
Neural Datalog Through Time

Appendices
A. Extensions to the Formalism
In this appendix, we consider possible extensions to our
formalism. These illuminate interesting issues, and the
extensions are compatible with our overall approach to
modeling. Some of these extensions are already sup-
ported in our implementation at https://github.com/
HMEIatJHU/neural-datalog-through-time, and
more of them may be supported in future versions.

A.1. Cyclicity

Our embedding definitions in §2.2 and §3.1 assumed that
the proof graph was acyclic. However, it is possible in gen-
eral Datalog programs for a fact to participate in some of
its own proofs.

For example, the following classical Datalog program finds
the nodes in a directed graph that are reachable from the
node start:

1 reachable(start).
2 reachable(V) :- reachable(U), edge(U,V).

In neural Datalog, the embedding of each fact of the form
reachable(V) depends on all paths from start to V.
However, if V appears on a cycle in the directed graph de-
fined by the edge facts, then there will be infinitely many
such paths, and our definition of Jreachable(V)K would
then be circular.

Restricting to acyclic proofs. One could define embed-
dings and probabilities in a cyclic proof graph by consider-
ing only the acyclic proofs of each atom h. This is expen-
sive in the worst case, because it can exponentially increase
the number of embeddings and probabilities that need to
be computed. Specifically, if S is a (finite) set of atoms,
let Jh/SK denote the embedding constructed from acyclic
proofs of h that do not use any of the atoms in the finite set
S. We define Jh/SK to be null if h ∈ S, and otherwise to
be defined similarly to JhK but where equations (4) and (8)

14are modified to replace each JgiK with Jgi/(S ∪ {h})K.
As usual, these formulas skip pooling over instantiations
where any J·K values in the body are null. The recursive def-
inition terminates because S grows at each recursive step
but its size is bounded above (§2.7).

14For increased efficiency, one can simplify S ∪ {h} here to
eliminate atoms that can be shown by static analysis or depth-first
search not to appear in any proof of gi. This allows more reuse of
previously computed J·K terms and can sometimes prevent expo-
nential blowup. In particular, if it can be shown that all proofs of
h are acyclic, then Jh/SK can always be simplified to Jh/∅K and
the computation of Jh/∅K is isomorphic to the ordinary computa-
tion of JhK; the algorithm then reduces to the ordinary algorithm
from the main paper.

In particular, this scheme defines Jh/∅K, the acyclic em-
bedding of h, which we consider to be an output of the neu-
ral Datalog program. Similarly, in neural Datalog through
time, the probability of an event e is derived from λe/∅,
which is computed in the usual way (§3.2) as an extra di-
mension of the acyclic embedding Je/∅K.

Forward propagation. This is a more practical approach,
used by Hamilton et al. (2017a) to embed the vertices of a
graph. This method recomputes all embeddings in parallel,
and repeats this for some number of iterations. In our case,
for a given time t, each JhK is initialized to 0, and at each
iteration it is recomputed via the formulas of §3.1 and §3.3,
using the JgiK values from the previous iteration (also at
time t) and the cell block h (determined by events at times
s < t).

We suggest the following variant that takes the graph struc-
ture into account. At time t, construct the (finite) Data-
log proof graph, whose nodes are the facts at time t. Visit
its strongly connected components in topologically sorted
order. Within each strongly connected component C, ini-
tialize the embeddings to 0 and then recompute them in
parallel for |C| iterations. If the graph is acyclic, so that
each component C consists of a single vertex, then the al-
gorithm reduces to an efficient and exact implementation
of §3.1 and §3.3. In the general case, visiting the com-
ponents in topologically sorted order means that we wait to
work on component C until its strictly upstream nodes have
“converged,” so that the limited iterations on C make use of
the best available embeddings of the upstream nodes. By
choosing |C| iterations for component C, we ensure that
all nodes in C have a chance to communicate: information
has the opportunity to flow end-to-end through all cyclic
or acyclic paths of length < |C|, and this is enough to in-
clude all acyclic paths within C. Note that the embeddings
computed by this algorithm (or by the simpler method of
Hamilton et al. (2017a)) are well-defined: they depend only
on the graph structure, not on any arbitrary ordering of the
computations.

A.2. Negation in Conditions

A simple extension to our formalism would allow negation
in the body of a rule (i.e., the part of the rule to the right
of :- or <-). In rules of the form (1) or (2), each of the
conditions conditi could optionally be preceded by the
negation symbol !. In general, a rule only applies when the
ordinary conditions are true and the negated conditions are
false. The concatenation of column vectors in equations (4)
and (8) omits JgiK if conditi is negated, since then gi is
not a fact and does not have a vector (rather, JgiK = null).

Many dialects of Datalog permit programs with negation.
If we allow cycles (Appendix A.1), we would impose the
usual restriction that negation may not appear on cycles,

https://github.com/HMEIatJHU/neural-datalog-through-time
https://github.com/HMEIatJHU/neural-datalog-through-time

growupgrowupgrowupgrowupgrowupgrowupgrowup
growupgrowupgrowupgrowupgrowupgrowupgrowup

growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup

growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup

growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup

procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp
helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp

relrelrelrelrelrelrelrelrelrelrelrelrelrelrelrel

relrelrelrelrelrelrelrelrelrelrelrelrelrelrelrel

relrelrelrelrelrelrelrelrelrelrelrelrelrelrelrel

helphelphelphelphelphelphelp
relrelrelrelrelrelrelrelrelrelrelrelrelrelrelrel

relrelrelrelrelrelrelrelrelrelrelrelrelrelrelrel

helphelphelphelphelphelphelphelphelp

hirehirehirehirehirehirehirehirehirehirehirehirehirehirehirehire

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp

growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup
growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup

growupgrowupgrowupgrowupgrowupgrowupgrowup

growupgrowupgrowupgrowupgrowupgrowupgrowup

growupgrowupgrowupgrowupgrowupgrowupgrowup

procreateprocreateprocreateprocreateprocreateprocreateprocreate

helphelphelphelphelphelphelp

helphelphelphelphelphelphelp
helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

Neural Datalog Through Time

i.e., programs may use only stratified negation. This re-
striction ensures that the set of facts is well-defined, by ex-
cluding rules like paradox :- !paradox.

Example. Extending our example of §2, we might say that
a person can eventually grow up into an adult and acquire
a gender. Whether person X grows up into (say) a woman,
and the time at which this happens, depends on the proba-
bility or intensity (§3.2) of the growup(X,female) event.
We use negation to say that a growup event can happen
only once to a person—after that, all growup events for
that person become false atoms (have probability 0).

24 adult(X,G) <- growup(X,G).
25 adult(X) :- adult(X,G).
26 growup(X,G) :- person(X), gender(G), !adult(X).
27 gender(female).
28 gender(male).
29 gender(nonbinary).

. . .

As a result, an adult has exactly one gender, chosen
stochastically. Female and male adults who know each
other can procreate:

30 procreate(X,Y) :- rel(X,Y),
adult(X,female), adult(Y,male).

A.3. Highway Connections

As convenient “syntactic sugar,” we introduce a variant :=
of the :- connector. The extra horizontal line introduces
extra highway connections that skip a level in the neural
network. A fact’s embedding can now be directly affected
by its grandparents in the proof DAG, not just its parents.
This does not change the set of facts that are proved.

Highway connections of roughly this sort have been argued
to help neural network training by providing shorter, more
direct paths for backpropagation (Srivastava et al., 2015).
They also increase the number of parameters in the model.

We use an example to show how they are specified in neu-
ral Datalog. Consider the following := rules. The first rule
replaces rule 4 from §2 with a := version. The second rule
is added to make the example more interesting. It uses a
high-dimensional teacher embedding that represents the
academic relationship between X and Y (which is presum-
ably updated by every academic interaction between them).
31 rel(X,Y) := opinion(X,U), opinion(Y,U).
32 rel(X,Y) := teacher(X,Y).

The embeddings of rel facts are computed as before.
However, the := rules in the definition of rel affect the
interpretation of the other :-, :=, and <- rules in the pro-
gram whose body contains rel. A simple example of such
a rule is rule 14 from §2.5:

help(X,Y) :- rel(X,Y).

The following rules are now automatically added to the
program:

34 help(X,Y) :- opinion(X,U), opinion(Y,U).
35 help(X,Y) :- teacher(X,Y).

As a result, an embedding such as Jhelp(eve,adam)K
is defined using not only Jrel(eve,adam)K, but also
the embeddings of any lower-level facts that proved
rel(eve,adam) via the := rules 31 and 32.

In the simple case where rel(eve,adam) has only
one proof, this scheme is equivalent to augmenting
Jrel(eve,adam)K by concatenating it with the em-
beddings of its parent or parents. This higher-
dimensional version of Jrel(eve,adam)K now partici-
pates as usual in the computation of other embeddings
such as Jhelp(eve,adam)K. However, notice that the di-
mensionality of the augmented Jrel(eve,adam)K will dif-
fer according to whether rel(eve,adam) was proved via
rule 31 or rule 32. Therefore, different parameters must be
used for the additional dimensions, associated with rule 34
or rule 35 respectively.

More generally, notice that Jhelp(eve,adam)K will sum
over the contributions from the two rules 34 and 35 (via
equation (3) or equation (7)). The former contribution may
itself involve pooling (via equation (4)) over all topics U
about which eve and adam both have opinions. This pool-
ing is performed separately from the pooling over U used in
rule 31: in particular, it may use a different β parameter.

Of course, the definition of rel may also include non-
highway rules such as

36 rel(X,Y) :- married(X,U).
37 rel(X,Y) <- hire(X,Y).

Since rule 33 is still in the program, however, proving
rel(eve,adam) remains sufficient to prove the possible
event help(eve,adam) even when rel(eve,adam) is
proved by non-highway rules.

Longer highways can be created by chaining multiple :=
rules together. For example, if we replace rule 33 with a :=
version,

38 help(X,Y) := rel(X,Y).

then rules 34–35 will also use :=. Hence, any rule whose
body uses help will automatically acquire versions that
mention rel, opinion, and teacher (by repeating the
bodies of rules 33–35 respectively).

