
traveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltravel

traveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltravel

Neural Datalog Through Time:
Informed Temporal Modeling via Logical Specification

Hongyuan Mei 1 Guanghui Qin 1 Minjie Xu 2 Jason Eisner 1

Abstract the distribution from which the next event ei+1 is drawn.

Learning how to predict future events from
patterns of past events is difficult when the set of
possible event types is large. Training an unre-
stricted neural model might overfit to spurious
patterns. To exploit domain-specific knowledge
of how past events might affect an event’s present
probability, we propose using a temporal deduc-
tive database to track structured facts over time.
Rules serve to prove facts from other facts and
from past events. Each fact has a time-varying
state—a vector computed by a neural net whose
topology is determined by the fact’s provenance,
including its experience of past events. The pos-
sible event types at any time are given by special
facts, whose probabilities are neurally modeled
alongside their states. In both synthetic and real-
world domains, we show that neural probabilistic
models derived from concise Datalog programs
improve prediction by encoding appropriate
domain knowledge in their architecture.

1. Introduction
Temporal sequences are abundant in applied machine
learning. A common task is to predict the future from
the past or to impute other missing events. Often this is
done by fitting a generative probability model. For evenly
spaced sequences, historically popular generative models
have included hidden Markov models and discrete-time lin-
ear dynamical systems, with more recent interest in recur-
rent neural network models such as LSTMs. For irregularly
spaced sequences, a good starting point is the Hawkes pro-
cess (a self-exciting temporal point process) and its many
variants, including neuralized versions based on LSTMs.

Under any of these models, each event ei updates the
state of the system from si to si+1, which then determines

1Computer Science Dept., Johns Hopkins Univ. 2Bloomberg
LP. Correspondence to: Hongyuan Mei <hmei@cs.jhu.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Alas, when the relationship between events and the system
state is unrestricted—when anything can potentially affect
anything—fitting an accurate model is very difficult, partic-
ularly in a real-world domain that allows millions of event
types including many rare types. Thus, one would like to
introduce domain-specific structure into the model.

For example, one might declare that the probability that
Alice travels to Chicago is determined entirely by Alice’s
state, the states of Alice’s coworkers such as Bob, and the
state of affairs in Chicago. Given that modeling assump-
tion, parameter estimation can no longer incorrectly overfit
this probability using spurious features based on unrelated
temporal patterns of (say) wheat sales and soccer goals.

To improve extrapolation, one can reuse this “Alice travels
to Chicago” model for any person A traveling to any place
C. Our main contribution is a modeling language that can
concisely model all these travel(A,C) probabilities using
a few rules over variables A, B, C. Here B ranges over A’s
coworkers, where the coworker relation is also governed
by rules and can itself be affected by stochastic events.

In our paradigm, a domain expert simply writes down the
rules of a temporal deductive database, which tracks the
possible event types and other boolean facts over time. This
logic program is then used to automatically construct a
deep recurrent neural architecture, whose distributed state
consists of vector-space embeddings of all present facts. Its
output specifies the distribution of the next event.

What sort of rules? An event has a structured description
with zero or more participating entities. When an event
happens, pattern-matching against its description triggers
update rules, which modify the database facts to reflect
the new properties and relationships of these entities. Up-
dates may have a cascading effect if the database contains
deductive rules that derive further facts from existing
ones at any time. (For example, coworker(A,B) is jointly
implied by boss(U,A) and boss(U,B)). In particular, de-
ductive rules can state that entities combine into a possible
event type whenever they have the appropriate properties
and relationships. (For example, travel(A,C) is possible
if C is a place and A is a person who is not already at C.)

mailto:hmei@cs.jhu.edu

Neural Datalog Through Time

Since the database defines possible events and is updated
by the event that happens, it already resembles the system
state si of a temporal model. We enrich this logical state
by associating an embedding with each fact currently in
the database. This time-varying vector represents the state
of that fact; recall that the set of facts may also change over
time. When a fact is added by events or derived from other
facts, its embedding is derived from their embeddings in
a standard way, using parameters associated with the rules
that established the fact. In this way, the model’s rules to-
gether with the past events and the initial facts define the
topology of a deep recurrent neural architecture, which can
be trained via back-propagation through time (Williams &
Zipser, 1989). For the facts that state that specific event
types are possible, the architecture computes not only em-
beddings but also the probabilities of these event types.

The number of parameters of such a model grows only with
the number of rules, not with the much larger number of
event types or other facts. This is analogous to how a prob-
abilistic relational model (Getoor & Taskar, 2007; Richard-
son & Domingos, 2006) derives a graphical model structure
from a database, building random variables from database
entities and repeating subgraphs with shared parameters.

Unlike graphical models, ours is a neural-symbolic hybrid.
The system state si includes both rule-governed discrete
elements (the set of facts) and learned continuous elements
(the embeddings of those facts). It can learn a neural
probabilistic model of people’s movements while relying
on a discrete symbolic deductive database to cheaply and
accurately record who is where. A purely neural model
such as our neural Hawkes process (Mei & Eisner, 2017)
would have to learn how to encode every location fact in
some very high-dimensional state vector, and retain and
update it, with no generalization across people and places.

In our experiments, we show how to write down some
domain-specific models for irregularly spaced event se-
quences in continuous time, and demonstrate that their
structure improves their ability to predict held-out data.

2. Our Modeling Language
We gradually introduce our specification language by de-
veloping a fragment of a human activity model. Similar
examples could be developed in many other domains—
epidemiology, medicine, education, organizational behav-
ior, consumer behavior, economic supply chains, etc. Such
specifications can be trained and evaluated using our im-
plementation, which can be found at https://github.
com/HMEIatJHU/neural-datalog-through-time.

For pedagogical reasons, §2 will focus on our high-level
scheme (see also the animated drawings in our ICML 2020
talk video). We defer the actual neural formulas until §3.

2.1. Datalog

We adapt our notation from Datalog (Ceri et al., 1989),
where one can write deductive rules of the form

head :- condit1, . . ., conditN . (1)
Such a rule states that the head is true provided that the
conditions are all true.1 In a simple case, the head and
conditions are atoms, i.e., structured terms that represent
boolean propositions. For example,

1 compatible(eve,adam) :-
likes(eve,apples), likes(adam,apples).

If N = 0, the rule simply states that the head is true. This
case is useful to assert basic facts:

2 likes(eve,apples).

Notice that in this case, the :- symbol is omitted.

A rule that contains variables (capitalized identifiers) rep-
resents the infinite collection of ground rules obtained by
instantiating (grounding) those variables. For example,

3 compatible(X,Y) :- likes(X,U), likes(Y,U).

says that any two entities X and Y are compatible provided
that there exists any U that they both like.

A Datalog program is an unordered set of rules. The atoms
that can be proved from these rules are called facts. Given
a program, one would use JhK ∈ {true, null} to denote the
semantic value of atom h, where JhK = true iff h is a fact.

2.2. Neural Datalog

In our formalism, a fact has an embedding in a vector
space, so the semantic value of atom likes(eve,apples)
describes more than just whether eve likes apples. To in-
dicate this, let us rename and colorize the functors in rule 3:

4 rel(X,Y) :- opinion(X,U), opinion(Y,U).

Now Jopinion(eve,apples)K is a vector describing
eve’s complex opinion about apples (or null if she has no
opinion). Jrel(eve,adam)K is a vector describing eve and
adam’s relationship (or null if they have none).

With this extension, JhK ∈ RDh ∪{null}, where the embed-
ding dimension Dh depends on the atom h. The declaration

5 :- embed(opinion,8).
2says that if h has the form opinion(...) then Dh = 8.

When an atom is proved via a rule, its embedding is af-
fected by the conditions of that rule, in a way that depends
on trainable parameters associated with that rule. For ex-
ample, according to rule 4, Jrel(eve,adam)K is a para-
metric function of the opinion vectors that eve and adam
have about various topics U. The influences from all their
shared topics are pooled together as detailed in §3.1 below.

