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Neural Datalog Through Time: 
Informed Temporal Modeling via Logical Specification 

Hongyuan Mei 1 Guanghui Qin 1 Minjie Xu 2 Jason Eisner 1 

Abstract the distribution from which the next event ei+1 is drawn. 

Learning how to predict future events from 
patterns of past events is difficult when the set of 
possible event types is large. Training an unre-
stricted neural model might overfit to spurious 
patterns. To exploit domain-specific knowledge 
of how past events might affect an event’s present 
probability, we propose using a temporal deduc-
tive database to track structured facts over time. 
Rules serve to prove facts from other facts and 
from past events. Each fact has a time-varying 
state—a vector computed by a neural net whose 
topology is determined by the fact’s provenance, 
including its experience of past events. The pos-
sible event types at any time are given by special 
facts, whose probabilities are neurally modeled 
alongside their states. In both synthetic and real-
world domains, we show that neural probabilistic 
models derived from concise Datalog programs 
improve prediction by encoding appropriate 
domain knowledge in their architecture. 

1. Introduction 
Temporal sequences are abundant in applied machine 
learning. A common task is to predict the future from 
the past or to impute other missing events. Often this is 
done by fitting a generative probability model. For evenly 
spaced sequences, historically popular generative models 
have included hidden Markov models and discrete-time lin-
ear dynamical systems, with more recent interest in recur-
rent neural network models such as LSTMs. For irregularly 
spaced sequences, a good starting point is the Hawkes pro-
cess (a self-exciting temporal point process) and its many 
variants, including neuralized versions based on LSTMs. 

Under any of these models, each event ei updates the 
state of the system from si to si+1, which then determines 
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Alas, when the relationship between events and the system 
state is unrestricted—when anything can potentially affect 
anything—fitting an accurate model is very difficult, partic-
ularly in a real-world domain that allows millions of event 
types including many rare types. Thus, one would like to 
introduce domain-specific structure into the model. 

For example, one might declare that the probability that 
Alice travels to Chicago is determined entirely by Alice’s 
state, the states of Alice’s coworkers such as Bob, and the 
state of affairs in Chicago. Given that modeling assump-
tion, parameter estimation can no longer incorrectly overfit 
this probability using spurious features based on unrelated 
temporal patterns of (say) wheat sales and soccer goals. 

To improve extrapolation, one can reuse this “Alice travels 
to Chicago” model for any person A traveling to any place 
C. Our main contribution is a modeling language that can 
concisely model all these travel(A,C) probabilities using 
a few rules over variables A, B, C. Here B ranges over A’s 
coworkers, where the coworker relation is also governed 
by rules and can itself be affected by stochastic events. 

In our paradigm, a domain expert simply writes down the 
rules of a temporal deductive database, which tracks the 
possible event types and other boolean facts over time. This 
logic program is then used to automatically construct a 
deep recurrent neural architecture, whose distributed state 
consists of vector-space embeddings of all present facts. Its 
output specifies the distribution of the next event. 

What sort of rules? An event has a structured description 
with zero or more participating entities. When an event 
happens, pattern-matching against its description triggers 
update rules, which modify the database facts to reflect 
the new properties and relationships of these entities. Up-
dates may have a cascading effect if the database contains 
deductive rules that derive further facts from existing 
ones at any time. (For example, coworker(A,B) is jointly 
implied by boss(U,A) and boss(U,B)). In particular, de-
ductive rules can state that entities combine into a possible 
event type whenever they have the appropriate properties 
and relationships. (For example, travel(A,C) is possible 
if C is a place and A is a person who is not already at C.) 
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Since the database defines possible events and is updated 
by the event that happens, it already resembles the system 
state si of a temporal model. We enrich this logical state 
by associating an embedding with each fact currently in 
the database. This time-varying vector represents the state 
of that fact; recall that the set of facts may also change over 
time. When a fact is added by events or derived from other 
facts, its embedding is derived from their embeddings in 
a standard way, using parameters associated with the rules 
that established the fact. In this way, the model’s rules to-
gether with the past events and the initial facts define the 
topology of a deep recurrent neural architecture, which can 
be trained via back-propagation through time (Williams & 
Zipser, 1989). For the facts that state that specific event 
types are possible, the architecture computes not only em-
beddings but also the probabilities of these event types. 

The number of parameters of such a model grows only with 
the number of rules, not with the much larger number of 
event types or other facts. This is analogous to how a prob-
abilistic relational model (Getoor & Taskar, 2007; Richard-
son & Domingos, 2006) derives a graphical model structure 
from a database, building random variables from database 
entities and repeating subgraphs with shared parameters. 

Unlike graphical models, ours is a neural-symbolic hybrid. 
The system state si includes both rule-governed discrete 
elements (the set of facts) and learned continuous elements 
(the embeddings of those facts). It can learn a neural 
probabilistic model of people’s movements while relying 
on a discrete symbolic deductive database to cheaply and 
accurately record who is where. A purely neural model 
such as our neural Hawkes process (Mei & Eisner, 2017) 
would have to learn how to encode every location fact in 
some very high-dimensional state vector, and retain and 
update it, with no generalization across people and places. 

In our experiments, we show how to write down some 
domain-specific models for irregularly spaced event se-
quences in continuous time, and demonstrate that their 
structure improves their ability to predict held-out data. 