There are several subtleties in our highway program trans-
formation:

The additional rules 34–35 were constructed by expanding
(“inlining”) the call to rel within the body of rule 33. In
logic programming, the inlining transformation is known
as unfolding. In general it may involve unification, as well
as variable renaming to avoid capture.

When we unfold a rule condition, the original condition is
usually deleted from the new (unfolded) version of the rule,

33

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp

eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee
eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee
eeeeeeeeeeeeeeee
eeeeeeeeeeeeeeee
eeeeeeeeeeeeeeee

procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate

procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate

procreateprocreateprocreateprocreateprocreateprocreateprocreate

procreateprocreateprocreateprocreateprocreateprocreateprocreate

birthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirth
birthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirth
birthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirth

birthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirth
procreateprocreateprocreateprocreateprocreateprocreateprocreate

helphelphelphelphelphelphelp

dishdishdishdishdishdishdishdishdishdishdishdishdishdishdishdish
orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder

diediediediediediediediediediediediediediediedie

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

procreateprocreateprocreateprocreateprocreateprocreateprocreate

procreateprocreateprocreateprocreateprocreateprocreateprocreate

procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate

procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate

procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate

helphelphelphelphelphelphelphelphelp

Neural Datalog Through Time

since it is now redundant. However, the event that triggers
an update rule cannot be deleted in this way. Consider the
update rule 11 from §2.3:

39 grateful(Y,X) <- help(X,Y), person(Y).

Suppose help(X,Y) is defined using the highway rule 38.
The rule that we automatically add cannot be

40 grateful(Y,X) <- rel(X,Y), person(Y).

as one might expect, because rel(X,Y) is not even an
event that can be used in this position. Instead, we must
ensure that the event is still triggered by the original event:
41 grateful(Y,X) <- help(X,Y) : 0, rel(X,Y),

person(Y) : 0.

As explained in Appendix B below, the : 0 notation says
that although the highway rule 41 is triggered by the event
help(X,Y), it ignores the event’s embedding. After all, the
event’s embedding is still considered by the original rule 39
and does not need to be considered again. The contribu-
tions of these two rules will be summed by equation (3) or
equation (7) before tanh is applied.

The above example also illustrates the handling of rule
conditions that are not unfolded, such as person. The
unfolded rule (e.g., rule 41) marks these conditions with
: 0 as well, to say that while they are still boolean con-
ditions on the update, their embeddings should also be ig-
nored. Again, their embeddings are considered in the orig-
inal rule 39, so they do not need to be considered again.

Finally, notice that a rule body may contain multiple events
and/or conditions that are defined using highway rules.
How do we expand

1 world <- e, f, g.

given the following highway definitions?
2 e := e1.
3 e := e2.
4 g := g1.
5 g := g2.

The general answer is that we unfold each of the body el-
ements in parallel, to allow highway connections from that
element. In this case we add 4 new rules:

6 world <- e : 0, e1, f : 0, g : 0.
7 world <- e : 0, e2, f : 0, g : 0.
8 world <- e : 0, f : 0, g1.
9 world <- e : 0, f : 0, g2.

A.4. Infinite Domains

§2.7 explained that under our current formalism, any given
model only allows a finite set of atoms. Thus, it is not
possible for new persons to be born.

One way to accommodate that might be to relax Datalog’s
restriction on nesting.15 This allows us to build up an infi-

15To be safe, we should allow only the <- rules (which are novel
in our formalism) to derive new facts with greater nesting depth

nite set of atoms from a finite set of initial entities:
42 birth(X,Y,child(X,Y)) <- procreate(X,Y).

Thus, each new person would be named by a tree
giving their ancestry, e.g., child(eve,adam) or
child(awan,child(eve,adam)). But while this
method may be useful in other settings, it unfortunately
does not allow eve and adam to have multiple children.

Instead, we suggest a different extension, which allows
events to create new anonymous entities (rather than nested
terms):
43 birth(X,Y,*) <- procreate(X,Y).

The special symbol * denotes a new entity that is created
during the update, in this case representing the child be-
ing born. Thus, the event procreate(eve,adam) will
launch the fact birth(eve,adam,cain), where cain is
some internal name that the system assigns to the new
entity. In the usual way when launching a fact, the cell
block birth(eve,adam,cain) is updated from an ini-
tial value of 0 by equation (10) in a way that depends on
Jprocreate(eve,adam)K.

From the new fact birth(eve,adam,cain), additional
rules derive further facts, stating that cain is a person and
has two parents:16

44 person(Z) :- birth(X,Y,Z).
45 parent(X,Z) :- birth(X,Y,Z).
46 parent(Y,Z) :- birth(X,Y,Z).

Notice that the embedding Jperson(cain)K initially de-
pends on the state of his parents and their relationship at
the time of his procreation. This is because it depends
on Jbirth(eve,adam,cain)K which depends through its
cell block on Jprocreate(eve,adam)K, as noted above.
Jperson(cain)K may be subsequently updated over time
by events such as help(eve,cain), which affect its cell
block.

As another example, here is a description of a sequence of
orders in a restaurant:

1 :- embed(dish, 5).
2 :- event(order, 0).

than the facts that appear in the body of the rule. This means
that the nesting depth of the database may increase over time, by
a finite amount each time an event happens. If we allowed that
in traditional :- rules, for example peano(s(X)) :- peano(X),
then we could get an infinite set of facts at an single time. ButLβthen computation at that time might not terminate, and our
operators might have to aggregate over infinite sets (see §2.7).

16Somewhat awkwardly, under our design, rule 23 is not
enough to remove person(cain) from the database, since that
fact was established by a :- rule. We actually have to write a
rule canceling cain’s birth: !birth(X,Y,Z) <- die(Z). No-
tice that this rule will remove not only person(cain) but also
parent(eve,cain) and parent(adam,cain). Even then, the
entity cain may still be referenced in the database as a parent
of his own children, until they die as well.

orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder
orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder

orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder

orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder

ticktickticktickticktickticktickticktickticktickticktickticktick

orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder

ticktickticktickticktickticktickticktickticktickticktickticktick

ticktickticktickticktickticktickticktickticktickticktickticktick

ticktickticktickticktickticktickticktickticktickticktickticktick

nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone

ticktickticktickticktickticktickticktickticktickticktickticktick

Neural Datalog Through Time

3 order(X) :- dish(X).
4 order(*).
5 dish(X) <- order(X).

This program says that the possible orders consist of any
existing dish or a new dish. When used in the discrete-
time setting, this model is similar to the Chinese restaurant
process (CRP) (Aldous et al., 1985). Just as in the CRP,

• The relative probability of ordering a new dish at time
s ∈ N is a (learned) constant (because rule 4 has no
conditions).

• The relative probability of each possible order(X)
event, where X is an existing dish, depends on the em-
bedding of dish(X) (rule 3). That embedding reflects
only the number of times X has been ordered previ-
ously (rule 5), though its (learned) dependence on that
number does not have to be linear as in the CRP.

Interestingly, in the continous-time case—or if we added
a rule dish(X) <- tick that causes an update at every
discrete time step (see Appendix A.5 below)—the relative
probability of the order(X) event would also be affected
by the time intervals between previous orders of X. It is
also easy to modify this program to get variant processes
in which the relative probability of X is also affected by
previous orders of dishes Y 6= X (cf. Blei & Lafferty, 2006)
or by the exogenous events at the present time and at times
when X was ordered previously (cf. Blei & Frazier, 2010).

Appendix A.6 below discusses how an event may trigger
an unbounded number of dependent events that provide de-
tails about it. This could be used in conjunction with the *
feature to create a whole tree of facts that describe a new
anonymous entity.

A.5. Uses of Exogenous Events

The extension to allow exogeneous events was already dis-
cussed in the main paper (§2.4). Here we mention two spe-
cific uses in the discrete-time case.

It is useful in the discrete-time case to provide an exoge-
nous tick event at every s ∈ N. (Note that this results in
a second event at every time step; see footnote 11.) Any
cell blocks that are updated by the exogenous tick events
will be updated even at time steps s between the modeled
events that affect those cell blocks. For example, one can
write a rule such as person(X) <- tick, person(X),
world. so that persons continue to evolve even when noth-
ing is happening to them. This is similar to the way that in
the continous-time case, cell blocks with δ 6= 0 will drift
via equation (9) during the intervals between the modeled
events that affect those cell blocks.17

17In fact, tick events can also be used in the continuous case,

Another good use of exogenous events in discrete time is
to build a conditional probability model such as a word se-
quence tagger. At every time step s, a word occurs as an
exogenous event, at the same time that the model generates
an tag event that supplies a tag for the word at the previ-
ous time step. These two events at time s together update
the state of the model to determine the distribution over the
next tag at time t = s + 1. Notice that the influences of the
word and the tag on the update vector are summed (by the P

in equation (9)). This architecture is similar to a left-to-r
right LSTM tagger (cf. Ling et al., 2015; Tran et al., 2016).

A.6. Modeling Multiple Simultaneous Events

§3.2 explained how to model a discrete-time event se-
quence:

To model a discrete-time event sequence, define
the probability of an event of type h at time step
t to be proportional to λe(t), normalizing over all
event types that are possible then.

In such a sequence, exactly one event is generated at each
time t. To change this to “at most one event,” an additional
event type none can be used to encode “nothing occurred.”

Our continuous-time models are also appropriate for data
in which at most one event occurs at each time t, since
almost surely, there are no times t with multiple events.
Recall from §3.2 that in this setting, the expected number
of occurrences of e on the interval [t, t + dt), divided by
dt, approaches λe(t) as dt → 0+ . Thus, given a time t at
which one event occurs, the expected total number of other
events on [t, t + dt) approaches 0 as dt → 0+ .

However, there exist datasets in which multiple events do
occur at time t—even multiple copies of the same event.
By extending our formalism with a notion of dependent
events, we can model such datasets generatively. The idea
is that an event e at time t can stochastically generate de-
pendent events that also occur at time t.

(When multiple events occur at time t, our model already
specifies how to handle the <- rule updates that result from
these events. Specifically, multiple events that simultane-
ously update the same head are pooled within and across
rules by equation (9).)