1Appendix A.2 discusses an extension to negated conditions.
2In the absence of such a declaration, Dh = 0. Then JhK has

only two possible values, just as in Datalog; we do not color h.

https://github.com/HMEIatJHU/neural-datalog-through-time
https://github.com/HMEIatJHU/neural-datalog-through-time

helphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

harmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharm

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelp

6

Neural Datalog Through Time

A model might say that each person has an opinion about
each food, which is a function of the embeddings of the per-
son and the food, using parameters associated with rule 6:

opinion(X,U) :- person(X), food(U).

If the foods are simply declared as basic facts, as follows,
then each food’s embedding is independently specified by
the parameters associated with the rule that declares it:

7 food(apples).
8 food(manna).

. . .

Given all the rules above, whenever person(X) and
person(Y) are facts, it follows that rel(X,Y) is a fact,
and Jrel(X,Y)K is defined by a multi-layer feed-forward
neural network whose topology is given by the proof DAG
for rel(X,Y). The network details will be given in §3.1.

Recursive Datalog rules can lead to arbitrarily deep net-
works that recursively build up a compositional embed-
ding, just as in sequence encoders (Elman, 1990), tree en-
coders (Socher et al., 2012; Tai et al., 2015), and DAG en-
coders (Goller & Kuchler, 1996; Le & Zuidema, 2015)—
all of which could be implemented in our formalism. E.g.:

9 cursed(cain).
10 cursed(Y) :- cursed(X), parent(X,Y).

In Datalog, this system simply states that all descendants
of cain are cursed. In neural Datalog, however, a child
has a specific curse: a vector Jcursed(Y)K that is com-
puted from the parent’s curse Jcursed(X)K in a way that
also depends on their relationship, as encoded by the vec-
tor Jparent(X,Y)K. Rule 10’s parameters model how the
curse evolves (and hopefully attenuates) as each genera-
tion is re-cursed. Notice that Jcursed(Y)K is essentially
computed by a recurrent neural network that encodes the

3sequence of parent edges that connect cain to Y.

We currently consider it to be a model specification error
if any atom h participates in its own proof, leading to a
circular definition of JhK. This would happen in rules 9–
10 only if parent were bizarrely defined to make some
cursed person their own ancestor. Appendix A.1 discusses
extensions that would define JhK even in these cyclic cases.

2.3. Datalog Through Time

For temporal modeling, we use atoms such as help(X,Y)
as the structured names for events. We underline their func-
tors. As usual, we colorize them if they have vector-space
embeddings (see footnote 2), but as orange rather than blue.

We extend Datalog with update rules so that whenever a
help(X,Y) event occurs under appropriate conditions, it

3Assuming that this path is unique. More generally, Y might
descend from cain by multiple paths. The computation actually
encodes the DAG of all paths, by pooling over all of Y’s cursed
parents at each step, just as rule 4 pooled over multiple topics.

can add to the database by proving new atoms:
11 grateful(Y,X) <- help(X,Y), person(Y).

An event can also cancel out such additions, which may
make atoms false again.4 The ! symbol means “not”:
12 !grateful(Y,X) <- harm(X,Y).

The general form of these update rules is

head <- event, condit1, . . ., conditN . (2a)
!head <- event, condit1, . . ., conditN . (2b)

which state that event makes head true or false, respec-
tively, provided that the conditions are all true. An event
occurring at time s affects the set of facts at times t > s,
both directly through <- rules, and also indirectly, since the
facts added or removed by <- rules may affect the set of
additional facts that can be derived by :- rules at time t.
Our approach can be used for either discrete time (s, t ∈ N)
or continuous time (s, t ∈ R≥0), where the latter supports
irregularly spaced events (e.g., Mei & Eisner, 2017).

2.4. Neural Datalog Through Time

In §2.2, we derived each fact’s embedding from its proof
DAG, representing its set of Datalog proofs. For Datalog
through time, we must also consider how to embed facts
that were proved by an earlier update. Furthermore, once
an atom is proved, an update rule can prove it again. This
will update its embedding, in keeping with our principle
that a fact’s embedding is influenced by all of its proofs.

As an example, when X helps Y and grateful(Y,X)
first becomes true via rule 11, the new embedding
Jgrateful(Y,X)K is computed—using parameters asso-
ciated with rule 11—from the embeddings of help(X,Y)
and person(Y). Those embeddings model the nature of
the help and the state of person Y. (This was the main rea-
son for rule 11 to include person(Y) as a condition.) Each
time X helps Y again, Jgrateful(Y,X)K is further updated
by rule 11, so this gratitude vector records the history of
help. The updates are LSTM-like (see §3.3 for details).

In general, an atom’s semantics can now vary over time
and so should be denoted as JhK(t): the state of atom
h at time t, which is part of the overall database state.
A :- rule as in equation (1) says that JheadK(t) depends
parametrically on {JconditiK(t) : 1 ≤ i ≤ N}. A
<- rule as in equation (2a) says that if event occurred at
time s < t and no events updating head occurred on the
time interval (s, t), then JheadK(t) depends parametrically
on its previous value5 JheadK(s) along with JeventK(s),
{JconditiK(s) : 1 ≤ i ≤ N}, and the elapsed time t − s.
We will detail the parametric formulas in §3.3.

4The atom will remain true if it remains provable by a :- rule,
or is proved by another <- rule at the same time.

5More precisely, it depends on the LSTM cells that contributed
to that previous value, as we will see in §3.3.

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp
helphelphelphelphelphelphelp

helphelphelphelphelphelphelp
helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp
helphelphelphelphelphelphelp

earthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquake

earthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquake
earthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquake

helphelphelphelphelphelphelphelphelp
helphelphelphelphelphelphelphelphelp
helphelphelphelphelphelphelphelphelp

sleepsleepsleepsleepsleepsleepsleep eateateateateateateateateateateateateateateateat
emailemailemailemailemailemailemailemailemailemailemailemailemailemailemailemail inviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinvite hirehirehirehirehirehirehirehirehirehirehirehirehirehirehirehire

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

diediediediediediediediediediediediediediediedie

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

diediediediediediediediediediediediediediediedie

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp
helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp
helphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp
helphelphelphelphelphelphelphelphelp

earthquakeearthquakeearthquakeearthquakeearthquake

earthquakeearthquakeearthquakeearthquakeearthquake
earthquakeearthquakeearthquakeearthquakeearthquake

helphelphelphelphelphelphelp
helphelphelphelphelphelphelp
helphelphelphelphelphelphelp

sleepsleepsleepsleepsleepsleepsleepsleepsleep

helphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelp

Neural Datalog Through Time

Thus, JheadK(t) depends via :- rules on head’s prove-
nance in the database at time t, and depends via <- rules
on its experience of events at strictly earlier times.6 This
yields a neural architecture similar to a stacked LSTM: the
:- rules make the neural network deep at a single time step,
while the <- rules make it temporally recurrent across time
steps. The network’s irregular topology is defined by the :-
and <- rules plus the events that have occurred.

2.5. Probabilistic Modeling of Event Sequences

Because events can occur, atoms that represent event types
are special. They can be declared as follows:

13 :- event(help, 8).

Because the declaration is event rather than embed, at
times when help(X,Y) is a fact, it will have a positive
probability along with its embedding Jhelp(X,Y)K ∈ R8 .
This is what the underlined functor really indicates.

At times s when help(X,Y) is not a fact, the semantic
value Jhelp(X,Y)K(s) will be null, and it will have nei-
ther an embedding nor a probability. At these times, it is
simply not a possible event; its probability is effectively 0.