2. Our Modeling Language 
We gradually introduce our specification language by de-
veloping a fragment of a human activity model. Similar 
examples could be developed in many other domains— 
epidemiology, medicine, education, organizational behav-
ior, consumer behavior, economic supply chains, etc. Such 
specifications can be trained and evaluated using our im-
plementation, which can be found at https://github. 
com/HMEIatJHU/neural-datalog-through-time. 

For pedagogical reasons, §2 will focus on our high-level 
scheme (see also the animated drawings in our ICML 2020 
talk video). We defer the actual neural formulas until §3. 

2.1. Datalog 

We adapt our notation from Datalog (Ceri et al., 1989), 
where one can write deductive rules of the form 

head :- condit1, . . ., conditN . (1) 
Such a rule states that the head is true provided that the 
conditions are all true.1 In a simple case, the head and 
conditions are atoms, i.e., structured terms that represent 
boolean propositions. For example, 

1 compatible(eve,adam) :-
likes(eve,apples), likes(adam,apples). 

If N = 0, the rule simply states that the head is true. This 
case is useful to assert basic facts: 

2 likes(eve,apples). 

Notice that in this case, the :- symbol is omitted. 

A rule that contains variables (capitalized identifiers) rep-
resents the infinite collection of ground rules obtained by 
instantiating (grounding) those variables. For example, 

3 compatible(X,Y) :- likes(X,U), likes(Y,U). 

says that any two entities X and Y are compatible provided 
that there exists any U that they both like. 

A Datalog program is an unordered set of rules. The atoms 
that can be proved from these rules are called facts. Given 
a program, one would use JhK ∈ {true, null} to denote the 
semantic value of atom h, where JhK = true iff h is a fact. 

2.2. Neural Datalog 

In our formalism, a fact has an embedding in a vector 
space, so the semantic value of atom likes(eve,apples) 
describes more than just whether eve likes apples. To in-
dicate this, let us rename and colorize the functors in rule 3: 

4 rel(X,Y) :- opinion(X,U), opinion(Y,U). 

Now Jopinion(eve,apples)K is a vector describing 
eve’s complex opinion about apples (or null if she has no 
opinion). Jrel(eve,adam)K is a vector describing eve and 
adam’s relationship (or null if they have none). 

With this extension, JhK ∈ RDh ∪{null}, where the embed-
ding dimension Dh depends on the atom h. The declaration 

5 :- embed(opinion,8). 
2says that if h has the form opinion(...) then Dh = 8. 

When an atom is proved via a rule, its embedding is af-
fected by the conditions of that rule, in a way that depends 
on trainable parameters associated with that rule. For ex-
ample, according to rule 4, Jrel(eve,adam)K is a para-
metric function of the opinion vectors that eve and adam 
have about various topics U. The influences from all their 
shared topics are pooled together as detailed in §3.1 below. 

1Appendix A.2 discusses an extension to negated conditions. 
2In the absence of such a declaration, Dh = 0. Then JhK has 

only two possible values, just as in Datalog; we do not color h. 

https://github.com/HMEIatJHU/neural-datalog-through-time
https://github.com/HMEIatJHU/neural-datalog-through-time
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A model might say that each person has an opinion about 
each food, which is a function of the embeddings of the per-
son and the food, using parameters associated with rule 6: 

opinion(X,U) :- person(X), food(U). 

If the foods are simply declared as basic facts, as follows, 
then each food’s embedding is independently specified by 
the parameters associated with the rule that declares it: 

7 food(apples). 
8 food(manna). 

. . . 

Given all the rules above, whenever person(X) and 
person(Y) are facts, it follows that rel(X,Y) is a fact, 
and Jrel(X,Y)K is defined by a multi-layer feed-forward 
neural network whose topology is given by the proof DAG 
for rel(X,Y). The network details will be given in §3.1. 

Recursive Datalog rules can lead to arbitrarily deep net-
works that recursively build up a compositional embed-
ding, just as in sequence encoders (Elman, 1990), tree en-
coders (Socher et al., 2012; Tai et al., 2015), and DAG en-
coders (Goller & Kuchler, 1996; Le & Zuidema, 2015)— 
all of which could be implemented in our formalism. E.g.: 

9 cursed(cain). 
10 cursed(Y) :- cursed(X), parent(X,Y). 

In Datalog, this system simply states that all descendants 
of cain are cursed. In neural Datalog, however, a child 
has a specific curse: a vector Jcursed(Y)K that is com-
puted from the parent’s curse Jcursed(X)K in a way that 
also depends on their relationship, as encoded by the vec-
tor Jparent(X,Y)K. Rule 10’s parameters model how the 
curse evolves (and hopefully attenuates) as each genera-
tion is re-cursed. Notice that Jcursed(Y)K is essentially 
computed by a recurrent neural network that encodes the 

3sequence of parent edges that connect cain to Y. 

We currently consider it to be a model specification error 
if any atom h participates in its own proof, leading to a 
circular definition of JhK. This would happen in rules 9– 
10 only if parent were bizarrely defined to make some 
cursed person their own ancestor. Appendix A.1 discusses 
extensions that would define JhK even in these cyclic cases. 

2.3. Datalog Through Time 

For temporal modeling, we use atoms such as help(X,Y) 
as the structured names for events. We underline their func-
tors. As usual, we colorize them if they have vector-space 
embeddings (see footnote 2), but as orange rather than blue. 