To model the events that depend on e, we introduce the no-
tion of an event group, which represents a group of com-
peting events at a particular instant. Groups do not persist
over time; they appear momentarily in response to partic-
ular events. If event e at time t triggers group g and g is

if desired (Mei & Eisner, 2017). Then the drifting cells not only
drift, but also undergo periodic learned updates that may depend
on other facts (as specified by the tick update rules).

nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone

eat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat meal

eat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat meal

restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants
eat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat at

restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants eat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat meal
eat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat at restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants
eat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat at restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants

Neural Datalog Through Time

non-empty at time t, then exactly one event e 0 in g (perhaps
none) will stochastically occur at time t as well.

Under some programs, it will be possible for multiple
copies—that is, tokens—of the same event type to occur
at the same time. For precision, we use e below for a par-
ticular event token at a particular time, using ē to denote
the Datalog atom that names its event type. Similarly, we
use g for a particular token of a triggered group, using ḡ to
denote the Datalog atom that names the type of group. We
write JeK and JgK for the token embeddings: this allows
different tokens of the same type to have different embed-
dings at time t, depending on how they arose.

We allow new program lines of the following forms:18

:- eventgroup(functor, dimension). (13a)
group <<- event, condit1, . . ., conditN . (13b)
event <-- group, condit1, . . ., conditN . (13c)

An eventgroup declaration of the form (13a) is used to
declare that atoms with a particular functor refer to event
groups, similar to an event declaration. We will display
such functors with a double underline.

A rule of the form (13b) is used to trigger a group of possi-
ble dependent events. If e is an event token at time t, then
it triggers a token g of group type ḡ at time t, for each ḡ
and each rule r having at least one instantiation of the form
ḡ <<- ē, c1, . . ., cN for which the ci are all facts at
time t. The embedding of this group token g pools over all
such instantiations of rule r (as in equation (4)):

def LβrJgK = [1; JeK; Jc1K; . . . ; JcN K] ∈ RDg (14)
c1,...,cN

Wr | {z }
concatenation of column vectors

where all embeddings are evaluated at time t.

Rules of the form (13c) are used to specify the possible
events in a group. Very similarly to the above, if the group
g is triggered at time t, then it contains a token e 0 of
event type ē 0 , for each ē 0 and each rule r having at least
one instantiation of the form ē 0 <-- ḡ, c1, . . ., cN for
which the ci are all facts at time t. The embedding of this
event token e 0 pools over all such instantiations of rule r:

def LβrJe 0K = Wr [1; JgK; Jc1K; . . . ; JcN K] ∈ RDg (15)
c1,...,cN

| {z }
concatenation of column vectors

where all embeddings are evaluated at time t.

Since each e 0 in group g is an event, we compute not
only an embedding Je 0K but also an unnormalized proba-
bility λe0 , computed just as in §3.2 (using exp rather than

18Mnemonically, note that the “doubled” side of the symbol <<-
or <-- is next to the group, since the group usually contains mul-
tiple events. This is also why group names are double-underlined
in the examples below.

softplus). Exactly one of the finitely many event tokens in
g will occur at time t, with event type e 0 being chosen from
g with probability proportional to λe0 .

Training. In fully supervised training of this model, the
dependencies are fully observed. For each dependent event
token e 0 that occurs at time t, the training set specifies what
it depends on—that it is a dependent event, which group g
it was chosen from, and which rule r established that e 0

was an element of g. Furthermore, the training set must
specify for g which event e triggered it and via which rule
r. However, if these dependencies are not fully observed,
then it is still possible to take the training objective to be
the incomplete-data likelihood, which involves computing
the total probability of the bag of events at each time t by
summing over all possible choices of the dependencies.

Marked events. To see the applicability of our formal-
ism, consider a marked point process (such as the marked
Hawkes process). This is a traditional type of event se-
quence model in which each event occurrence also gener-
ates a stochastic mark from some distribution. The mark
contains details about the event. For example, each occur-
rence of eat meal(eve) might generate a mark that spec-
ifies the food eaten and the location of the meal.

Why are marked point processes used in practice?
An alternative would be to refine the atoms that de-
scribe events so that they contain the additional de-
tails. This leads to fine-grained event types such as
eat meal(eve,apple,tree of knowledge). However,

def P
that approach means that computing λ(t) = λe(t)e∈E(t)
during training (§4) or sampling (Appendix F.2) involves
summing over a large set of fine-grained events, which is
computationally expensive. Using marks makes it possible
to generate a coarse-grained event first, modeling its proba-
bility without yet considering the different ways to refine it.
The event’s details are considered only once the event has
been chosen. This is simply the usual computational effi-
ciency argument for locally normalized generative models.

Our formalism can treat an event’s mark as a dependent
event, using the neural architecture above to model the
mark probability p(e 0 | e) as proportional to λe0 . The set
of possible marks for an event is defined by rules of the
form (13) and may vary by event type and vary by time.

Multiply marked events. Our approach also makes it
easy for an event to independently generate multiple marks,
which describe different attributes of an event. For exam-
ple, each meal at time t may select a dependent location,

1 :- eventgroup(restaurants, 5).
2 :- event(eat at, 0).
3 restaurants <<- eat meal(X).
4 eat at(Y) <-- restaurants, is restaurant(Y).
5 eat at(home) <-- restaurants.

which associates some dependent restaurant Y (or home)

nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone
optdishoptdishoptdishoptdishoptdish

eat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat dish
nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone

optdishoptdishoptdishoptdishoptdish eat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat meal

eat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat dish optdishoptdishoptdishoptdishoptdish
nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone optdishoptdishoptdishoptdishoptdish

nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone

nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone
ticktickticktickticktickticktickticktickticktickticktickticktick

actionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactions
actions(X)actions(X)actions(X)actions(X)actions(X) ticktickticktickticktickticktickticktickticktickticktickticktick personpersonpersonpersonperson
helphelphelphelphelphelphelphelphelp actionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactions

eat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat at

restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eateateateat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)

nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone

add edgeadd edgeadd edgeadd edgeadd edgeaddaddaddaddaddaddaddadd edgeadd edgeadd edgeadd edge
del edgedel edgedel edgedel edgedel edgedeldeldeldeldeldeldeldel edgedel edgedel edgedel edge

add edgeadd edgeadd edgeadd edgeadd edgeaddaddaddaddaddaddaddadd edgeadd edgeadd edgeadd edge
del edgedel edgedel edgedel edgedel edgedeldeldeldeldeldeldeldel edgedel edgedel edgedel edge

add edgeadd edgeadd edgeadd edgeadd edgeaddaddaddaddaddaddaddadd edgeadd edgeadd edgeadd edge
del edgedel edgedel edgedel edgedel edgedeldeldeldeldeldeldeldel edgedel edgedel edgedel edge

labelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabels
labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel

labelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabels add edgeadd edgeadd edgeadd edgeadd edgeaddaddaddaddaddaddaddadd edgeadd edgeadd edgeadd edge
labelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabels add edgeadd edgeadd edgeadd edgeadd edgeaddaddaddaddaddaddaddadd edgeadd edgeadd edgeadd edge
labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel labelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabels

labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel
labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel

ticktickticktickticktickticktickticktickticktickticktickticktick

optdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdish

optdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdish

optdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdish
optdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdish

actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X) personpersonpersonpersonpersonpersonpersonpersonpersonpersonperson
helphelphelphelphelphelphelp

meal(X)meal(X)

edgeedgeedgeedgeedgeedgeedge
edgeedgeedgeedgeedgeedge

edgeedgeedgeedgeedgeedgeedge
edgeedgeedgeedgeedgeedge

edgeedgeedgeedgeedgeedgeedge
edgeedgeedgeedgeedgeedge

edgeedgeedgeedgeedgeedgeedge
edgeedgeedgeedgeedgeedgeedge

Neural Datalog Through Time

with the meal.19 At the same time, the meal may select a
set of foods to eat, where each food U20 is in competition
with none21 to indicate that it may or may not be chosen:

6 :- eventgroup(optdish, 7).
7 :- event(eat dish, 0).
8 :- event(none, 0).
9 optdish(U) <<- eat meal(X),

food(U), opinion(X,U).
10 eat dish(U) <-- optdish(U).
11 none <-- optdish(U) : 0.

Recursive marks. Dependent events can recursively trig-
ger dependent events of their own, leading to a tree of
event tokens at time t. This makes it possible to model
the top-down generation of tree-structured metadata, such
as a syntactically well-formed sentence that describes the
event (Zhang et al., 2016). Observing such sentences in
training data would then provide evidence of the underly-
ing embeddings of the events. For example, to generate
derivation trees from a context-free grammar, encode each
nonterminal symbol as an event group, whose events are
the production rules that can expand that nonterminal. In
general, the probability of a production rule depends on the
sequence of production rules at its ancestors, as determined
by a recurrent neural net.

A special case of a tree is a sequence: in the meal exam-
ple, each dish could be made to generate the next dish until
the sequence terminates by generating none. The resulting
architecture precisely mimics the architecture of an RNN
language model (Mikolov et al., 2010).

Multiple agents. A final application of our model is in a
discrete-time setting where there are multiple agents, which
naturally leads to multiple simultaneous events. For exam-
ple, at each time step t, every person stochastically chooses
an action to perform (possibly none). This can be accom-
plished by allowing the tick event (Appendix A.5) to trig-
ger one group for each person:

1 :- eventgroup(actions, 7).
2 actions(X) <<- tick, person(X).
3 help(X,Y) <-- actions(X), rel(X,Y).

. . .

This is a group-wise version of rule 14 in the main paper.

A similar structure can be used to produce a “node classifi-

19Notice that the choice of event eat at(Y) depends on the
person X who is eating the meal, through the embedding of this
token of JrestaurantsK, which depends on Jeat meal(X)meal(X)K.

20Notice that the unnormalized probability of including U in X’s
meal depends on X’s opinion of U.

21The annotation : 0 in the last line (explained in Appendix B
below) is included as a matter of good practice. In keeping with
the usual practice in binary logistic regression, it simplifies the
computation of the normalized probabilities, without loss of gen-
erality, by ensuring that the unnormalized probability of none is
constant rather than depending on U.

cation” model in which each node in a graph stochastically
generates a label at each time step, based on the node’s cur-
rent embedding (Hamilton et al., 2017b; Xu et al., 2020).
The event group for a node contains its possible labels. The
graph structure may change over time thanks to exogeneous
or endogenous events.