Thus, the model must include rules that establish the set of
possible events as facts. For example, the rule
14 help(X,Y) :- rel(X,Y).

says if X and Y have a relationship, then help(X,Y) is true,
meaning that events of the type help(X,Y) have positive
probability (i.e., X can help Y). The embedding and proba-
bility are computed deterministically from Jrel(X,Y)K us-
ing parameters associated with rule 14, as detailed in §3.2.

Now a neural-Datalog-through-time program specifies a
probabilistic model over event sequences. Each stochastic
event can update some database facts or their embeddings,
as well as the probability distribution over possible next
events. As §1 outlined, each stochastic draw from the next-
event distribution results in a deterministic update to that
distribution—just as in a recurrent neural network language
model (Mikolov et al., 2010; Sundermeyer et al., 2012).

Our approach also allows the possibility of exogenous
events that are not generated by the model, but are given
externally. Our probabilistic model is then conditioned on
these exogenous events. The model itself might have prob-
ability 0 of generating these event types at those times. In-
deed, if an event type is to occur only exogenously, then the
model should not predict any probability for it, so it should
not be declared using event. We use a dashed underline
for undeclared events since they have no probability.

For example, we might wish to use rules of the form head
<- earthquake(C),. . . to model how an earthquake in

6See §3.3 for the precise interaction of :- and <- rules.

city C tends to affect subsequent events, even if we do not
care to model the probabilities of earthquakes. The embed-
dings of possible earthquake events can still be determined
by parametric rules, e.g., earthquake(C) :- city(C), if
we request them by declaring embed(earthquake,5).

2.6. Continuing the Example

In our example, the following rules are also plausible. They
say that when X helps Y, this event updates the states of
the helper X and the helpee Y and also the state of their
relationship:
15 person(X) <- help(X,Y).
16 person(Y) <- help(X,Y)
17 rel(X,Y) <- help(X,Y).

To enrich the model further, we could add (e.g.) rel(X,Y)
as a condition to these rules. Then the update when X helps
Y depends quantitatively on the state of their relationship.

There may be many other kinds of events observed in
a human activity dataset, such as sleep(X), eat(X),
email(X,Y), invite(X,Y), hire(X,Y), etc. These can
be treated similarly to help(X,Y).

Our modeling architecture is intended to limit dependen-
cies to those that are explicitly specified, just as in graphi-
cal models. However, the resulting independence assump-
tions may be too strong. To allow unanticipated influences
back into the model, it can be useful to include a low-
dimensional global state, which is updated by all events:

18 world <- help(X,Y).
. . .

world records a “public history” in its state, and it can be
a condition for any rule. E.g., we can replace rule 14 with
19 help(X,Y) :- rel(X,Y), world.

so that eve’s probability of helping adam might be affected
by the history of other individuals’ interactions.

Eventually eve and adam may die, which means that they
are no longer available to help or be helped:

20 die(X) :- person(X).

If we want person(eve) to then become false, the model
cannot place that atom in the database with a :- rule like
21 person(eve).

which would ensure that person(eve) can always be
proved. Instead, we use a <- rule that initially adds
person(eve) to the database via a special event, init,
that always occurs exogenously at time t = 0:

22 person(eve) <- init.

With this treatment, the following rule can remove
person(eve) again when she dies:
23 !person(X) <- die(X).

The reader may enjoy extending this model to handle pos-
sessions, movement, tribal membership/organization, etc.

procreateprocreateprocreateprocreateprocreateprocreateprocreate
personpersonpersonpersonpersonpersonperson
procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate
personpersonpersonpersonpersonpersonpersonpersonperson

Neural Datalog Through Time

2.7. Finiteness

Under our formalism, any given model allows only a finite
set of possible events. This is because a Datalog program’s
facts are constructed by using functors mentioned in the
program, with arguments mentioned in the program,7 and
nesting is disallowed. Thus, the set of facts is finite (though
perhaps much larger than the length of the program).

It is this property that will ensure in §3.2 that our prob-
ability model—which sums over all possible events—is
well-defined. Yet this is also a limitation. In some
domains, a model should not really place any a priori
bound on the number of event types, since an infinite
sequence may contain infinitely many distinct types—the
number of types represented in the length-n prefix grows
unboundedly with n. Even our running example should
really support the addition of new entities: the event
procreate(eve,adam) should result in a fact such as
person(cain), where cain is a newly allocated entity.
Similarly, new species are allocated in the course of
drawing a sequence from Fisher’s (1943) species-sampling
model or from a Chinese restaurant process; new words
are allocated as a document is drawn from an infinite-
vocabulary language model; and new real numbers are
constantly encountered in a sequence of sensor readings.
In these domains, no model can prespecify all the entities
that can appear in a dataset. Appendix A.4 discusses
potential extensions to handle these cases.

3. Formulas Associated With Rules
3.1. Neural Datalog

Recall from §2.1 that if h is a fact, it is provable by at least
one :- rule in at least one way. For neural Datalog (§2.2),
we then choose to define the embedding JhK 6= null as

def �X � -JhK = tanh [h]: ∈ (−1, 1)Dh (3)r
r

-where [h]: represents the contribution of ther
rth rule of the Datalog program. For example,
Jopinion(eve,apples)K receives non-zero contri-

8butions from both rule 2 and rule 6. For a given Y,
Jcursed(Y)K may receive a non-zero contribution from
rule 9, rule 10, or neither, according to whether Y is cain
himself, a descendant of cain, or neither.

-The contribution [h]: has been pooled over all the ways (ifr
any) that the rth rule proves h. For example, for any entity

7A rule such as likes(adam,Y) :- likes(adam,eve)
might be able to prove that adam likes everyone, including in-
finitely many unmentioned entities. To preserve finiteness, such
rules are illegal in Datalog. A Datalog rule must be range-
restricted: any variable in the head must also appear in the body.

8Recall that we renamed likes in rule 2 to opinion.

-Y, [cursed(Y)]: needs to compute the aggregate effect of10
the curses that Y inherits through all of Y’s cursed parents X

-in rule 10. Similarly, [rel(X,Y)]: computes the aggregate4
effect on the relationship from all of X and Y’s shared
interests U in rule 4. Recall from §2.1 that a rule with vari-
ables represents a collection of ground rules obtained by
instantiating those variables. We define its contribution by

def- Lβr ∈ RDh[h]: = Wr [1; Jg1K; . . . ; JgN K] (4)r
g1,...,gN

| {z }
concatenation of column vectors

where for the summation, we allow h :- g1, . . ., gN

to range over all instantiations of the rth rule such that
the head equals h and g1, . . . , gN are all facts. There are
only finitely many such instantiations (see §2.7). Wr is a
conformable parameter matrix associated with the rth rule.
(Appendix B offers extensions that allow more control
over how parameters are shared among and within rules.)

The pooling operator
Lβ that we used above is defined to

aggregate a set of vectors {x1, . . . , xM }: XLβ def −1(xm = v v(xm)) (5)
m m

Remarks: For any definition of function v with inverse v−1 ,Lβ has a unique identity element, v−1(0), which is also the
result of pooling no vectors (M =0). Pooling a single vec-
tor (M =1) returns that vector—so when rule r proves h in
only one way, the contribution of the JgiK to JhK does not
have to involve an “extra” nonlinear pooling step in equa-
tion (4), but only the nonlinear tanh in equation (3).

Given β 6= 0, we take v to be the differentiable function
def

v(x) = sign(x) |x|β (6a)

v −1 (y) = sign(y) |y|1/β (6b)

where all operations are applied elementwise. Now the re-
sult of aggregating no vectors is 0, so rules that achieve no
proofs of h contribute nothing to equation (3). If β = 1,Lβthen v = identity and is just summation. As β →Lβ∞, emphasizes more extreme values, approaching a
signed variant of max-pooling that chooses (elementwise)
the argument with the largest absolute value. As a general-
ization, one could replace the scalar β with a vector β, so
that different dimensions are pooled differently. Pooling isLβ Lβscale-invariant: αxm = α xm for α ∈ R. m m LβrFor each rule r, we learn a scalar βr,9 and use in (4).