We extend Datalog with update rules so that whenever a 
help(X,Y) event occurs under appropriate conditions, it 

3Assuming that this path is unique. More generally, Y might 
descend from cain by multiple paths. The computation actually 
encodes the DAG of all paths, by pooling over all of Y’s cursed 
parents at each step, just as rule 4 pooled over multiple topics. 

can add to the database by proving new atoms: 
11 grateful(Y,X) <- help(X,Y), person(Y). 

An event can also cancel out such additions, which may 
make atoms false again.4 The ! symbol means “not”: 
12 !grateful(Y,X) <- harm(X,Y). 

The general form of these update rules is 

head <- event, condit1, . . ., conditN . (2a) 
!head <- event, condit1, . . ., conditN . (2b) 

which state that event makes head true or false, respec-
tively, provided that the conditions are all true. An event 
occurring at time s affects the set of facts at times t > s, 
both directly through <- rules, and also indirectly, since the 
facts added or removed by <- rules may affect the set of 
additional facts that can be derived by :- rules at time t. 
Our approach can be used for either discrete time (s, t ∈ N) 
or continuous time (s, t ∈ R≥0), where the latter supports 
irregularly spaced events (e.g., Mei & Eisner, 2017). 

2.4. Neural Datalog Through Time 

In §2.2, we derived each fact’s embedding from its proof 
DAG, representing its set of Datalog proofs. For Datalog 
through time, we must also consider how to embed facts 
that were proved by an earlier update. Furthermore, once 
an atom is proved, an update rule can prove it again. This 
will update its embedding, in keeping with our principle 
that a fact’s embedding is influenced by all of its proofs. 

As an example, when X helps Y and grateful(Y,X) 
first becomes true via rule 11, the new embedding 
Jgrateful(Y,X)K is computed—using parameters asso-
ciated with rule 11—from the embeddings of help(X,Y) 
and person(Y). Those embeddings model the nature of 
the help and the state of person Y. (This was the main rea-
son for rule 11 to include person(Y) as a condition.) Each 
time X helps Y again, Jgrateful(Y,X)K is further updated 
by rule 11, so this gratitude vector records the history of 
help. The updates are LSTM-like (see §3.3 for details). 

In general, an atom’s semantics can now vary over time 
and so should be denoted as JhK(t): the state of atom 
h at time t, which is part of the overall database state. 
A :- rule as in equation (1) says that JheadK(t) depends 
parametrically on {JconditiK(t) : 1 ≤ i ≤ N}. A 
<- rule as in equation (2a) says that if event occurred at 
time s < t and no events updating head occurred on the 
time interval (s, t), then JheadK(t) depends parametrically 
on its previous value5 JheadK(s) along with JeventK(s), 
{JconditiK(s) : 1 ≤ i ≤ N}, and the elapsed time t − s. 
We will detail the parametric formulas in §3.3. 

4The atom will remain true if it remains provable by a :- rule, 
or is proved by another <- rule at the same time. 

5More precisely, it depends on the LSTM cells that contributed 
to that previous value, as we will see in §3.3. 
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Thus, JheadK(t) depends via :- rules on head’s prove-
nance in the database at time t, and depends via <- rules 
on its experience of events at strictly earlier times.6 This 
yields a neural architecture similar to a stacked LSTM: the 
:- rules make the neural network deep at a single time step, 
while the <- rules make it temporally recurrent across time 
steps. The network’s irregular topology is defined by the :-
and <- rules plus the events that have occurred. 

2.5. Probabilistic Modeling of Event Sequences 

Because events can occur, atoms that represent event types 
are special. They can be declared as follows: 

13 :- event(help, 8). 

Because the declaration is event rather than embed, at 
times when help(X,Y) is a fact, it will have a positive 
probability along with its embedding Jhelp(X,Y)K ∈ R8 . 
This is what the underlined functor really indicates. 

At times s when help(X,Y) is not a fact, the semantic 
value Jhelp(X,Y)K(s) will be null, and it will have nei-
ther an embedding nor a probability. At these times, it is 
simply not a possible event; its probability is effectively 0. 

Thus, the model must include rules that establish the set of 
possible events as facts. For example, the rule 
14 help(X,Y) :- rel(X,Y). 

says if X and Y have a relationship, then help(X,Y) is true, 
meaning that events of the type help(X,Y) have positive 
probability (i.e., X can help Y). The embedding and proba-
bility are computed deterministically from Jrel(X,Y)K us-
ing parameters associated with rule 14, as detailed in §3.2. 

Now a neural-Datalog-through-time program specifies a 
probabilistic model over event sequences. Each stochastic 
event can update some database facts or their embeddings, 
as well as the probability distribution over possible next 
events. As §1 outlined, each stochastic draw from the next-
event distribution results in a deterministic update to that 
distribution—just as in a recurrent neural network language 
model (Mikolov et al., 2010; Sundermeyer et al., 2012). 

Our approach also allows the possibility of exogenous 
events that are not generated by the model, but are given 
externally. Our probabilistic model is then conditioned on 
these exogenous events. The model itself might have prob-
ability 0 of generating these event types at those times. In-
deed, if an event type is to occur only exogenously, then the 
model should not predict any probability for it, so it should 
not be declared using event. We use a dashed underline 
for undeclared events since they have no probability. 