Example. For concreteness, below is a fully generative
model of a dynamic colored directed graph, using several
of the extensions described in this appendix. The model can
be used in either a discrete-time or continuous-time setting.

The graph’s nodes and edges have embeddings, as do the
legal colors for nodes:

:- event(add edge, 8).
:- event(del edgeedge, 0).
add edge(U,V) :- node(U), node(V), !edge(U,V).
del edgeedge(U,V) :- edge(U,V).
edge(U,V) <- add edge(U,V).
!edge(U,V) <- del edgeedge(U,V).

Adding edge(U,V) to the graph causes two dependent
events that simultaneously and stochastically relabel both
U and V with new colors. This requires triggering two
event groups (unless U=V). A node’s new color C depends
stochastically on the embeddings of the node and its neigh-
bors, as well as the embeddings of the colors:

1

2

3

In this version, edges are stochastically added and removed
over time, one at a time. Any two unconnected nodes de-
termine through their embeddings the probability of adding
an edge between them, as well as the initial embedding of
this edge. The edge’s embedding may drift over time,22 and
at any time determines the edge’s probability of deletion.

:- eventgroup(labels, 8).
:- event(label, 8).
labels(U) <<- add edge(U,V).
labels(V) <<- add edge(U,V).
label(X,C) <-- labels(X), color(C), node(X),

edge(X,Y), node(Y).

4

5

6

7

8

9

10

11

12

13

14

:- embed(node, 8).
:- embed(edge, 4).
:- embed(color, 3).

Finally, here is how a relabeling event does its work.
The has color atoms that are updated here are simply
facts that record the current coloring, with no embedding.
However, the rules below ensure that a node’s embedding
records its history of colors (and that it has only one color
at a time):
15 !has color(U,D) <- label(U,C), color(D).
16 has color(U,C) <- label(U,C).
17 node(U) <- has color(U,C), color(C).

The initial graph at time t = 0 can be written down by
enumeration:

22In the continuous-time setting, the drift is learned. In the
discrete-time setting, we must explicitly specify drift as explained
in Appendix A.5, via a rule such as edge(U,V) <- tick.

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

actactactactactactactactactactactactactactactact
actactactactactactactactactactactactactactactact sleepsleepsleepsleepsleepsleepsleepsleepsleep
actactactactactactactactactactactactactactactact helphelphelphelphelphelphelphelphelp

actactactactactactactactactactactactactactactact
actactactactactactactactactactactactactactactact

sleepsleepsleepsleepsleepsleepsleep
helphelphelphelphelphelphelp

actactactactactactactactactactactactactactactact
helphelphelphelphelphelphelp

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp
actactactactactactactactactactactactactactactact

actactactactactactactactactactactactactactactact

act atact atact atact atact atact atact atact atact atact atact atact atact atact atact atact at actactactactactactactactactactactactactactactact

sleepsleepsleepsleepsleepsleepsleep
helphelphelphelphelphelphelp

sleepsleepsleepsleepsleepsleepsleepsleepsleep
helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelp

Neural Datalog Through Time

18

19

20

21

22

23

24

25

color(red).
color(green).
color(blue).
has color(0,red).
has color(1,blue)
has color(2,red).
node(U) :- has color(U,C).
edge(0,1) <- init.

Inheritance. As a convenience, we allow an event group to
be used anywhere that an event can be used—at the start of
the body of a rule of type (2a), (2b), or (13b). Such a rule
applies at times when the group is triggered (just as a rule
that mentions an event, instead of a group, would apply at
times when that event occurred).

This provides a kind of inheritance mechanism for events:
47 :- eventgroup(act, 5).
48 act(X) <<- sleep(X).
49 act(X) <<- help(X,Y), person(Y).

. . .
50 person(Y) <- act(X), parent(X,Y), person(Y).
51 animal(Y) <- act(X), own(X,Y), animal(Y).

This means that whenever X takes any action—sleep,
help, etc.—rules 50–51 will update the embeddings of X’s
children and pets.

Adopting the terminology of object-oriented programming,
act(eve) functions as a class of events (i.e., event type),
whose subclasses include help(eve,adam) and many oth-
ers. In this view, each particular instance (i.e., event to-
ken) of the subclass help(eve,adam) has a method that
returns its embedding in RDhelp . But rules 50–51 instead
view this help(eve,adam) event as an instance of the su-
perclass act(eve), and hence call a method of that super-
class to obtain the embedding of the group token act(eve)
in RDact = R5, as defined via equation (14).

In the above example, the event group is actually empty, as
there are no rules of type (13c) that populate it with depen-
dent events. Thus, no dependent events occur as a result of
the group being triggered. The empty event group is simply
used as a class. One could, however, add rules such as
52 act at(L) <-- act(X), location(L).

which marks each action (of any type) with a location.

B. Parameter Sharing Details
Throughout §3, the parameters W and β are indexed by
the rule number r. (They appear in equations (4) and (8).)
Thus, the number of parameters grows with the number of
rules in our formalism. However, we also allow further
flexibility to name these parameters with atoms, so that
they can be shared among and within rules.

This is achieved by explicitly naming the parameters to be

used by a rule:

head : beta :-

: bias vector

condit1 : matrix1,

. . .

conditN : matrixN .

Now βr in equation (4) is replaced by a scalar parameter
named by the atom beta. Similarly, the affine transfor-
mation matrix Wr in equation (4) is replaced by a param-
eter matrix that is constructed by horizontally concatenat-
ing the column vector and matrices named by the atoms
bias vector, matrix1, . . . , matrixN respectively.

To be precise, matrixi will have Dhead rows and Dconditi

columns. The computation (4) can be viewed as multiply-
ing this matrix by the vector embedding of the atom that
instiatiates conditi, yielding a vector in RDhead . It then
sums these vectors for i = 1, . . . , N as well as the bias
vector (also in RDhead), obtaining a vector in RDhead that it
provides to the pooling operator.

These parameter annotations with the : symbol are op-
tional (and were not used in the main paper). If any
of them is not specified, it is set automatically to be

thrule- and position-specific: in the r rule, beta de-
faults to params(r,beta), bias vector defaults to
params(r,bias), and matrixi defaults to params(r,i).

As shorthand, we also allow the form

head : beta :-

condit1, conditN :: full matrix.

where full matrix directly names the concatenation of
matrices that replaces Wr.

The parameter-naming mechanism lets us share parameters
across rules by reusing their names. For example, blessings
and curses might be inherited using the same parameters:

53 cursed(Y) :- cursed(X), parent(X,Y) :: inherit.
54 blessed(Y) :- blessed(X), parent(X,Y) :: inherit.

Conversely, to do less sharing of parameters, the parame-
ter names may mention variables that appear in the head
or body of the rule. In this case, different instantiations of
the rule may invoke different parameters. (beta is only al-
lowed to contain variables that appear in the head, because
each way of instantiating the head needs a single β to ag-
gregate over all the compatible instantations of its body.)

For example, we can modify rules 53 and 54 into
55 cursed(Y) : descendant(Y) :-

cursed(X), parent(X,Y) :: inherit(X,Y).
56 blessed(Y) : descendant(Y) :-

blessed(X), parent(X,Y) :: inherit(X,Y).

ticktickticktickticktickticktickticktickticktickticktickticktick

helphelphelphelphelphelphelphelphelp

harmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharm helphelphelphelphelphelphelp
harmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharm

helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

57

Neural Datalog Through Time

Now each X, Y pair has its own W matrix (shared by curses
and blessings), and similarly, each Y has its own β scalar.
This example has too many parameters to be practical, but
serves to illustrate the point.

If X or Y is an entity created by the * mechanism (Ap-
pendix A.4), then the name will be constructed using a lit-
eral *, so that all newly created entities use the same pa-
rameters. This ensures that the number of parameters is
finite even if the number of entities is unbounded. As a
result, parameters can be trained by maximum likelihood
and reused every time a sequence is sampled, even though
different sequences may have different numbers of entities.
Although novel entities share parameters, facts that differ
only in their novel entities may nonetheless come to have
different embeddings if they are created or updated in dif-
ferent circumstances.

The special parameter name 0 says to use a zero matrix:
cursed(Y) : descendant :-

: inherit bias,
cursed(X) : inherit,
parent(X,Y) : 0.

In this example, the condition parent(X,Y) must still be
non-null for the rule to apply, but we ignore its embedding.

C. Updating Drift Functions in the
Continuous-Time LSTM

Here we give the details regarding continuous-time
LSTMs, which were omitted from §3.3 due to space lim-
itations. We follow the design of Mei & Eisner (2017), in
which each cell changes endogenously between updates, or
“drifts,” according to an exponential decay curve:

def
c(t) = c̄+ (c − c̄) exp(−δ(t − s)) where t > s (16)

This curve is parameterized by (s, c, ̄c, δ), where

• s is a starting time—specifically, the time when the
parameters were last updated

• c is the starting cell value, i.e., c(s) = c

• c̄ is the asymptotic cell value, i.e., limt→∞ c(t) = c̄

• δ > 0 is the rate of decay toward the asymptote; notice
that the derivative c0(t) = δ · (c̄ − c)

In the present paper, we similarly need to define the trajec-
tory through RDh of the cell block h associated with fact
h. That is, we need to be able to compute h (t) ∈ RDh

The same mechanism can be used to name the parameters for any t. Since h is not a single cell but rather a block
of <- rules. In this case, event at the start of the body can of Dh cells, it actually needs to store not 4 parameters as
also be annotated, as event : matrix0. The horizontal above, but rather 1+3Dh parameters. Specifically, it stores
concatenation of named matrices now includes the matrix s ∈ R, which is the time that the block’s parameters were
named by matrix0, and is used to replace Wr in equa- last updated: this is shared by all cells in the block. It also
tion (8). stores vectors that we refer to as h c

, c̄h , h δ ∈ RDh .
Now analogously to equation (16), we define the trajectoryFor a <- rule, it might sometimes be desirable to allow finer-
of the cell block elementwise:grained control over how the rule affects the drift of a cell

block over time (see equation (17) in Appendix C below).
For example, forcing f = 1 and i = 0 in equation (18)

h (t)
def
= c̄h + (h c − c̄h) exp(− h δ · (t − s)),

(17)
ensures via equation (19) that when the rule updates h, it
will not introduce a discontinuity in the h (t) function, for all t > s (up to and including the time of the next event
although it might change the function’s asymptotic value
and decay rate. (This might be useful for the tick rules
mentioned in footnote 17, for example.) Similarly, forc-
ing f̄ = 1 and ī = 0 in equation (18) ensures via equa-
tion (20) that the rule does not change the asymptotic value
of the h (t) function. These effects can be accomplished
by declaring that certain values are ±∞ in the first column
of Wr in equation (8) (as this column holds bias terms).
We have not yet designed a syntax for such declarations.

that results in updating the block’s parameters).