3.2. Probabilities and Intensities

When a fact h has been declared by event to represent an
event type, we need it to have not only an embedding but

9It can be parameterized as β = exp b > 0 (ensuring that
aggregating positive numbers exceeds their max), or as β = 1 +
b2 ≥ 1 (ensuring that the aggregate of positive numbers also does
not exceed their sum). Our present experiments do the latter.

- -

Neural Datalog Through Time

also a positive probability. We extend our setup by append-
ing an extra row to the matrix Wr in (4), leading to an extra

-element in the column vectors [h]: . We then pass only the rP -first Dh elements of [h]: through tanh, obtaining the r r
same JhK as equation (3) gave before. We pass the one re-
maining element through an exp function to obtain λh > 0.

Recall that for neural Datalog through time (§2.4), all these
quantities, including λh, vary with the time t. To model a
discrete-time event sequence, define the probability of an
event of type h at time step t to be proportional to λe(t),
normalizing over all event types that are possible then. This
imitates the softmax distributions in other neural sequence
models (Mikolov et al., 2010; Sundermeyer et al., 2012).

When time is continuous, as in our experiments (§6), we
need instantaneous probabilities. We take λh(t) to be the
(Poisson) intensity of h at time t: that is, it models the
limit as dt → 0+ of the expected rate of h on the interval
[t, t + dt) (i.e., the expected number of occurrences of h
divided by dt). This follows the setup of the neural Hawkes
process (Mei & Eisner, 2017). Also following that paper,
we replace exp(x) > 0 in the above definition of λh with
the function softplusτ (x) = τ log(1+exp(x/τ)) > 0. We
learn a separate temporal scale parameter τ for each functor
and use the one associated with the functor of h.

In both discrete and continuous time, the exact model like-
lihood (§4) will involve a summation (at each time t) over
the finite set of event types (§2.7) that are possible at time t.

Appendix A.6 offers an extension to simultaneous events.

3.3. Updates Through Time

We now add an LSTM-like component so that each atom
will track the sequence of events that it has “seen”—that
is, the sequence of events that updated it via <- rules (§2.3).
Recall that an LSTM is constructed from memory cells that
can be increased or decreased as successive inputs arrive.

Every atom h has a cell block h ∈ RDh ∪ {null}. When
h 6= null, we augment h’s embedding formula (3) to10 X

def � � -JhK = tanh h + [h]: ∈ (−1, 1)Dh (7)r
r

-Properly speaking, JhK, h , and [h]: are all functions of t.r

At times when h = null, we like to say that h is docked.
Every atom h is docked initially (at t = 0), but may be
launched through an update of type (2a), which ensures
that h 6= null and thus JhK 6= null by (7). h is subse-
quently adrift (and remains a fact) until it is docked again
through an update of type (2b), which sets h = null.

10Recall from §3.2 that if h is an event, we extend JhK with an
extra dimension to carry the probability. For equation (7) to work,
we must likewise extend h with an extra cell (when h 6= null).

How is h updated by an event (or events11) occurring at
time s? Suppose the rth rule is an update rule of type (2a).
Consider its instantiations h <- e, g1,. . .,gN (if any)
with head h, such that e occurred at time s and g1, . . . , gN
are all facts at time s. For the mth instantiation, define

[h]< def- = Wr [1; JeK; Jg1K; . . . ; JgN K] (8)rm | {z }
concatenation of column vectors

where all embeddings are evaluated at time s, and Wr is
again a conformable matrix associated with the rth rule.

-We now explain how to convert [h]< to an update vector rm
[h]Δ , and how all update vectors combine to modify h .rm

Discrete-time setting. Here we treat the update vectors
[h]Δ as increments to h . To update h from time s torm
time t = s +1, we pool these increments within and across
rules (much as in (3)–(4)) and increment by the result: X Lβrh += [h]Δ (9)rm

m r

We skip the update (9) if h has no update vectors. If we
apply (9), we first set h to 0 if it is null at time s, or has
just been set to null at time s by a (2b) rule (docking).

How is [h]Δ obtained? In an ordinary LSTM (Hochreiterrm
& Schmidhuber, 1997), a cell block h is updated by

h = f · + i · (2z − 1) (10)new h old

corresponding to an increment

h += (f − 1) · h + i · (2z − 1) (11)

where the forget gates f , input gates i, and inputs z are all
in (0, 1)Dh . Thus, we define [h]Δ as the right side of (11)rm

defwhen (f ; i; z) = σ([h]<), with [h]< ∈ R3Dh from (8).rm rm

A small difference from a standard LSTM is that our up-
dated cell values h are transformed into equally many out-
put values JhK via equation (7), instead of through tanh and
output gates. A more important difference is that in a stan-
dard LSTM, the model’s state is a single large cell block.
The state update when new input arrives depends on the en-
tire current state. Our innovation is that the update to h
(a portion of the model state) depends on only a relevant
portion of the current state, namely [JeK; Jg1K; . . . ; JgN K].
If there are many choices of this portion, (9) pools their
effects across instantiations and sums them across rules.

Continuous-time setting. Here we use the continuous-
time LSTM as defined by Mei & Eisner (2017), in which
cells drift between updates to record the passage of time.
Each cell drifts according to some parametric function. We
will update a cell’s parameters just at times when a relevant
event happens. A fact’s embedding JhK(t) at time t is still

11If exogeneous events are used (§2.4), then the instantiations
in (8) could include multiple events e that occurred at time s.

nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone
eeeeeeeeeeeeeeee

Neural Datalog Through Time

given by (7), but h (t) in that equation is given by h ’s
parametric functions as most recently updated (at some ear-
lier time s < t). Appendix C reviews the simple family of
parametric functions used in the continuous-time LSTM,
and specifies how we update the parameters using a collec-

-tion of update vectors [h]Δ obtained from the [h]< .rm rm

Remark. It is common for event atoms e to have De = 0.
Then they still have time-varying probabilities (§3.2)—
often via :- rules whose conditions have time-varying
embeddings—but have no embeddings. Even so, different
events will result in different updates. This is thanks to Dat-
alog’s pattern matching: the event’s atom e controls which
update rules head <- event, condits... it triggers,
and with what head and condition atoms (since variables in
event are reused elsewhere in the rule). The update to the
head atom then depends on the parameters of the selected
rules and the current embeddings of their condition atoms.

4. Training and Inference
Suppose we observe that the events on time interval [0, T]
are e1, . . . , eI at respective times t1 < · · · < tI . In the
continuous-time setting, the log-likelihood of the parame-
ters is I Z T

def
X

` = log λei (ti) − λ(t) dt (12)
t=0i=1

def P
where λ(t) = λe(t) and E(t) is the set of event e∈E(t)
types that are possible at time t. We can estimate the pa-
rameters by locally maximizing ` using any stochastic gra-
dient method. Details are given in Appendix D, including
Monte Carlo approximations to the integral. In the discrete-PTtime setting,12 the integral is replaced by log λ(t).t=1

Given the learned parameters, we may wish to make a min-
imum Bayes risk prediction about the next event given the
past history. A recipe can be found in Appendix E.

5. Related Work
Past work (Sato, 1995; Poole, 2010; Richardson & Domin-
gos, 2006; Raedt et al., 2007; Bar´ ány et al., 2017) has used
logic programs to help define probabilistic relational mod-
els (Getoor & Taskar, 2007). These models do not make
use of vector-space embeddings or neural networks. Nor do
they usually have a temporal component. However, some
other (directed) graphical model formalisms do allow the
model architecture to be affected by data generated at ear-
lier steps (Minka & Winn, 2008; van de Meent et al., 2018).