For example, we might wish to use rules of the form head 
<- earthquake(C),. . . to model how an earthquake in 

6See §3.3 for the precise interaction of :- and <- rules. 

city C tends to affect subsequent events, even if we do not 
care to model the probabilities of earthquakes. The embed-
dings of possible earthquake events can still be determined 
by parametric rules, e.g., earthquake(C) :- city(C), if 
we request them by declaring embed(earthquake,5). 

2.6. Continuing the Example 

In our example, the following rules are also plausible. They 
say that when X helps Y, this event updates the states of 
the helper X and the helpee Y and also the state of their 
relationship: 
15 person(X) <- help(X,Y). 
16 person(Y) <- help(X,Y) 
17 rel(X,Y) <- help(X,Y). 

To enrich the model further, we could add (e.g.) rel(X,Y) 
as a condition to these rules. Then the update when X helps 
Y depends quantitatively on the state of their relationship. 

There may be many other kinds of events observed in 
a human activity dataset, such as sleep(X), eat(X), 
email(X,Y), invite(X,Y), hire(X,Y), etc. These can 
be treated similarly to help(X,Y). 

Our modeling architecture is intended to limit dependen-
cies to those that are explicitly specified, just as in graphi-
cal models. However, the resulting independence assump-
tions may be too strong. To allow unanticipated influences 
back into the model, it can be useful to include a low-
dimensional global state, which is updated by all events: 

18 world <- help(X,Y). 
. . . 

world records a “public history” in its state, and it can be 
a condition for any rule. E.g., we can replace rule 14 with 
19 help(X,Y) :- rel(X,Y), world. 

so that eve’s probability of helping adam might be affected 
by the history of other individuals’ interactions. 

Eventually eve and adam may die, which means that they 
are no longer available to help or be helped: 

20 die(X) :- person(X). 

If we want person(eve) to then become false, the model 
cannot place that atom in the database with a :- rule like 
21 person(eve). 

which would ensure that person(eve) can always be 
proved. Instead, we use a <- rule that initially adds 
person(eve) to the database via a special event, init, 
that always occurs exogenously at time t = 0: 

22 person(eve) <- init. 

With this treatment, the following rule can remove 
person(eve) again when she dies: 
23 !person(X) <- die(X). 

The reader may enjoy extending this model to handle pos-
sessions, movement, tribal membership/organization, etc. 
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2.7. Finiteness 

Under our formalism, any given model allows only a finite 
set of possible events. This is because a Datalog program’s 
facts are constructed by using functors mentioned in the 
program, with arguments mentioned in the program,7 and 
nesting is disallowed. Thus, the set of facts is finite (though 
perhaps much larger than the length of the program). 

It is this property that will ensure in §3.2 that our prob-
ability model—which sums over all possible events—is 
well-defined. Yet this is also a limitation. In some 
domains, a model should not really place any a priori 
bound on the number of event types, since an infinite 
sequence may contain infinitely many distinct types—the 
number of types represented in the length-n prefix grows 
unboundedly with n. Even our running example should 
really support the addition of new entities: the event 
procreate(eve,adam) should result in a fact such as 
person(cain), where cain is a newly allocated entity. 
Similarly, new species are allocated in the course of 
drawing a sequence from Fisher’s (1943) species-sampling 
model or from a Chinese restaurant process; new words 
are allocated as a document is drawn from an infinite-
vocabulary language model; and new real numbers are 
constantly encountered in a sequence of sensor readings. 
In these domains, no model can prespecify all the entities 
that can appear in a dataset. Appendix A.4 discusses 
potential extensions to handle these cases. 

3. Formulas Associated With Rules 
3.1. Neural Datalog 

Recall from §2.1 that if h is a fact, it is provable by at least 
one :- rule in at least one way. For neural Datalog (§2.2), 
we then choose to define the embedding JhK 6= null as 

def �X � -JhK = tanh [h]: ∈ (−1, 1)Dh (3)r 
r 

-where [h]: represents the contribution of ther 
rth rule of the Datalog program. For example, 
Jopinion(eve,apples)K receives non-zero contri-

8butions from both rule 2 and rule 6. For a given Y, 
Jcursed(Y)K may receive a non-zero contribution from 
rule 9, rule 10, or neither, according to whether Y is cain 
himself, a descendant of cain, or neither. 

-The contribution [h]: has been pooled over all the ways (ifr 
any) that the rth rule proves h. For example, for any entity 

7A rule such as likes(adam,Y) :- likes(adam,eve) 
might be able to prove that adam likes everyone, including in-
finitely many unmentioned entities. To preserve finiteness, such 
rules are illegal in Datalog. A Datalog rule must be range-
restricted: any variable in the head must also appear in the body. 

8Recall that we renamed likes in rule 2 to opinion. 

-Y, [cursed(Y)]: needs to compute the aggregate effect of10 
the curses that Y inherits through all of Y’s cursed parents X 

-in rule 10. Similarly, [rel(X,Y)]: computes the aggregate4 
effect on the relationship from all of X and Y’s shared 
interests U in rule 4. Recall from §2.1 that a rule with vari-
ables represents a collection of ground rules obtained by 
instantiating those variables. We define its contribution by 

def- Lβr ∈ RDh[h]: = Wr [1; Jg1K; . . . ; JgN K] (4)r 
g1,...,gN 

| {z } 
concatenation of column vectors 

where for the summation, we allow h :- g1, . . ., gN 

to range over all instantiations of the rth rule such that 
the head equals h and g1, . . . , gN are all facts. There are 
only finitely many such instantiations (see §2.7). Wr is a 
conformable parameter matrix associated with the rth rule. 
(Appendix B offers extensions that allow more control 
over how parameters are shared among and within rules.) 