We now describe exactly how the block’s parameters are
updated when an event occurs at time s. Recall that for the

-discrete-time case, for each (r, m), we obtained [h]< ∈rm

R3Dh
defby evaluating (8) at time s. We then set (f ; i; z) =

-σ([h]<). In the continuous-time case, we evaluate (8) atrm
-time s to obtain [h]< ∈ R7Dh (so Wr needs to have morerm

rows), and accordingly obtain 7 vectors in (0, 1)Dh ,

def -
We can also name the softplus temporal scale parameter τ (f ; i; z; f̄ ; ̄i; z̄; d) = σ([h]rm

<) (18)
in §3.2. For example, we can rewrite rule 13 of §2.4 as which we use similarly to equation (11) to define update

:- event(help, 8) : intervene. vectors for the current cell values (time s) and the asymp-
and allow harm to share τ with help: totic cell values (time ∞), respectively

:- event(harm, 8) : intervene.
[h]Δc def

rm h (s) + i · (2z − 1) (19)(f − 1) ·=
def
= (f̄ − 1) · c̄h + ̄i · (2z̄ − 1) (20)c̄[h]Δ

rm

58

59

��� ���
��� ������ ���

�� �� �� ���� ��

��� ���

��� ���

��� ���

Neural Datalog Through Time

as well as a vector of proposed decay rates:23
+ h c̄ − h c (25)

def ∈ RDh[h]δ = softplus1(σ
−1(d)) (21)rm >0 The following remarks should be read elementwise, i.e.,

consider a particular cell i, and read each vector x as refer-We then pool the update vectors from different (r, m) and
ring to the scalar (x)i.apply this pooled update, much as we did for the discrete-

time cell values in equations (9)–(11): The weights defined in equation (25) are valid weights toX Lβr use for the weighted harmonic mean (24):defh c
[h]Δc (22)rm h (s) + =

m rX ≥ 0, because of the use of absolute value. Lβr
• wrm def

=h c̄ h c̄
+ [h]Δ

rm
c̄ (23)

c̄h = ch . Thus, the decay > 0 strictly unless • wrm m r

h δ as defined by equation (24) can only be un-The special cases mentioned just below the update (9) are rate
c̄h = chdefined (that is, 0) if 0 , in which case thatalso followed for the updates (22)–(23).

decay rate is irrelevant anyway.
h δ . ItThe final task is to pool the decay rates to obtain

is less obvious how to do this in a natural way. Our basic The way to understand the first line of equation (25) is as
idea is that for the ith cell, we should obtain the decay rate a heuristic assessment of how much the cell’s curve (16)
(h δ)i

Δcby a weighted harmonic mean of the decay rates was affected by (r, m) via [h]rm’s effect on� � h c . First of
([h]δ)i that were proposed by different (r, m) pairs. Arm Lβr Δcall, [h] is the pooled magnitude of all of the given (r, m) pair should get a high weight in this harmonic rm0

m0
Δcmean to the extent that it contributed large updates ([h]rm)i rth rule’s attempts to affect h c . Using the absolute value

)i. ensures that even if large-magnitude attempts of opposing or ([h]Δ
rm
c̄

sign canceled each other out in equation (22), they are stillWhy harmonic mean? Observe that the exponential decay
counted here as large attempts, and thus give the rth rule acurve (16) has a half-life of ln 2 . In other words, at any mo-δ h δstronger total voice in determining the decay rate . Thisment t, it will take time ln 2 for the curve to travel halfway δ

from its current value c(t) to c̄. (This amount of time is
independent of t.) Thus, saying that the decay rate is a
weighted harmonic mean of proposed decay rates is equiv-
alent to saying that the half-life is a weighted arithmetic
mean of proposed half-lives,24 which seems like a reason-
able pooling principle.

pooled magnitude for the rth rule is then partitioned among
the attempts (r, m). In particular, the fraction in the first
line denotes the portion of the rth rule’s pooled effect on
h c that should be heuristically attributed to (r, m) specif-

ically, given the way that equation (22) pooled over all m
(recall that this invokes equation (6a)).

Thus, the first line of equation (25) considers the effect of Thus, operating in parallel over all cells i by performing
(r, m) on c. The second line adds its effect on c̄. The third the following vector operations elementwise, we choose
line effectively acts as smoothing so that we do not pay un-�P P �−1 · ([h]δ)−1

rm due attention to the size ratio among different updates ifdef r m wrm
= P Ph δ (24)

We define the vector of unnormalized non-negative weights

these updates are tiny. In particular, if all of the updates wrm r m Δc
[h] c̄and [h]Δ

rm are small compared to the total heightrm

of the curve, namely c̄h − ch , then the third line will c̄hfrom the updated h c and values by wrm

βr
dominate the definition of the weights wrm, making them � � Δc

[h]rm close to uniform. The third line is also what prevents inap-
def Lβr Δc

wrm = [h]rm0 · P βr
propriate division by 0 (see the second bullet point above).

m0 Δc
[h]m0 rm0

D. Likelihood Computation Details � � βrLβr

c̄[h]Δ
rm P+ 0 · In this section we discuss the log-likelihood formulas in §4.

c̄[h]Δ
rm βrc̄[h]Δ

m0 rm0
0m

23Equation (21) simply replaces the σ that produced d with
softplus1 (defined in §3.2), since there is no reason to force decay
rates into (0, 1).

24It is also equivalent to saying that the (2/3)-life is a weighted
arithmetic mean of proposed (2/3)-lives, since equation (16) has
a (2/3)-life of ln 3 . In other words, there is nothing special about

δ
the fraction 1/2. Any choice of fraction would motivate using the
harmonic mean.

For the discrete-time setting, the formula simply follows
from the fact that the log-probability of event e at time t
was defined to be log (λe(t)/λ(t)).

The log-likelihood formula (12) for the continuous-time
case has been derived and discussed in previous work
(Hawkes, 1971; Liniger, 2009; Mei & Eisner, 2017). In-
tuitively, during parameter training, each log λei (ti) is

helphelphelphelphelphelphelp

helphelphelphelphelphelphelp
helphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp

helphelphelphelphelphelphelphelphelp
helphelphelphelphelphelphelphelphelp

Neural Datalog Through Time

increased to explain why ei happened at time ti whileR T
λ(t)dt is decreased to explain why no event of any

t=0
possible type e ∈ E(t) ever happened at other times. Note
that there is no log under the integral in equation (12), in
contrast to the discrete-time setting.

As discussed in §4, the integral term in equation (12) is
computed using the Monte Carlo approximation detailed
by Algorithm 1 of Mei & Eisner (2017), which samples
times t.

However, at each sampled time t, that method still requires
a summation over all events to obtain λ(t). This summation
can be expensive when there are many event types. Thus,
we estimate the sum using a simple downsampling trick,
as follows. At any time t that is sampled to compute the
integral, let E(t) be the set of possible event types under
the database at time t. We construct a bag E 0(t) by uni-
formly sampling event types from E(t) with replacement,
and estimate

|E| X
λ(t) ≈ λe(t)|E 0|

e∈E0

This estimator is unbiased yet remains much less expen-
sive to compute especially when |E 0| � |E|. In our exper-
iments, we took |E 0| = 10 and still found empirically that
the variance of the log-likelihood estimate (computed by
running multiple times) was rather small.

Another computational expense stems from the fact that we
have to make Datalog queries after every event to figure out
the proof DAG of each provable Datalog atom. Queries can
be slow, so rather than repeatedly making a given query,
we just memoize the result the first time and look it up
when it is needed again (Swift & Warren, 2012). How-
ever, as events are allowed to change the database, results
of some queries may also change, and thus the memos
for those queries become incorrect (stale). To avoid er-
rors, we currently flush the memo table every time the
database is changed. This obviously reduces the usefulness
of the memos. An implementation improvement for future
work is to use more flexible strategies that create memos
and update them incrementally through change propaga-
tion (Acar & Ley-Wild, 2008; Hammer, 2012; Filardo &
Eisner, 2012).

E. How to Predict Events
Figures 2 and 4 include a task-based evaluation where we
try to predict the time and type of the next event. More pre-
cisely, for each event in each held-out sequence, we attempt
to predict its time given only the preceding events, as well
as its type given both its true time and the preceding events.

These figures evaluate the time prediction with average
L2 loss (yielding a root-mean-squared error, or RMSE)

and evaluate the argument prediction with average 0-1 loss
(yielding an error rate).

To carry out the predictions, we follow Mei & Eisner
(2017) and use the minimum Bayes risk (MBR) principle
to predict the time and type with lowest expected loss. To
predict the ith event:

• Its time ti has density pi(t) = R t R ∞
λ(t) exp(− λ(t0)dt0). We choose tpi(t)dt ti−1 ti−1

as the time prediction because it has the lowest
expected L2 loss. The integral can be estimated using
i.i.d. samples of ti drawn from pi(t) as detailed in
Mei & Eisner (2017) and Mei et al. (2019).

• Since we are given the next event time ti when pre-
dicting the type ei,25 the most likely type is simply
arg maxe∈E(ti) λe(ti).

Notice that our approach will never predict an im-
possible event type. For example, help(eve,adam)
won’t be in E(ti) and thus will have zero probability if
Jrel(eve,adam)K(ti) = null (maybe because eve stops
having opinions on anything that adam does anymore).

In some circumstances, one might also like to predict the
most likely type out of a restricted set E 0(ti) (E(ti). This
allows one to answer questions like “If we know that some
event help(eve,Y) happened at time ti, then which per-
son Y did eve help, given all past events?” The answer
will simply be arg maxe∈E0(ti) λe(ti).