Our “neural Datalog through time” framework uses a de-
ductive database augmented with update rules to define and
dynamically reconfigure the architecture of a neural gener-
ative model. Conditional neural net structure has been used

12Here each time t has exactly one event (possibly just a none
event), as the event probabilities sum to 1. So I = T and ti = i.

for natural language—e.g., conditioning a neural architec-
ture on a given syntax tree or string (Andreas et al., 2016;
Lin et al., 2019). Also relevant are neural architectures
that use external read-write memory to achieve coherent
sequential generation, i.e., their decisions are conditioned
on a possibly symbolic record of data generated from the
model at earlier steps (Graves et al., 2014, 2016; Weston
et al., 2015; Sukhbaatar et al., 2015; Kumar et al., 2016;
Kiddon et al., 2016; Dyer et al., 2016; Lample et al., 2019;
Xiao et al., 2019). We generalize some such approaches by
providing a logic-based specification language.

Many papers have presented domain-specific sequential
neural architectures (Natarajan et al., 2008; Van der Hei-
jden et al., 2014; Shelton & Ciardo, 2014; Meek, 2014;
Bhattacharjya et al., 2018; Wang et al., 2019). The mod-
els closest to ours are Know-Evolve (Trivedi et al., 2017)
and DyRep (Trivedi et al., 2019), which exploit explicit
domain knowledge about how structured events depend on
and modify the neural states of their participants. DyRep
also conditions event probabilities on a temporal graph en-
coding binary relations among a fixed set of entities. In
§6, we will demonstrate that fairly simple programs in our
framework can substantially outperform these strong com-
petitors by leveraging even richer types of knowledge, e.g.:
¬ Complex n-ary relations among entities that are con-
structed by join, disjunction, and recursion (§2.1) and have
derived embeddings (§2.2). ­ Updates to the set of possi-
ble events (§2.5). ® Embeddings of entities and relations
that reflect selected past events (§2.4 and §2.6).

6. Experiments
In several continuous-time domains, we exhibit informed
models specified using neural Datalog through time
(NDTT). We evaluate these models on their held-out log-
likelihood, and on their success at predicting the time and
type of the next event. We compare with the unrestricted
neural Hawkes process (NHP) and with Know-Evolve (KE)
and DyRep. Experimental details are given in Appendix F.

We implemented our NDTT framework using PyTorch
(Paszke et al., 2017) and pyDatalog (Carbonell et al., 2016).
We then used it to implement our individual models—and
to reimplement all three baselines, after discussion with
their authors, to ensure a controlled comparison. Our code
and datasets are available at the URL given in §2.

6.1. Synthetic Superposition Domain

The activities of strangers rarely influence each other, even
if they are all observed within a single sequence. We syn-
thesized a domain where each sequence is a superposition
of data drawn from M different processes that do not inter-
act with one another at all. Each process generates events
of N types, so there are MN total event types e(M,N).

eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee
initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee
initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
eeeeeeeeeeeeeeee

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick
passpasspasspasspasspasspass

passpasspasspasspasspasspasspasspass
passpasspasspasspasspasspasspasspass

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick passpasspasspasspasspasspass
passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspasspasspass
stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspass
passpasspasspasspasspasspass

passpasspasspasspasspasspasspasspass
passpasspasspasspasspasspass

passpasspasspasspasspasspass

Neural Datalog Through Time

125 250 500 1000 2000
number of training sequences

−1.375

−1.370

−1.365

−1.360

−1.355

lo
g-

lik
el

ih
oo

d
pe

r e
ve

nt

oracle
structured NHP
NHP

125 250 500 1000 2000
number of training sequences

−1.320

−1.315

−1.310

−1.305

−1.300

−1.295

lo
g-

lik
el

ih
oo

d
pe

r e
ve

nt

oracle
structured NHP
NHP

(a) M = 8 (b) M = 16
Figure 1. Learning curves of structured model and NHP , on
sequences drawn from the structured model. The former is signif-
icantly better at each training size (p < 0.01, paired perm. test).

1 is process(1). 3 is type(1).
.

2 is process(M). 4 is type(N).

The baseline model is a neural Hawkes process (NHP). It
assigns to each event type a separate embedding13

5 :- embed(is event, 8).
6 is event(1,1) :- is process(1), is type(1).
7 is event(1,2) :- is process(1), is type(2).

. . .

This unrestricted model allows all event types to influence
one another by depending on and affecting a world state:

8 :- event(e, 0).
9 :- embed(world, 8).

10 e(M,N) :- world, is process(M), is type(N).
11 world <- init.
12 world <- e(M,N), is event(M,N), world.

Note that e(M,N) in rule 12 has no embedding, since any
such embedding would vary along with the probability. As
explained in §3.3, rule 12 instead uses e(M,N) to draw in
the embedding of is event(M,N), which does not depend
on world so is static, as called for by the standard NHP.

To obtain a structured NHP that recognizes that events
from different processes cannot influence each other, we
replace world with multiple local states: each e(M,N)
only interacts with local(M). Replace rules 9–12 with

13 :- embed(local, 8).
14 e(M,N) :- local(M), is type(N).
15 local(M) <- init, is process(M).
16 local(M) <- e(M,N), is event(M,N), local(M).

For various small N and M values (see Appendix F.2), we
randomly set the parameters of the structured NHP model
and draw training and test sequences from this distribution.
We then generated learning curves by training the correclty
structured model versus the standard NHP on increasingly
long prefixes of the training set, and evaluating them on
held-out data. Figure 1 shows that although NHP gradually
improves its performance as more training sequences be-
come available, the structured model unsurprisingly learns
faster, e.g., only 1/16 as much training data to achieve a

13The list of facts like rules 6 and 7 can be replaced by a single
rule if we use “parameter names” as explained in Appendix B.

higher likelihood. In short, it helps to use domain knowl-
edge of which events come from which processes.

6.2. Real-World Domains: IPTV and RoboCup

IPTV Domain (Xu et al., 2018). This dataset contains
records of 1000 users watching 49 TV programs over
the first 11 months of 2012. Each event has the form
watch(U,P). Given each prefix of the test event sequence,
we attempted to predict the next test event’s time t, and to
predict its program P given its actual time t and user U.

We exploit two types of structural knowledge in this do-
main. First, each program P has (exactly) 5 out of 22 genre
tags such as action, comedy, romance, etc. We encode
these as known static facts has tag(P,T). We allow each
tag’s embedding Jtag(T)K to not only influence the em-
bedding of its programs (rule 1) but also track which users
have recently watched programs with that tag (rule 2):

1 program(P) :- has tag(P,T), tag(T).
2 tag(T) <- watch(U,P), has tag(P,T).

As a result, a program’s embedding Jprogram(P)K
changes over time as its tags shift in meaning.

Second, there is a dynamic hard constraint that a program
cannot be watched until it is released, since only then is it
added to the database:

3 program(P) <- release(P).
4 watch(U,P) :- user(U), program(P).

Here release(P) is an exogenous event with no embed-
ding. More details can be found in Appendix F.3, including
full NDTT programs that specify the architectures used by
the KE and DyRep papers and by our model.

RoboCup Domain (Chen & Mooney, 2008). This dataset
logs actions of soccer players such as kick(P) and
pass(P,Q) during RoboCup Finals 2001–2004. There are
528 event types in total. For each history, we made min-
imum Bayes risk predictions of the next event’s time, and
of that event’s participant(s) given its time and action type.

Database facts change frequently in this domain. The ball
is transferred between robot players at a high rate:

1 !has ball(P) <- pass(P,Q). % ball passed from P
2 has ball(Q) <- pass(P,Q). % ball passed to Q

which leads to highly dynamic constraints on the possible
events (since only the ball possessor can kick or pass):

3 pass(P,Q) :- has ball(P), teammate(P,Q), ...

This example also illustrates how relations between players
affect events: the ball can only be passed to a teammate.
Similarly, only an opponent may steal the ball:

4 steal(Q,P) :- has ball(P), opponent(P,Q), ...