The pooling operator 
Lβ that we used above is defined to 

aggregate a set of vectors {x1, . . . , xM }: XLβ def −1(xm = v v(xm)) (5) 
m m 

Remarks: For any definition of function v with inverse v−1 ,Lβ has a unique identity element, v−1(0), which is also the 
result of pooling no vectors (M =0). Pooling a single vec-
tor (M =1) returns that vector—so when rule r proves h in 
only one way, the contribution of the JgiK to JhK does not 
have to involve an “extra” nonlinear pooling step in equa-
tion (4), but only the nonlinear tanh in equation (3). 

Given β 6= 0, we take v to be the differentiable function 
def 

v(x) = sign(x) |x|β (6a) 

v −1 (y) = sign(y) |y|1/β (6b) 

where all operations are applied elementwise. Now the re-
sult of aggregating no vectors is 0, so rules that achieve no 
proofs of h contribute nothing to equation (3). If β = 1,Lβthen v = identity and is just summation. As β →Lβ∞, emphasizes more extreme values, approaching a 
signed variant of max-pooling that chooses (elementwise) 
the argument with the largest absolute value. As a general-
ization, one could replace the scalar β with a vector β, so 
that different dimensions are pooled differently. Pooling isLβ Lβscale-invariant: αxm = α xm for α ∈ R. m m LβrFor each rule r, we learn a scalar βr,9 and use in (4). 

3.2. Probabilities and Intensities 

When a fact h has been declared by event to represent an 
event type, we need it to have not only an embedding but 

9It can be parameterized as β = exp b > 0 (ensuring that 
aggregating positive numbers exceeds their max), or as β = 1 + 
b2 ≥ 1 (ensuring that the aggregate of positive numbers also does 
not exceed their sum). Our present experiments do the latter. 
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also a positive probability. We extend our setup by append-
ing an extra row to the matrix Wr in (4), leading to an extra 

-element in the column vectors [h]: . We then pass only the rP -first Dh elements of [h]: through tanh, obtaining the r r 
same JhK as equation (3) gave before. We pass the one re-
maining element through an exp function to obtain λh > 0. 

Recall that for neural Datalog through time (§2.4), all these 
quantities, including λh, vary with the time t. To model a 
discrete-time event sequence, define the probability of an 
event of type h at time step t to be proportional to λe(t), 
normalizing over all event types that are possible then. This 
imitates the softmax distributions in other neural sequence 
models (Mikolov et al., 2010; Sundermeyer et al., 2012). 

When time is continuous, as in our experiments (§6), we 
need instantaneous probabilities. We take λh(t) to be the 
(Poisson) intensity of h at time t: that is, it models the 
limit as dt → 0+ of the expected rate of h on the interval 
[t, t + dt) (i.e., the expected number of occurrences of h 
divided by dt). This follows the setup of the neural Hawkes 
process (Mei & Eisner, 2017). Also following that paper, 
we replace exp(x) > 0 in the above definition of λh with 
the function softplusτ (x) = τ log(1+exp(x/τ)) > 0. We 
learn a separate temporal scale parameter τ for each functor 
and use the one associated with the functor of h. 

In both discrete and continuous time, the exact model like-
lihood (§4) will involve a summation (at each time t) over 
the finite set of event types (§2.7) that are possible at time t. 

Appendix A.6 offers an extension to simultaneous events. 

3.3. Updates Through Time 

We now add an LSTM-like component so that each atom 
will track the sequence of events that it has “seen”—that 
is, the sequence of events that updated it via <- rules (§2.3). 
Recall that an LSTM is constructed from memory cells that 
can be increased or decreased as successive inputs arrive. 

Every atom h has a cell block h ∈ RDh ∪ {null}. When 
h 6= null, we augment h’s embedding formula (3) to10 X

def � � -JhK = tanh h + [h]: ∈ (−1, 1)Dh (7)r 
r 

-Properly speaking, JhK, h , and [h]: are all functions of t.r 

At times when h = null, we like to say that h is docked. 
Every atom h is docked initially (at t = 0), but may be 
launched through an update of type (2a), which ensures 
that h 6= null and thus JhK 6= null by (7). h is subse-
quently adrift (and remains a fact) until it is docked again 
through an update of type (2b), which sets h = null. 

10Recall from §3.2 that if h is an event, we extend JhK with an 
extra dimension to carry the probability. For equation (7) to work, 
we must likewise extend h with an extra cell (when h 6= null). 

How is h updated by an event (or events11) occurring at 
time s? Suppose the rth rule is an update rule of type (2a). 
Consider its instantiations h <- e, g1,. . .,gN (if any) 
with head h, such that e occurred at time s and g1, . . . , gN 
are all facts at time s. For the mth instantiation, define 

[h]< def- = Wr [1; JeK; Jg1K; . . . ; JgN K] (8)rm | {z }
concatenation of column vectors 

where all embeddings are evaluated at time s, and Wr is 
again a conformable matrix associated with the rth rule. 