As another extension, Mei et al. (2019) show how to predict
missing events in a neural Hawkes process conditioned on
partial observations of both past and future events. They
used a particle smoothing technique that had previously
been used for discrete-time neural sequence models (Lin
& Eisner, 2018). This technique could also be extended to
neural Datalog through time (NDTT):

• In particle filtering, each particle specifies a hypoth-
esized complete history of past events (both observed
and missing). In our setting, this provides enough in-
formation to determine the set of possible events E(t)
at time t, along with their embeddings and intensities.

• Neural particle smoothing is an extension where the
guess of the next event is also conditioned on the
sequence of future events (observed only), using a
learned neural encoding of that sequence. In our set-
ting, it is not clear what embeddings to use for the
future events, as we do not in general have static
embeddings for our event types, and their dynamic

25Mei & Eisner (2017) also give the MBR prediction rule for
predicting ei without knowledge of its time ti.

helphelphelphelphelphelphelp

eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee
is eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis event

eeeeeeeeeeeeeeee is eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis eventis event

releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

helphelphelphelphelphelphelphelphelp

Neural Datalog Through Time

embeddings cannot yet be computed at time t. We
would want to learn a compositional encoding of fu-
ture events that at least respects their structured de-
scriptions (e.g., help(eve,adam)), and possibly also
draws on the NDTT program and its parameters in
some way. We leave this design to future work.

F. Experimental Details
F.1. Dataset Statistics

Table 1 shows statistics about each dataset that we use in
this paper (§6).

F.2. Details of Synthetic Dataset and Models

We synthesized data for §6.1 by sampling event sequences
from the structured NHP specified by our Datalog program
in that section. We chose N = 4 and M = 4, 8, 16, and
thus end up with three different datasets.

For each M , we set the sequence length I = 21 and
then used the thinning algorithm (Mei & Eisner, 2017; Mei
et al., 2019) to sample the first I events over [0, ∞). We set
T = tI , i.e., the time of the last generated event. We gen-
erated 2000, 100 and 100 sequences for each training, dev
and test set respectively. We showed the learning curves for
M = 8 and 16 in Figure 1 and left out the plot for M = 4
because it is boringly similar.

For the unstructured NHP baseline, the program given in
§6.1 is not quite accurate. To exactly match the architecture
of Mei & Eisner (2017), we have to use the notation of
Appendix B to ensure that each of the MN event types uses
its its own parameters for its embedding and probability:

1 is process(1). 3 is type(1).
.

2 is process(M). 4 is type(N).

5

6

7

8

:- embed(world, 8).
:- embed(is event, 8).
:- event(e, 0).
is event(M,N) :-

is process(M), is type(N)
:: emb(M,N).

9 e(M,N) :-
world, is process(M), is type(N)
:: prob(M,N).

10 world <- init.
11 world <- e(M,N), is event(M,N), world.

As §6.1 noted, an event’s probability is carried by an e fact,
but its embedding is carried by an is event fact. This is
because the NHP uses dynamic event probabilities (which
depend on world) but static event embeddings (which do
not). Otherwise, we could merge the two by using dimen-
sion 8 for e in rule 7, and removing is event by deleting
it from rule 11 and deleting rules 6 and 8.

F.3. Details of IPTV Dataset and our NDTT Model

For the IPTV domain, the time unit is 1 minute. Thus, in
the graph for time prediction, an error of 1.5 (for example)
means an error of 1.5 minutes. The exogenous release
events were not included in the dataset of Xu et al. (2018),
but Xu et al. (p.c.) kindly provided them to us.

For our experiments in §6.2, we used the events of days 1–
200, days 201–220, and days 221–240 as training, dev and
test data respectively—so there is just one long sequence in
each case. (We saved the remaining days for future experi-
ments.)

We evaluated the ability of the trained model to extrapolate
from days 1–200 to future events. That is, for dev and test,
we evaluated the model’s predictive power on the held-out
dev and test events respectively. However, when predicting
each event, the model was still allowed to condition on the
full history of that event (starting from day 1). This full
history was needed to determine the facts in the database,
their embeddings, and the event intensities.

Each observed event has one of the forms
1 init
2 release(P)
3 watch(U,P)

For example, watch(u4,p49) occurs whenever user u4
watches television program p49.

The dataset also provides time-invariant facts of the form
4 has tag(P,T)

which tag programs with attributes.26 For example:
5 has tag(p1,comedy).

. . .
6 has tag(p49,romance).

We develop our NDTT program as follows. A television
program is added to the database only when it is released:

7 program(P) <- release(P).

Now that P is a program, it can be watched:
8 watch(U,P) := user(U), program(P).

The probability of a watch event depends on the current
embeddings of the user and the program:

9 embed(user, 8).
10 embed(program, 8).

Of course, we have to declare that ‘watch’ is an event:
11 event(watch,8).

Notice that we equipped watch with a 8-dimensional em-
bedding as well as a probability. The embedding encodes
some details of the event (who watched what). This de-
tailed watch event then updates what we know about both
the user and the program, in order to predict future watch

26Users could also have tags, to record their demographics or
interests. However, the IPTV dataset does not provide such tags.

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

Neural Datalog Through Time

DATASET |K| # OF EVENT TOKENS

TRAIN DEV TEST

OF SEQUENCES

TRAIN DEV TEST

SYNTHETIC M = 4 16 42000 2100 2100 2000 100 100
SYNTHETIC M = 8 32 42000 2100 2100 2000 100 100
SYNTHETIC M = 16 64 42000 2100 2100 2000 100 100
IPTV 49000 27355 4409 4838 1 1 1
ROBOCUP 528 2195 817 780 2 1 1

Table 1. Statistics of each dataset.

events:
12 user(U) <- watch(U,P).
13 program(P) <- watch(U,P).

The := connector in rule 8 requested highway connections
around watch (Appendix A.3), so these update rules 12
and 13 not only consider Jwatch(U,P)K but also directly
consider Juser(U)K and Jprogram(P)K. This is similar to
a traditional LSTM update, and in our initial pilot experi-
ments we found it to work better than simply using :- in
rule 8.

Where do the user facts come from? Rule 12 would auto-
matically add user(U) to the database upon the first time
they watched a program. But such an event watch(U,P) is
not itself possible (rule 8) until user(U) is already in the
database. To break this circularity, we must populate the
database with users in advance.

If we simply declared these users as
14 user(u1).
15 user(u2).

. . .

then the model would include separate parameters for each
of these rules. However, fitting user-specific parameters
would be hard for users who have only a small amount of
data. Instead, we make all the user rules share parameters
(see Appendix B):

16 user(u1) :: user init.
17 user(u2) :: user init.

. . .

Thus, all users start out in the same place,27 and a users
embedding only depends entirely on programs that theyve
watched so far. An update to the user’s embedding (rule 12)
could be either material or epistemic: that is, it may re-
flect actual changes over time in the user’s taste, or merely
changes in our knowledge of the user’s taste. Ultimately,
the training procedure learns whatever updates help the
model to better predict the user’s future watch events.

27We suspect that it would have been adequate for that initial
user embedding to be the 0 vector, which we could have specified
by writing :: 0 instead of :: user init. That is how we treated

There is one more subtlety regarding user embeddings. In
the program above, user(u1) is true at all times, but is
“launched” (in the sense of §3.3) only by the first event of
the form watch(u1,P). Thus, we learn nothing about the
user from the fact that time has elapsed without their having
yet watched any programs: they do not yet have a cell block
that can drift to track the passage of time. To fix this, we
add the following rule so that all users are simultaneously
launched at time 0 by the exogenous init event:

18 user(U) <- init, user(U).

This ensures that the user has an LSTM cell block starting
at time 0, which can drift to mark the passage of time even
before the user has watched any programs. This rule for
users is analogous to rule 7 for programs.

Where do the program facts come from? We declare them
much as we declared the user facts:28

19 program(p1) :: 0.
20 program(p2) :: 0.

. . .

However, a program’s embedding should also be affected
by its tags:29

21 program(P) :- has tag(P,T), tag(T).

where each tag is declared separately:
22 embed(tag, 8).
23 tag(adventure).
24 tag(comedy).

. . .

Note that the rules like 23 and 24 introduce tag-specific pa-
rameters. For example, the bias vector of rule 23 provides
an embedding of the adventure tag. As each tag has a lot
of data, these tag-specific parameters should be easier to
learn than user-specific parameters.

The initial embedding of a tag is then affected by who
watches programs with that tag, and when. In other words,

28Actually, if p1 has at least one tag, then we can omit rule 19
because rule 21 below will be enough to prove that p1 is a pro-
gram. In the IPTV dataset, every program does have at least one
tag, so we omit all rules like 19, which do not affect the facts or
their embeddings.

programs in this model (rule 19 below), and how we treated both 29Recall that facts like has tag(p1,comedy) were declared in
users and programs in Appendix F.4. We regret the discrepancy. the initial database, have no embeddings, and never change.

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

releasedreleasedreleasedreleasedreleasedreleasedreleasedreleasedreleasedreleasedreleasedreleasedreleasedreleasedreleasedreleased

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease
initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

Neural Datalog Through Time

Whereas a watch fact in Appendix F.3 carried both a prob-
ability and an embedding, here we split off the embed-
ding into a separate fact and compute it differently from
the probability, to be more similar to Trivedi et al. (2017):

just as the watch events update our understanding of indi-
vidual users, they also track how the meaning of each tag
changes over time:

25 tag(T) <- init, tag(T).
26 tag(T) <- watch(U,P), has tag(P,T), tag(T).

As before, these updates are rich because the watch event
has an embedding and also supplies highway connections.

We finish with a final improvement to the model. Above,
program(P) is affected both by P’s tags via the :- rule 21
and by its history of watch events via the <- rule 13. The
NDTT equations would simply add these influences via
rule (7). Instead, we edit the program to combine these
influences nonlinearly. This gives a deeper architecture:

27 program(P) :-
program profile(P), program history(P).

28 program profile(P) :- has tag(P,T), tag(T).
29 program history(P) <- release(P).
30 program history(P) <-

watch(U,P), user(U), program(P).

where rules 28–30 replace rules 21, 7, and 13 respectively.

