the posterior state-marginals as
Gaussian, as is done by MAP-EM (Goodwin & Aguero,
2005). We then used the algorithm to model the time-
varying hidden-states that affect the dynamics of an aer-
obatic helicopter. The model trained with CE-EM outper-
forms state-of-the-art methods because it is able to fit large
nonlinear models to unobserved states.

Numerous system-identification problems can be studied
using CE-EM. Recently, there have been tremendous efforts
to characterize predictive models for the spread of COVID-
19 (Fanelli & Piazza, 2020). Limited capacity for testing
the prevalence of the disease makes relevant states partially
observed, and thus CE-EM may be useful for its modeling.
We also hope to apply CE-EM to very high-dimensional
systems with sparsely coupled dynamics using general-form
consensus optimization (Boyd et al., 2011).
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