-We now explain how to convert [h]< to an update vector rm 
[h]Δ , and how all update vectors combine to modify h .rm 

Discrete-time setting. Here we treat the update vectors 
[h]Δ as increments to h . To update h from time s torm 
time t = s +1, we pool these increments within and across 
rules (much as in (3)–(4)) and increment by the result: X Lβrh += [h]Δ (9)rm 

m r 

We skip the update (9) if h has no update vectors. If we 
apply (9), we first set h to 0 if it is null at time s, or has 
just been set to null at time s by a (2b) rule (docking). 

How is [h]Δ obtained? In an ordinary LSTM (Hochreiterrm 
& Schmidhuber, 1997), a cell block h is updated by 

h = f · + i · (2z − 1) (10)new h old 

corresponding to an increment 

h += (f − 1) · h + i · (2z − 1) (11) 

where the forget gates f , input gates i, and inputs z are all 
in (0, 1)Dh . Thus, we define [h]Δ as the right side of (11)rm 

defwhen (f ; i; z) = σ([h]< ), with [h]< ∈ R3Dh from (8).rm rm 

A small difference from a standard LSTM is that our up-
dated cell values h are transformed into equally many out-
put values JhK via equation (7), instead of through tanh and 
output gates. A more important difference is that in a stan-
dard LSTM, the model’s state is a single large cell block. 
The state update when new input arrives depends on the en-
tire current state. Our innovation is that the update to h 
(a portion of the model state) depends on only a relevant 
portion of the current state, namely [JeK; Jg1K; . . . ; JgN K]. 
If there are many choices of this portion, (9) pools their 
effects across instantiations and sums them across rules. 

Continuous-time setting. Here we use the continuous-
time LSTM as defined by Mei & Eisner (2017), in which 
cells drift between updates to record the passage of time. 
Each cell drifts according to some parametric function. We 
will update a cell’s parameters just at times when a relevant 
event happens. A fact’s embedding JhK(t) at time t is still 

11If exogeneous events are used (§2.4), then the instantiations 
in (8) could include multiple events e that occurred at time s. 
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given by (7), but h (t) in that equation is given by h ’s 
parametric functions as most recently updated (at some ear-
lier time s < t). Appendix C reviews the simple family of 
parametric functions used in the continuous-time LSTM, 
and specifies how we update the parameters using a collec-

-tion of update vectors [h]Δ obtained from the [h]< .rm rm 

Remark. It is common for event atoms e to have De = 0. 
Then they still have time-varying probabilities (§3.2)— 
often via :- rules whose conditions have time-varying 
embeddings—but have no embeddings. Even so, different 
events will result in different updates. This is thanks to Dat-
alog’s pattern matching: the event’s atom e controls which 
update rules head <- event, condits... it triggers, 
and with what head and condition atoms (since variables in 
event are reused elsewhere in the rule). The update to the 
head atom then depends on the parameters of the selected 
rules and the current embeddings of their condition atoms. 

4. Training and Inference 
Suppose we observe that the events on time interval [0, T ] 
are e1, . . . , eI at respective times t1 < · · · < tI . In the 
continuous-time setting, the log-likelihood of the parame-
ters is I Z T 

def 
X 

` = log λei (ti) − λ(t) dt (12) 
t=0i=1 

def P 
where λ(t) = λe(t) and E(t) is the set of event e∈E(t) 
types that are possible at time t. We can estimate the pa-
rameters by locally maximizing ` using any stochastic gra-
dient method. Details are given in Appendix D, including 
Monte Carlo approximations to the integral. In the discrete-PTtime setting,12 the integral is replaced by log λ(t).t=1 

Given the learned parameters, we may wish to make a min-
imum Bayes risk prediction about the next event given the 
past history. A recipe can be found in Appendix E. 

5. Related Work 
Past work (Sato, 1995; Poole, 2010; Richardson & Domin-
gos, 2006; Raedt et al., 2007; Bar´ ány et al., 2017) has used 
logic programs to help define probabilistic relational mod-
els (Getoor & Taskar, 2007). These models do not make 
use of vector-space embeddings or neural networks. Nor do 
they usually have a temporal component. However, some 
other (directed) graphical model formalisms do allow the 
model architecture to be affected by data generated at ear-
lier steps (Minka & Winn, 2008; van de Meent et al., 2018). 

Our “neural Datalog through time” framework uses a de-
ductive database augmented with update rules to define and 
dynamically reconfigure the architecture of a neural gener-
ative model. Conditional neural net structure has been used 

12Here each time t has exactly one event (possibly just a none 
event), as the event probabilities sum to 1. So I = T and ti = i. 

for natural language—e.g., conditioning a neural architec-
ture on a given syntax tree or string (Andreas et al., 2016; 
Lin et al., 2019). Also relevant are neural architectures 
that use external read-write memory to achieve coherent 
sequential generation, i.e., their decisions are conditioned 
on a possibly symbolic record of data generated from the 
model at earlier steps (Graves et al., 2014, 2016; Weston 
et al., 2015; Sukhbaatar et al., 2015; Kumar et al., 2016; 
Kiddon et al., 2016; Dyer et al., 2016; Lample et al., 2019; 
Xiao et al., 2019). We generalize some such approaches by 
providing a logic-based specification language. 