In principle, facts with different functors can be embedded
in vector spaces of different dimensionality, as needed. But
in all of our experiments, we used the same dimensionality
for all functors, so as to have only a single hyperparameter
to tune. If the hyperparameter were 8, for example, our
Datalog program would have the declarations

31 :- embed(user, 8).
32 :- embed(program, 8).
33 :- embed(profile, 8).
34 :- embed(released, 0).
35 :- embed(watchhistory, 8).
36 :- embed(tag, 8).
37 :- event(watch, 8).

where watch has an extra dimension for its intensity. The
hyperparameter tuning method and its results are described
in Appendix F.7 below.

F.4. Baseline Programs on IPTV Dataset

We also implemented baseline models that were inspired
by the Know-Evolve (Trivedi et al., 2017) and DyRep
(Trivedi et al., 2019) frameworks. Our architectures are
not identical: for example, our rule 3 below models each
event probability using a feed-forward network in place of
a bilinear function. However, Trivedi (p.c.) agrees that the
architectures are similar. Note that these prior papers did
not apply their frameworks specifically to the IPTV dataset
(nor to RoboCup).

The Know-Evolve and DyRep programs specify the same
user, program, and has tag facts as in Appendix F.3, ex-
cept that the initial embedding user init is fixed to 0 (see
footnote 27).

The Know-Evolve program continues as follows.

1

2

3

4

:- event(watch, 0).
:- embed(watch emb, 8).
watch(U,P) :- user(U), program(P).
watch emb(U,P) :-

user(U) : pair, program(P) : pair.

Notice that rule 4 in effect multiplies the sum Juser(U)K+
Jprogram(P)K by the pair matrix before applying tanh.

The cell blocks are now launched and updated as follows:
5

6

7

8

Of
or

user(U) <- init, user(U).
program(P) <- init, program(P).
user(U) <- watch(U,P), watch emb(U,P).
program(P) <- watch(U,P), watch emb(U,P).

course, when the embedding of user(U)
program(P) is updated, the embedding of

watch emb(U,P) also changes to reflect this.

What are the differences from Appendix F.3? Since Trivedi
et al. (2017) did not support changes over time to the set of
possible events, we omitted this feature from our Know-
Evolve program above. Specifically, the program does not
use the release events in the dataset—it treats all pro-
grams as having been released by init at time 0. The pro-
gram also has no highway connections, nor the deeper ar-
chitecture at rules 27–30 of Appendix F.3, and it does not
make use of the program tags.

Our DyRep version of the program makes a few changes
to follow the principles of (Trivedi et al., 2019). The main
ideas of DyRep are as follows:

• Entities are represented as nodes in a graph (here: pro-
grams, users, and tags).

• Each node has an embedding.
• The properties of an entity are represented by la-

beled edges that link it to other nodes (here:
has tag(P,T)).

• The graph structure can change due to exogenous
forces (see rule 9 below).

• Any pair of entities can communicate at any time.
(These communications are the events in our temporal
event sequences, such as watch(U,P).)

• The probability of an event depends on the em-
beddings of the two nodes that communicate (here:
rule 3).

• When an event occurs, it updates the embeddings of
(only) the two nodes that communicate (see rules 10
and 11 below).

• An update to a node’s embedding also considers the
embeddings of its neighbors in the graph (see rule 12
below).

releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch

kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff
kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick
goalgoalgoalgoalgoalgoalgoalgoalgoal
passpasspasspasspasspasspasspasspass
stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal
initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff

kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff
kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff
kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

passpasspasspasspasspasspasspasspass
passpasspasspasspasspasspasspasspass
passpasspasspasspasspasspasspasspass

goalgoalgoalgoalgoalgoalgoalgoalgoal

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

goalgoalgoalgoalgoalgoalgoal
passpasspasspasspasspasspass

passpasspasspasspasspasspass
passpasspasspasspasspasspass
passpasspasspasspasspasspass

goalgoalgoalgoalgoalgoalgoal

Neural Datalog Through Time

Thus, we replace rules 6–8 above with
9 program(P) <- release(P).

10 user(U) <- watch(U,P), user(U) :: event.
11 program(P) <- watch(U,P), program(P) :: event.

Thus, DyRep now permits the set of watchable programs
(nodes) to change over time, but the user and program
updates are less well-informed than in Know-Evolve: the
updates to the user embedding no longer look at the current
program embedding, nor vice-versa.30 Indeed, DyRep no
longer uses watch emb and can drop rule 4.

Where our Know-Evolve program did not use tags, our
DyRep program can encode tags using has tag edges.
Thus, when a program P is watched, the update to the pro-
gram’s embedding depends in part on its tags:
12 program(P) <-

watch(U,P), tag(T), has tag(P,T).

The embedding Jtag(T)K is defined as in our full model
of Appendix F.3, except that it is now static (except for
drift). It is no longer updated by watch events, because the
watch(U,P) event only updates U and P. In contrast, the
Datalog rule 26 in Appendix F.3 was able to draw T into the
computation by joining watch(U,P) to has tag(P,T).

F.5. Details of RoboCup Dataset and our NDTT Model

For the RoboCup domain, the time unit is 1 second. Thus
thus in the graph for time prediction, an error of 1.5 (for
example) means an error of 1.5 seconds.

For our experiments in §6.2, we used Final 2001 and 2002,
Final 2003, and Final 2004 as training, dev, and test data re-
spectively. Each sequence is a single game and each dataset
contains multiple sequences.

Each observed event has one of the forms
1 kickoff(P)
2 kick(P)
3 goal(P)
4 pass(P,Q)
5 steal(Q,P)
6 init

which we will describe shortly. The database also contains
facts about the teams. There are 2 teams, each with 11 robot
players. Any pair of players P and Q are either teammates
or opponents:

7 teammate(P,Q) :-
in team(P,T), in team(Q,T), not eq(P,Q).

8 opponent(P,Q) :-
in team(P,T), in team(Q,S), not eq(T,S).

30To allow better-informed updates within the DyRep formal-
ism, we could have included edges between all users and all pro-
grams. But then every update would depend on all users and all
programs—which is exactly the “everything-affects-everything”
problem that our paper aims to cure (§1)!

These relations are induced using the database facts
9 in team(a1,a).

. . .
10 in team(a11,a).
11 in team(b1,b).

. . .
12 in team(b11,b).

together with an inequality relation on entities, not eq,
which can be spelled out with a quadratic number of addi-
tional facts if the Datalog implementation does not already
provide it as a built-in relation:
13

14

not eq(a1, a2).
not eq(a1, a3).

% players

. . .
15

16

17

not eq(b11, b10).
not eq(a, b).
not eq(b, a).

% teams

We allow the ball to be in the possession of either a specific
player, or a team as a whole. A game starts with team a
taking possession of the ball:31

18 has ball(a) <- init.

A random player P in team a now assumes possession of
the ball, taking it from the team as a whole.32 This is
called a kickoff event, although in RoboCup—unlike hu-
man soccer—P does not kick the ball off into the distance
but retains it.

kickoff(P) :- in team(P,T), has ball(T).
!has ball(T) <- kickoff(P), in team(P,T).
has ball(P) <- kickoff(P).

Thereafter, the player who has possession of the ball can
kick it to a nearby location while retaining possession
(“dribbling”),
22 kick(P) :- has ball(P).

or can pass the ball to a teammate,

19

20

21

23

24

25

pass(P,Q) :- has ball(P), teammate(P,Q).
!has ball(P) <- pass(P,Q).
has ball(Q) <- pass(P,Q).

or can score a goal,
26 goal(P) :- has ball(P).

Scoring a goal instantly updates the database to transfer the
ball to the other team,

31It is a convention in the IPTV dataset that team a is the one
that takes possession first. If the starting team were decided by
a coin flip, then we would use the “event groups” extension in
Appendix A.6 to decide whether init causes has ball(a) or
has ball(b). This would allow us to learn the weight of the
coin (for example, on the IPTV dataset, we would learn that the
coin always chooses team a); or if we knew it was a fair coin, we
could model that by declaring that certain parameters are 0.

32Notice that in our program, the possible kickoff events all
have equal intensity, leading to a uniform distribution over players
a1, . . . , a11. We will learn that this intensity is high, since the
kickoff happens at a time close to 0.

goalgoalgoalgoalgoalgoalgoalgoalgoal
goalgoalgoalgoalgoalgoalgoalgoalgoal

stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal
stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal
stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

passpasspasspasspasspasspass stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit
initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff
kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick
goalgoalgoalgoalgoalgoalgoalgoalgoal
passpasspasspasspasspasspasspasspass
passpasspasspasspasspasspasspasspass

stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal
stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspasspasspass

stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

goalgoalgoalgoalgoalgoalgoal
goalgoalgoalgoalgoalgoalgoal

passpasspasspasspasspasspasspasspass

goalgoalgoalgoalgoalgoalgoal
passpasspasspasspasspasspass
passpasspasspasspasspasspass

passpasspasspasspasspasspass

passpasspasspasspasspasspass

Neural Datalog Through Time

27 !has ball(P) <- goal(P).
28 has ball(S) <- goal(P), in team(P,T),

not eq(T,S).

after which someone in the other team can kick off the ball
and continue the game. When a player P has the ball, a
player Q in the other team can steal it:
29 steal(Q,P) :- has ball(P), opponent(P,Q).
30 !has ball(P) <- steal(Q,P).
31 has ball(Q) <- steal(Q,P).

In our experiments, we got the best results by declaring
non-zero embeddings of both teams and players, such as

32 :- embed(team, 8).
33 :- embed(player, 8).

Since there are only two teams, the embeddings of the two
teams jointly serve as a kind of global state—but one that
may be smaller than the global state we would use for a
simple NHP model. In our actual experiments (§6.2), hy-
perparameter search (Appendix F.7) chose 32-dimensional
NDTT embeddings, giving a total of 64 dimensions for
the pair of teams. In contrast, it chose a 128-dimensional
global state for the simple NHP baseline model.