We allow each event to update the states of involved play-
ers as both KE and DyRep do. We further allow the event
observers such as the entire team to be affected as well:

passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspass5

Neural Datalog Through Time

NHP KE DyRep NDTT
negative log likelihood

10
15
20
25
30
35

NHP KE DyRep NDTT
RMSE

10
20
30
40
50

NHP KE DyRep NDTT
negative log likelihood

4
6
8

10
12
14
16
18

(a) IPTV Dataset

(b) RoboCup Dataset

NHP KE DyRep NDTT
RMSE

5
10
15
20
25
30
35

DyRep DyRep++ NDTT- NDTT
negative log likelihood

4
6
8

10
12
14

DyRep DyRep++ NDTT- NDTT
RMSE

5
10
15
20
25
30
35

team(T) <- pass(P,Q), in team(P,T),

so all players can be aware of this event by consulting their
team states. More details can be found in Appendix F.5,
including our full Datalog programs. The hard logical con-
straints on possible events are not found in past models.

Results and Analysis. After training, we used minimum
Bayes risk (§4) to predict events in test data (details in Ap-
pendix E). Figure 2 shows that our NDTT model enjoys
consistently lower error than strong competitors, across
datasets and prediction tasks.

NHP performs poorly in general since it doesn’t con-
sider any knowledge. KE handles relational informa-
tion, but doesn’t accommodate dynamic facts such as
released(game of thrones) and has ball(a8) that
reconfigure model architectures on the fly.

In the IPTV domain, DyRep handles dynamic facts (e.g.,
newly released programs) and thus substantially outper-
forms KE. Our NDTT model’s moderate further improve-
ment results from its richer :- and <- rules related to tags.

In the RoboCup domain, our reimplementation of DyRep
allows deletion of facts (player losing ball possession),
whereas the original DyRep only allowed addition of facts.
Even with this improvement, it performs much worse than
our full NDTT model. To understand why, we carried out
further ablation studies, finding that NDTT benefits from
its hybridization of logic and neural networks.

Ablation Study I: Taking Away Logic. In the RoboCup
domain, we investigated how the model performance de-
grades if we remove each kind of rule from the NDTT
model. We obtained “NDTT-” by dropping the team
states, and “DyRep++” by not tracking the ball possessor.
The latter is still an enhancement to DyRep because it adds

NHP KE DyRep NDTT
error rate %

80
85
90
95

100

NHP KE DyRep NDTT
error rate %

30
40
50
60
70
80
90

100
110

DyRep DyRep++ NDTT- NDTT
error rate %

30
35
40
45
50
55
60
65

Figure 2. Evaluation results with
95% bootstrap confidence inter-
vals on the real-world datasets
of our Datalog program vs. the
neural Hawkes process (NHP),
KnowEvolve (KE) and DyRep.
The RMSE is the root of mean
squared error for predicted time.
Error rate % denotes the frac-
tion of incorrect predictions of
the watched TV program (in
IPTV) or the specific player (in
RoboCup), given the event time.

Figure 3. Ablation study in the
RoboCup domain. “DyRep++”
has the same <- rules as
our structured model and
“NDTT−” uses 0-dimensional
team embeddings.

useful <- rules: the first “+” stands for the <- rules in which
some conditions are not neighbors of the head, and the sec-
ond “+” stands for the <- rules that update event observers.

As Figure 3 shows, both ablated models outperform DyRep
but underperform our full NDTT model. DyRep++ is inter-
estingly close to NDTT on the participant prediction, im-
plying that its neural states learn to track who possesses the
ball—though such knowledge is not tracked in the logical
database—thanks to rich <- rules that see past events.

Ablation Study II: Taking Away Neural Networks. We
also investigated how the performance of our structured
model would change if we reduce the dimension of all em-
beddings to zero. The model still knows logically which
events are possible, but events of the same type are now
more interchangeable. The performance turns out to de-
grade greatly, indicating that the neural networks had been
learning representations that are actually helpful for predic-
tion. See Appendix F.8 for discussion and experiments.

7. Conclusion
We showed how to specify a neural-symbolic probabilis-
tic model simply by writing down the rules of a deductive
database. “Neural Datalog” makes it simple to define a
large set of structured objects (“facts”) and equip them with
embeddings and probabilities, using pattern-matching rules
to explicitly specify which objects depend on one another.

To handle temporal data, we proposed an extended notation
to support temporal deductive databases. “Neural Datalog
through time” allows the facts, embeddings, and probabil-
ities to change over time, both by gradual drift and in re-
sponse to discrete events. We demonstrated the effective-
ness of our framework by generatively modeling irregularly
spaced event sequences in real-world domains.

Neural Datalog Through Time

Acknowledgments
We are grateful to Bloomberg L.P. for enabling this work
through a Ph.D. Fellowship Award to the first author, and
to the National Science Foundation for supporting the other
JHU authors under Grant No. 1718846. We thank Karan
Uppal, Songyun Duan and Yujie Zha from Bloomberg L.P.
for helpful comments and support to apply the framework
to Bloomberg’s real-world data. We thank the anonymous
ICLR reviewers for helpful comments on an earlier ver-
sion of this paper, Hongteng Xu for such comments and
also for additional data, and Rakshit Trivedi for insightful
discussion about Know-Evolve and DyRep. Moreover, we
thank NVIDIA Corporation for kindly donating two Titan
X Pascal GPUs, and the state of Maryland for the Maryland
Advanced Research Computing Center.

References
Acar, U. A. and Ley-Wild, R. Self-adjusting computation

with Delta ML. In International School on Advanced
Functional Programming, 2008.

Aldous, D., Ibragimov, I., Jacod, J., and Aldous, D. Ex-
changeability and related topics. In Ecole d’ ́ e de Prob-´ Et´
abilites´ de Saint-Flour XIII — 1983, Lecture Notes in
Mathematics. 1985.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D.
Learning to compose neural networks for question an-
swering. In Proceedings of the Conference of the North
American Chapter of the Association for Computational
Linguistics Human Language Technologies (NAACL
HLT), 2016.

Bárány, V., ten Cate, B., Kimelfeld, B., Olteanu, D., and
Vagena, Z. Declarative probabilistic programming with
Datalog. ACM Transactions on Database Systems, 42
(4):22:1–35, October 2017.

Bhattacharjya, D., Subramanian, D., and Gao, T. Proximal
graphical event models. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pp. 8136–8145,
2018.

Blei, D. and Lafferty, J. Correlated topic models. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 18, pp. 147–154, 2006.

Blei, D. M. and Frazier, P. I. Distance-dependent Chinese
restaurant processes. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 87–94,
2010.

Carbonell, P., jcdouet, Alves, H. C., and Tim, A. pyDat-
alog, 2016.

Ceri, S., Gottlob, G., and Tanca, L. What you always
wanted to know about Datalog (and never dared to ask).
IEEE Transactions on Knowledge and Data Engineer-
ing, 1989.

Chen, D. L. and Mooney, R. J. Learning to sportscast: A
test of grounded language acquisition. In Proceedings
of the International Conference on Machine Learning
(ICML), 2008.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith, N. A.
Recurrent neural network grammars. In Proceedings of
the Conference of the North American Chapter of the
Association for Computational Linguistics Human Lan-
guage Technologies (NAACL HLT), 2016.

Elman, J. L. Finding structure in time. Cognitive Science,
1990.

Filardo, N. W. and Eisner, J. A flexible solver for finite
arithmetic circuits. In Technical Communications of the
28th International Conference on Logic Programming
(ICLP), 2012.

Fisher, R. A., Corbet, A. S., and Williams, C. The relation
between the number of species and the number of indi-
viduals in a random sample of an animal population. J.
Animal Ecology, 12:42–58, 1943.