Many papers have presented domain-specific sequential 
neural architectures (Natarajan et al., 2008; Van der Hei-
jden et al., 2014; Shelton & Ciardo, 2014; Meek, 2014; 
Bhattacharjya et al., 2018; Wang et al., 2019). The mod-
els closest to ours are Know-Evolve (Trivedi et al., 2017) 
and DyRep (Trivedi et al., 2019), which exploit explicit 
domain knowledge about how structured events depend on 
and modify the neural states of their participants. DyRep 
also conditions event probabilities on a temporal graph en-
coding binary relations among a fixed set of entities. In 
§6, we will demonstrate that fairly simple programs in our 
framework can substantially outperform these strong com-
petitors by leveraging even richer types of knowledge, e.g.: 
¬ Complex n-ary relations among entities that are con-
structed by join, disjunction, and recursion (§2.1) and have 
derived embeddings (§2.2). ­ Updates to the set of possi-
ble events (§2.5). ® Embeddings of entities and relations 
that reflect selected past events (§2.4 and §2.6). 

6. Experiments 
In several continuous-time domains, we exhibit informed 
models specified using neural Datalog through time 
(NDTT). We evaluate these models on their held-out log-
likelihood, and on their success at predicting the time and 
type of the next event. We compare with the unrestricted 
neural Hawkes process (NHP) and with Know-Evolve (KE) 
and DyRep. Experimental details are given in Appendix F. 

We implemented our NDTT framework using PyTorch 
(Paszke et al., 2017) and pyDatalog (Carbonell et al., 2016). 
We then used it to implement our individual models—and 
to reimplement all three baselines, after discussion with 
their authors, to ensure a controlled comparison. Our code 
and datasets are available at the URL given in §2. 

6.1. Synthetic Superposition Domain 

The activities of strangers rarely influence each other, even 
if they are all observed within a single sequence. We syn-
thesized a domain where each sequence is a superposition 
of data drawn from M different processes that do not inter-
act with one another at all. Each process generates events 
of N types, so there are MN total event types e(M,N). 
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(a) M = 8 (b) M = 16 
Figure 1. Learning curves of structured model and NHP , on 
sequences drawn from the structured model. The former is signif-
icantly better at each training size (p < 0.01, paired perm. test). 

1 is process(1). 3 is type(1). 
. . . . . . 

2 is process(M). 4 is type(N). 

The baseline model is a neural Hawkes process (NHP). It 
assigns to each event type a separate embedding13 

5 :- embed(is event, 8). 
6 is event(1,1) :- is process(1), is type(1). 
7 is event(1,2) :- is process(1), is type(2). 

. . . 

This unrestricted model allows all event types to influence 
one another by depending on and affecting a world state: 

8 :- event(e, 0). 
9 :- embed(world, 8). 

10 e(M,N) :- world, is process(M), is type(N). 
11 world <- init. 
12 world <- e(M,N), is event(M,N), world. 

Note that e(M,N) in rule 12 has no embedding, since any 
such embedding would vary along with the probability. As 
explained in §3.3, rule 12 instead uses e(M,N) to draw in 
the embedding of is event(M,N), which does not depend 
on world so is static, as called for by the standard NHP. 

To obtain a structured NHP that recognizes that events 
from different processes cannot influence each other, we 
replace world with multiple local states: each e(M,N) 
only interacts with local(M). Replace rules 9–12 with 

13 :- embed(local, 8). 
14 e(M,N) :- local(M), is type(N). 
15 local(M) <- init, is process(M). 
16 local(M) <- e(M,N), is event(M,N), local(M). 

For various small N and M values (see Appendix F.2), we 
randomly set the parameters of the structured NHP model 
and draw training and test sequences from this distribution. 
We then generated learning curves by training the correclty 
structured model versus the standard NHP on increasingly 
long prefixes of the training set, and evaluating them on 
held-out data. Figure 1 shows that although NHP gradually 
improves its performance as more training sequences be-
come available, the structured model unsurprisingly learns 
faster, e.g., only 1/16 as much training data to achieve a 

13The list of facts like rules 6 and 7 can be replaced by a single 
rule if we use “parameter names” as explained in Appendix B. 

higher likelihood. In short, it helps to use domain knowl-
edge of which events come from which processes. 

6.2. Real-World Domains: IPTV and RoboCup 

IPTV Domain (Xu et al., 2018). This dataset contains 
records of 1000 users watching 49 TV programs over 
the first 11 months of 2012. Each event has the form 
watch(U,P). Given each prefix of the test event sequence, 
we attempted to predict the next test event’s time t, and to 
predict its program P given its actual time t and user U. 

We exploit two types of structural knowledge in this do-
main. First, each program P has (exactly) 5 out of 22 genre 
tags such as action, comedy, romance, etc. We encode 
these as known static facts has tag(P,T). We allow each 
tag’s embedding Jtag(T)K to not only influence the em-
bedding of its programs (rule 1) but also track which users 
have recently watched programs with that tag (rule 2): 

1 program(P) :- has tag(P,T), tag(T). 
2 tag(T) <- watch(U,P), has tag(P,T). 

As a result, a program’s embedding Jprogram(P)K 
changes over time as its tags shift in meaning. 

Second, there is a dynamic hard constraint that a program 
cannot be watched until it is released, since only then is it 
added to the database: 

3 program(P) <- release(P). 
4 watch(U,P) :- user(U), program(P). 

Here release(P) is an exogenous event with no embed-
ding. More details can be found in Appendix F.3, including 
full NDTT programs that specify the architectures used by 
the KE and DyRep papers and by our model. 