Getoor, L. and Taskar, B. (eds.). Introduction to Statistical
Relational Learning. MIT Press, 2007.

Goller, C. and Kuchler, A. Learning task-dependent
distributed representations by backpropagation through
structure. In IEEE International Conference on Neural
Networks, volume 1, pp. 347–352, 1996.

Graves, A., Wayne, G., and Danihelka, I. Neural Turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., et al. Hybrid
computing using a neural network with dynamic external
memory. Nature, 2016.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2017a.

Hamilton, W. L., Ying, R., and Leskovec, J. Representation
learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584, 2017b.

Hammer, M. A. Self-Adjusting Machines. PhD thesis,
Computer Science Department, University of Chicago,
2012.

http://software.imdea.org/~rleywild/publications/afp08/afp08.pdf
http://software.imdea.org/~rleywild/publications/afp08/afp08.pdf
http://dx.doi.org/10.1007/BFb0099421
http://dx.doi.org/10.1007/BFb0099421
https://arxiv.org/pdf/1601.01705.pdf
https://arxiv.org/pdf/1601.01705.pdf
https://doi.org/10.1145/3132700
https://doi.org/10.1145/3132700
http://papers.nips.cc/paper/8036-proximal-graphical-event-models.pdf
http://papers.nips.cc/paper/8036-proximal-graphical-event-models.pdf
http://papers.neurips.cc/paper/2906-correlated-topic-models.pdf
http://www.jmlr.org/papers/volume12/blei11a/blei11a.pdf
http://www.jmlr.org/papers/volume12/blei11a/blei11a.pdf
https://pypi.org/project/pyDatalog/
https://pypi.org/project/pyDatalog/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.1118&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.1118&rep=rep1&type=pdf
https://courses.cs.washington.edu/courses/cse591f/08au/GroupPapers/LearningToSportscast.pdf
https://courses.cs.washington.edu/courses/cse591f/08au/GroupPapers/LearningToSportscast.pdf
https://www.aclweb.org/anthology/N16-1024.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1402_1
https://drops.dagstuhl.de/opus/volltexte/2012/3642/pdf/40.pdf
https://drops.dagstuhl.de/opus/volltexte/2012/3642/pdf/40.pdf
https://www.jstor.org/stable/pdf/1411.pdf?casa_token=U8daD64WLBMAAAAA:N7x_dfg9MsyLZZ--Q-vUnxWusghFd_okJNjuUnlCL4lv0T7tcTBXqMcoUgyDfTDN3HPnjsGvuxEMQJ0FIAP1yL_dUgrm2iojgRw5y5Kbh9w8ALGza4Q
https://www.jstor.org/stable/pdf/1411.pdf?casa_token=U8daD64WLBMAAAAA:N7x_dfg9MsyLZZ--Q-vUnxWusghFd_okJNjuUnlCL4lv0T7tcTBXqMcoUgyDfTDN3HPnjsGvuxEMQJ0FIAP1yL_dUgrm2iojgRw5y5Kbh9w8ALGza4Q
https://www.jstor.org/stable/pdf/1411.pdf?casa_token=U8daD64WLBMAAAAA:N7x_dfg9MsyLZZ--Q-vUnxWusghFd_okJNjuUnlCL4lv0T7tcTBXqMcoUgyDfTDN3HPnjsGvuxEMQJ0FIAP1yL_dUgrm2iojgRw5y5Kbh9w8ALGza4Q
https://www.cs.umd.edu/srl-book
https://www.cs.umd.edu/srl-book
https://ieeexplore.ieee.org/document/548916
https://ieeexplore.ieee.org/document/548916
https://ieeexplore.ieee.org/document/548916
https://arxiv.org/pdf/1410.5401.pdf%20(http://Neural%20Turning%20Machines)%20
https://arxiv.org/pdf/1410.5401.pdf%20(http://Neural%20Turning%20Machines)%20
http://clgiles.ist.psu.edu/IST597/materials/papers-computing/papers-lect11/2016-graves.pdf
http://clgiles.ist.psu.edu/IST597/materials/papers-computing/papers-lect11/2016-graves.pdf
http://clgiles.ist.psu.edu/IST597/materials/papers-computing/papers-lect11/2016-graves.pdf
https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://www.cs.umd.edu/~hammer/selfadjmachines/self-adjusting-machines--hammer2012.pdf

Neural Datalog Through Time

Hawkes, A. G. Spectra of some self-exciting and mutually
exciting point processes. Biometrika, 1971.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-
ory. Neural Computation, 1997.

Kiddon, C., Zettlemoyer, L., and Choi, Y. Globally co-
herent text generation with neural checklist models. In
Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2016.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2015.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury,
J., Gulrajani, I., Zhong, V., Paulus, R., and Socher, R.
Ask me anything: Dynamic memory networks for natu-
ral language processing. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), 2016.

Lample, G., Sablayrolles, A., Ranzato, M., Denoyer, L.,
and Jégou, H. Large memory layers with product keys.
In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Le, P. and Zuidema, W. The forest convolutional net-
work: Compositional distributional semantics with a
neural chart and without binarization. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2015.

Lin, C., Zhu, H., Gormley, M. R., and Eisner, J. M. Neu-
ral finite-state transducers: Beyond rational relations.
In Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics Human Language Technologies (NAACL HLT),
2019.

Lin, C.-C. and Eisner, J. Neural particle smoothing for sam-
pling from conditional sequence models. In Proceedings
of the Conference of the North American Chapter of the
Association for Computational Linguistics Human Lan-
guage Technologies (NAACL HLT), 2018.

Ling, W., Luı́s, T., Marujo, L., Astudillo, R. F., Amir, S.,
Dyer, C., Black, A. W., and Trancoso, I. Finding func-
tion in form: Compositional character models for open
vocabulary word representation. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2015.

Liniger, T. J. Multivariate Hawkes processes. Diss., Ei-
dgenössische Technische Hochschule ETH Zürich, Nr.
18403, 2009.

Meek, C. Toward learning graphical and causal process
models. In Uncertainty in Artificial Intelligence Work-
shop on Causal Inference: Learning and Prediction, vol-
ume 1274, pp. 43–48, 2014.

Mei, H. and Eisner, J. The neural Hawkes process:
A neurally self-modulating multivariate point process.
In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Mei, H., Qin, G., and Eisner, J. Imputing missing events
in continuous-time event streams. In Proceedings of the
International Conference on Machine Learning (ICML),
2019.

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and
Khudanpur, S. Recurrent neural network-based language
model. In Proceedings of the Annual Conference of the
International Speech Communication Association (IN-
TERSPEECH), 2010.

Minka, T. and Winn, J. Gates: A graphical notation for
mixture models. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pp. 1073–1080, 2008.

Natarajan, S., Bui, H. H., Tadepalli, P., Kersting, K., and
Wong, W.-K. Logical hierarchical hidden Markov mod-
els for modeling user activities. In Proceedings of the
International Conference on Inductive Logic Program-
ming (ICILP), 2008.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. Automatic differentiation in PyTorch. 2017.

Poole, D. AILog user manual, version 2.3, 2010.

Raedt, L. D., Kimmig, A., and Toivonen, H. Problog: A
probabilistic Prolog and its application in link discovery.
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 2007.

Richardson, M. and Domingos, P. Markov logic networks.
Machine Learning, 2006.

Sato, T. A statistical learning method for logic programs
with distribution semantics. In Proceedings of the Inter-
national Conference on Logic Programming (ICLP), pp.
715–729, 1995.

Shelton, C. R. and Ciardo, G. Tutorial on structured
continuous-time Markov processes. Journal of Artificial
Intelligence Research, 51:725–778, 2014.