RoboCup Domain (Chen & Mooney, 2008). This dataset 
logs actions of soccer players such as kick(P) and 
pass(P,Q) during RoboCup Finals 2001–2004. There are 
528 event types in total. For each history, we made min-
imum Bayes risk predictions of the next event’s time, and 
of that event’s participant(s) given its time and action type. 

Database facts change frequently in this domain. The ball 
is transferred between robot players at a high rate: 

1 !has ball(P) <- pass(P,Q). % ball passed from P 
2 has ball(Q) <- pass(P,Q). % ball passed to Q 

which leads to highly dynamic constraints on the possible 
events (since only the ball possessor can kick or pass): 

3 pass(P,Q) :- has ball(P), teammate(P,Q), ... 

This example also illustrates how relations between players 
affect events: the ball can only be passed to a teammate. 
Similarly, only an opponent may steal the ball: 

4 steal(Q,P) :- has ball(P), opponent(P,Q), ... 

We allow each event to update the states of involved play-
ers as both KE and DyRep do. We further allow the event 
observers such as the entire team to be affected as well: 
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team(T) <- pass(P,Q), in team(P,T), .... 

so all players can be aware of this event by consulting their 
team states. More details can be found in Appendix F.5, 
including our full Datalog programs. The hard logical con-
straints on possible events are not found in past models. 

Results and Analysis. After training, we used minimum 
Bayes risk (§4) to predict events in test data (details in Ap-
pendix E). Figure 2 shows that our NDTT model enjoys 
consistently lower error than strong competitors, across 
datasets and prediction tasks. 

NHP performs poorly in general since it doesn’t con-
sider any knowledge. KE handles relational informa-
tion, but doesn’t accommodate dynamic facts such as 
released(game of thrones) and has ball(a8) that 
reconfigure model architectures on the fly. 

In the IPTV domain, DyRep handles dynamic facts (e.g., 
newly released programs) and thus substantially outper-
forms KE. Our NDTT model’s moderate further improve-
ment results from its richer :- and <- rules related to tags. 

In the RoboCup domain, our reimplementation of DyRep 
allows deletion of facts (player losing ball possession), 
whereas the original DyRep only allowed addition of facts. 
Even with this improvement, it performs much worse than 
our full NDTT model. To understand why, we carried out 
further ablation studies, finding that NDTT benefits from 
its hybridization of logic and neural networks. 

Ablation Study I: Taking Away Logic. In the RoboCup 
domain, we investigated how the model performance de-
grades if we remove each kind of rule from the NDTT 
model. We obtained “NDTT-” by dropping the team 
states, and “DyRep++” by not tracking the ball possessor. 
The latter is still an enhancement to DyRep because it adds 
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Figure 2. Evaluation results with 
95% bootstrap confidence inter-
vals on the real-world datasets 
of our Datalog program vs. the 
neural Hawkes process (NHP), 
KnowEvolve (KE) and DyRep. 
The RMSE is the root of mean 
squared error for predicted time. 
Error rate % denotes the frac-
tion of incorrect predictions of 
the watched TV program (in 
IPTV) or the specific player (in 
RoboCup), given the event time. 

Figure 3. Ablation study in the 
RoboCup domain. “DyRep++” 
has the same <- rules as 
our structured model and 
“NDTT−” uses 0-dimensional 
team embeddings. 

useful <- rules: the first “+” stands for the <- rules in which 
some conditions are not neighbors of the head, and the sec-
ond “+” stands for the <- rules that update event observers. 

As Figure 3 shows, both ablated models outperform DyRep 
but underperform our full NDTT model. DyRep++ is inter-
estingly close to NDTT on the participant prediction, im-
plying that its neural states learn to track who possesses the 
ball—though such knowledge is not tracked in the logical 
database—thanks to rich <- rules that see past events. 

Ablation Study II: Taking Away Neural Networks. We 
also investigated how the performance of our structured 
model would change if we reduce the dimension of all em-
beddings to zero. The model still knows logically which 
events are possible, but events of the same type are now 
more interchangeable. The performance turns out to de-
grade greatly, indicating that the neural networks had been 
learning representations that are actually helpful for predic-
tion. See Appendix F.8 for discussion and experiments. 

7. Conclusion 
We showed how to specify a neural-symbolic probabilis-
tic model simply by writing down the rules of a deductive 
database. “Neural Datalog” makes it simple to define a 
large set of structured objects (“facts”) and equip them with 
embeddings and probabilities, using pattern-matching rules 
to explicitly specify which objects depend on one another. 

To handle temporal data, we proposed an extended notation 
to support temporal deductive databases. “Neural Datalog 
through time” allows the facts, embeddings, and probabil-
ities to change over time, both by gradual drift and in re-
sponse to discrete events. We demonstrated the effective-
ness of our framework by generatively modeling irregularly 
spaced event sequences in real-world domains. 
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18403, 2009. 

Meek, C. Toward learning graphical and causal process 
models. In Uncertainty in Artificial Intelligence Work-
shop on Causal Inference: Learning and Prediction, vol-
ume 1274, pp. 43–48, 2014. 

Mei, H. and Eisner, J. The neural Hawkes process: 
A neurally self-modulating multivariate point process. 
In Advances in Neural Information Processing Systems 
(NeurIPS), 2017. 

Mei, H., Qin, G., and Eisner, J. Imputing missing events 
in continuous-time event streams. In Proceedings of the 
International Conference on Machine Learning (ICML), 
2019. 

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and 
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