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. Se-
mantic compositionality through recursive matrix-vector
spaces. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP),
2012.

https://pdfs.semanticscholar.org/c082/06b44dd1f0ea54bd073e4effaf2e4483169b.pdf
https://pdfs.semanticscholar.org/c082/06b44dd1f0ea54bd073e4effaf2e4483169b.pdf
https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735?casa_token=HqlHuDJ9dM4AAAAA:lItwxEYN6vz_nY6jxWrFjV4pqnFGncshlHoxZepDCPyMXBLLpxKxyxCizs8JDyMy896kaVIaYdOI
https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735?casa_token=HqlHuDJ9dM4AAAAA:lItwxEYN6vz_nY6jxWrFjV4pqnFGncshlHoxZepDCPyMXBLLpxKxyxCizs8JDyMy896kaVIaYdOI
https://www.aclweb.org/anthology/D16-1032.pdf
https://www.aclweb.org/anthology/D16-1032.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://proceedings.mlr.press/v48/kumar16.pdf
http://proceedings.mlr.press/v48/kumar16.pdf
http://papers.nips.cc/paper/9061-large-memory-layers-with-product-keys.pdf
https://www.aclweb.org/anthology/D15-1137.pdf
https://www.aclweb.org/anthology/D15-1137.pdf
https://www.aclweb.org/anthology/D15-1137.pdf
https://www.aclweb.org/anthology/N19-1024/
https://www.aclweb.org/anthology/N19-1024/
http://cs.jhu.edu/~jason/papers/#lin-eisner-2018-naacl
http://cs.jhu.edu/~jason/papers/#lin-eisner-2018-naacl
https://arxiv.org/pdf/1508.02096.pdf
https://arxiv.org/pdf/1508.02096.pdf
https://arxiv.org/pdf/1508.02096.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/151886/eth-1112-02.pdf
https://staff.fnwi.uva.nl/j.m.mooij/articles/uai2014ci_proceedings.pdf#page=49
https://staff.fnwi.uva.nl/j.m.mooij/articles/uai2014ci_proceedings.pdf#page=49
https://arxiv.org/abs/1612.09328
https://arxiv.org/abs/1612.09328
https://arxiv.org/pdf/1905.05570.pdf
https://arxiv.org/pdf/1905.05570.pdf
https://www.researchgate.net/profile/Martin_Karafiat/publication/221489926_Recurrent_neural_network_based_language_model/links/0c960523991065d41b000000.pdf
https://www.researchgate.net/profile/Martin_Karafiat/publication/221489926_Recurrent_neural_network_based_language_model/links/0c960523991065d41b000000.pdf
http://papers.nips.cc/paper/3379-gates.pdf
http://papers.nips.cc/paper/3379-gates.pdf
http://homes.sice.indiana.edu/natarasr/Papers/LoHiHMM.pdf
http://homes.sice.indiana.edu/natarasr/Papers/LoHiHMM.pdf
https://openreview.net/pdf?id=BJJsrmfCZ
https://www.cs.ubc.ca/~poole/aibook/code/ailog/ailog_man.html
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-397.pdf
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-397.pdf
https://link.springer.com/content/pdf/10.1007/s10994-006-5833-1.pdf
https://pdfs.semanticscholar.org/1997/b56b9efa6ff7f4def5043b1494c60e11b198.pdf
https://pdfs.semanticscholar.org/1997/b56b9efa6ff7f4def5043b1494c60e11b198.pdf
https://www.jair.org/index.php/jair/article/download/10921/26035
https://www.jair.org/index.php/jair/article/download/10921/26035
https://www.aclweb.org/anthology/D12-1110
https://www.aclweb.org/anthology/D12-1110
https://www.aclweb.org/anthology/D12-1110

Neural Datalog Through Time

Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

Sukhbaatar, S., Weston, J., Fergus, R., et al. End-to-end
memory networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2015.

Sundermeyer, M., Ney, H., and Schluter, R. LSTM neural
networks for language modeling. In Proceedings of the
Annual Conference of the International Speech Commu-
nication Association (INTERSPEECH), 2012.

Swift, T. and Warren, D. S. XSB: Extending Prolog with
tabled logic programming. Theory and Practice of Logic
Programming, 12(1–2):157–187, 2012.

Tai, K. S., Socher, R., and Manning, C. D. Improved se-
mantic representations from tree-structured long short-
term memory networks. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics (ACL), 2015.

Tran, K. M., Bisk, Y., Vaswani, A., Marcu, D., and Knight,
K. Unsupervised neural hidden Markov models. In Pro-
ceedings of the Workshop on Structured Prediction for
NLP, pp. 63–71, Austin, TX, November 2016.

Trivedi, R., Dai, H., Wang, Y., and Song, L. Know-
Evolve: Deep temporal reasoning for dynamic knowl-
edge graphs. In Proceedings of the International Con-
ference on Machine Learning (ICML), 2017.

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. DyRep:
Learning representations over dynamic graphs. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2019.

van de Meent, J.-W., Paige, B., Yang, H., and Wood, F.
An introduction to probabilistic programming. arXiv
preprint arXiv:1809.10756, 2018.

Van der Heijden, M., Velikova, M., and Lucas, P. J. Learn-
ing Bayesian networks for clinical time series analysis.
Journal of Biomedical Informatics, 2014.

Wang, Y., Smola, A., Maddix, D. C., Gasthaus, J., Foster,
D., and Januschowski, T. Deep factors for forecasting. In
Proceedings of the International Conference on Machine
Learning (ICML), 2019.

Weston, J., Chopra, S., and Bordes, A. Memory net-
works. In Proceedings of the International Conference
on Learning Representations (ICLR), 2015.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
Computation, 1(2):270–280, 1989.

Xiao, C., Teichmann, C., and Arkoudas, K. Grammat-
ical sequence prediction for real-time neural semantic
parsing. In Proceedings of the ACL Workshop on Deep
Learning and Formal Languages: Building Bridges,
2019.

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan, K.
Inductive representation learning on temporal graphs. In
Proceedings of the International Conference on Learn-
ing Representations (ICLR), 2020.

Xu, H., Luo, D., and Carin, L. Online continuous-time ten-
sor factorization based on pairwise interactive point pro-
cesses. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2018.

Zhang, X., Lu, L., and Lapata, M. Top-down tree long
short-term memory networks. In Proceedings of the
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics Human Language
Technologies (NAACL HLT), 2016.

https://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
https://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.248.4448&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.248.4448&rep=rep1&type=pdf
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1017/S1471068411000500
https://arxiv.org/pdf/1503.00075.pdf
https://arxiv.org/pdf/1503.00075.pdf
https://arxiv.org/pdf/1503.00075.pdf
https://doi.org/10.18653/v1/W16-5907
https://arxiv.org/pdf/1705.05742.pdf
https://arxiv.org/pdf/1705.05742.pdf
https://arxiv.org/pdf/1705.05742.pdf
https://openreview.net/pdf?id=HyePrhR5KX
https://openreview.net/pdf?id=HyePrhR5KX
https://arxiv.org/pdf/1809.10756.pdf
https://core.ac.uk/download/pdf/82605894.pdf
https://core.ac.uk/download/pdf/82605894.pdf
https://arxiv.org/pdf/1905.12417.pdf
https://arxiv.org/pdf/1410.3916.pdf
https://arxiv.org/pdf/1410.3916.pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.9724&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.9724&rep=rep1&type=pdf
https://arxiv.org/pdf/1907.11049.pdf
https://arxiv.org/pdf/1907.11049.pdf
https://arxiv.org/pdf/1907.11049.pdf
https://openreview.net/pdf?id=rJeW1yHYwH
http://people.ee.duke.edu/~lcarin/ijcai18_cttf_final.pdf
http://people.ee.duke.edu/~lcarin/ijcai18_cttf_final.pdf
http://people.ee.duke.edu/~lcarin/ijcai18_cttf_final.pdf
https://www.aclweb.org/anthology/N16-1035
https://www.aclweb.org/anthology/N16-1035