Ideally, we would like the embedding Jplayer(P)K to
track our probability distribution over the state of the robot
player, such as its latent position on the field and its latent
energy level. We would also like the embedding of a team
to track our probability distribution over the state of the
team and the latent position of the ball. We do not observe
these latent properties in our dataset. However, they cer-
tainly affect the progress of the game. For example, if two
players pass or steal, they must be near each other; so if
we have pass(P,Q) and steal(R,Q) nearby in time, then
by the triangle inequality, P and R must be close together,
which raises the probability of steal(P,R). Changes in
the mean and variance of these probability distributions
are then tracked by updates and drift of the embeddings,
with the variance generally decreasing when an event oc-
curs (because it gives information) and increasing between
events (because uncertainty about the latent changes accu-
mulates over time, as in a drunkards walk).

The team and player embeddings are launched at time 0
using the exogenous init event:
34 team(T) <- init, in team(P,T).
35 player(P) <- init, in team(P,T).

A players embedding is updated whenever that player par-
ticipates in an event. We elected to reduce the number of
parameters by sharing parameters not only across players,
but also across similar kinds of events (this was also done
by the prior work DyRep).

36 player(P) <- kickoff(P) :: individual.
37 player(P) <- kick(P) :: individual.
38 player(P) <- goal(P) :: individual.
39 player(P) <- pass(P,Q) :: individual agent.
40 player(Q) <- pass(P,Q) :: individual patient.

41 player(Q) <- steal(Q,P) :: individual agent.
42 player(P) <- steal(Q,P) :: individual patient.

The parameter sharing notation was explained in Ap-
pendix B. The above rules use the linguistic names “agent”
and “patient” to refer to the player who acts and the player
who is acted upon, respectively.

A teams embedding is also updated when any player acts.
We could have done this by saying that the teams embed-
ding pools over all of its players, so it is updated when they
are updated,
43 team(T) :- player(P), in team(P,T)

but instead we directly updated the team embeddings us-
ing update rules parallel to the ones above. For example,
rule 37 also has a variant that affects not the player P that
kicked the ball, but that player’s team T, as well as a second
variant that affects the opposing team.
44 team(T) <-

kick(P), in team(P,T) :: team.
45 team(S) <-

kick(P), in team(P,T), not eq(T,S)
:: team other.

We similarly have variants of rules 39–42:
46 team(T) <-

pass(P,Q), in team(P,T)
:: team agent.

47 team(S) <-
pass(P,Q), in team(P,T), not eq(T,S)
:: team nonagent.

48 team(T) <-
steal(P,Q), in team(P,T)
:: team agent.

49 team(S) <-
steal(P,Q), in team(P,T), not eq(T,S)
:: team nonagent.

Here “non-agent” refers to the team that does not contain
the agent (in the case of rule 47, it does not contain the
patient either).

Finally, we can improve the model by enriching the de-
pendencies. Earlier, we embedded the kick event using
rule 22, repeated here:
50 kick(P) :- has ball(P).

But then the probability that robot player P kicks at time t
(if it has the ball) would be constant with respect to both
P and t. We want to make this probability sensitive to the
states at time t of the player P, the players team T, and the
other team S. So we modify the rule to add those facts as
conditions (in blue):

51 kick(P) :=
has ball(P), player(P), team(T), team(S),
in team(P,T), not eq(T,S).

Because this rule uses := to request highway connections,
all three of these states will also be consulted directly when
a kick(P) event updates the states of player P and both

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

passpasspasspasspasspasspasspasspass

kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff
kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick
goalgoalgoalgoalgoalgoalgoalgoalgoal
passpasspasspasspasspasspasspasspass
stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick goalgoalgoalgoalgoalgoalgoal

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

passpasspasspasspasspasspasspasspass stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick
passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspass
kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspass stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

passpasspasspasspasspasspass
stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspass

goalgoalgoalgoalgoalgoal
passpasspasspasspasspass

goalgoalgoalgoalgoalgoalgoalgoalgoal

passpasspasspasspasspasspass

passpasspasspasspasspass

passpasspasspasspasspasspasspasspass

passpasspasspasspasspass

passpasspasspasspasspass

passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspasspass

passpasspasspasspasspass

passpasspasspasspasspass

Neural Datalog Through Time

teams (via rules 22, 44 and 45). To deepen the network, we
further give the event kick(P) its own embedding, which
is a nonlinear combination of all of these states, and which
is also consulted when the event causes an update.
52 :- event(kick,8).

We handle the other event types similarly to kick. In the
case of an event that involves two players P and Q, we also
add the state of player Q (the patient) as a fourth blue con-
dition. For example, we expand the old rule 23 to
53 pass(P,Q) :-

has ball(P), teammate(P,Q), player(P),
player(Q), team(T), team(S), has ball(P),
in team(P,T), not eq(T,S).

F.6. Baseline Programs on RoboCup Dataset

As before, we also implemented baseline models that
are inspired by the Know-Evolve and DyRep frameworks
(Trivedi, p.c.). The non-embedded database facts about
players and teams are specified just as in Appendix F.5
(rules 7–17).

Like the Know-Evolve program for IPTV, the Know-
Evolve program for RoboCup has no embeddings for its
events:

1 :- event(kickoff, 0).
2 :- event(kick, 0).
3 event(goal:- goal, 0).
4 event(pass:- pass, 0).
5 :- event(steal, 0).

As in IPTV, the embeddings are handled by separate facts.
Know-Evolve’s embedding of an event does not depend on
the event’s type, but only on its set of participants. Thus,
the kickoff, kick, and goal events are simply repre-
sented by the embedding of the single player that partici-
pates in those events, which is defined exactly as in our full
model of Appendix F.5:

6 :- embed(player, 8).
7 player(P) <- init, in team(P,T).

For the pass and steal events, we also need an em-
bedding for each unordered pair of players (analogous to
watch emb in Appendix F.4 rule 4):

8 :- embed(players, 8).
9 players(P,Q) :-

player(P) : pair, player(Q) : pair.

All of these embeddings evolve over time. Since teams do
not participate directly in events, they do not have embed-
dings, in contrast to our full model in Appendix F.5.

Each event’s probability depends nonlinearly on the con-
catenated embeddings of its participants, e.g.,

10 kick(P) :- player(P).
11 pass -pass(P,Q) :

player(P), player(Q), teammate(P,Q).

Note that because Know-Evolve does not allow changes
over time in the set of possible events, it assigns a positive

probability to the above events even at times when P does
not have the ball.

Actually, Trivedi et al. (2017, 2019) allow any event to
take place at any time between any pair of entities. Our
Know-Evolve and DyRep programs take the liberty of go-
ing beyond this to impose some static domain-specific re-
strictions on which events are possible. For example, in
RoboCup, rule 11 only allows passing between team-
mates, and rule 10 only allows kicking from a player to
itself (i.e., the “pair” of participants for kick(P) has only
one unique participant).

An event updates the embeddings of its participants, e.g.,
12 player(P) <- : kick

kick(P), player(P) : only.
13 player(P) <- : pass

passpass(P,Q), players(P,Q) : agent.
14 player(Q) <- : pass

passpass(P,Q), players(P,Q) : patient.

where the bias vector is determined by the event type (e.g.,
kick or pass), while the weight matrix is determined by
the role played in the event of the participant being updated
(agent, patient, or only—see Appendix F.5). Both
types of parameters are shared across multiple rules.

For the DyRep program, the same events are possible as for
Know-Evolve, and most of the rules are the same. How-
ever, recall from Appendix F.4 that DyRep permits us to
define a graph of entities. Robot players are entities, of
course. We also consider the ball to be an entity, which
is connected to player P by an edge when P possesses the
ball. This allows DyRep to update the embeddings of
the participants in a pass or steal event to record the
fact that the one who had the ball now lacks it, and vice-
versa. The model can therefore learn that passpass(P,Q) and
steal(Q,P) are much more probable when P has the ball.

DyRep requires the following new rules to handle the ball:
15 :- embed(ball, 8).
16 ball <- init.

as well as all of the rules from Appendix F.5 that update
has ball, which manage the edges of the evolving graph.
Note that JballK may drift over time but is never updated,
since ball is never one of the participants in an event.

Now we mechanically obtain the DyRep model by replac-
ing Know-Evolve rules such as rules 12–14 with DyRep-
style versions:

17 player(P) <- : kick
kick(P), player(P) :: event.

18 player(P) <- : pass
passpass(P,Q), player(P) :: event.

19 player(Q) <- : pass
passpass(P,Q), player(Q) :: event.

and then mechanically adding influences from the neigh-
bors of P and Q (where the ball is the only possible neigh-

kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick

passpasspasspasspasspasspasspasspass

passpasspasspasspasspasspasspasspass

passpasspasspasspasspass

passpasspasspasspasspass

Neural Datalog Through Time

NoNeural NDTT
negative log likelihood

0
20
40
60
80

100
120
140

NoNeural NDTT
RMSE

9
10
11
12
13

NoNeural NDTT
error rate %

80
85
90
95

100

(a) IPTV Dataset

NoNeural NDTT
negative log likelihood

0
10
20
30
40
50
60

NoNeural NDTT
RMSE

9
10
11
12
13
14
15
16

NoNeural NDTT
error rate %

32
34
36
38
40
42
44
46
48

(b) RoboCup Dataset

Figure 4. Ablation study of taking away neural networks from our Datalog programs in the real-world domains. The format of the
graphs is the same as in Figure 2. The results imply that neural networks have been learning useful representations that are not explicitly
specified in the Datalog programs.

bor):
20 player(P) <-

kick(P), ball : ball, has ball(P).
21 player(P) <-

passpass(P,Q), ball : ball, has ball(P).
22 player(Q) <-

passpass(P,Q), ball : ball, has ball(Q).

Remarks. Recall that the DyRep model can unfortunately
generate domain-impossible event sequences in which P
kicks or passes the ball without actually having it. How-
ever, such events never happen in observed data. As a
result, the above rules can be simplified if we are only
updating embeddings based on observed events (which is
true in our experiments). We can then remove the explicit
has ball(P) condition from rules 20 and 21 because it
is surely true when these rules are triggered by observed
events. And we can remove rule 22 altogether, because
its condition has ball(Q) is surely false when this rule is
triggered by an observed event. But then has ball plays
no role in the DyRep model anymore! This shows that in
effect, the model tracks the ball’s possessor only by up-
dating player(P) whenever it observes an event with par-
ticipant P in which P has the ball. This type of tracking
is imprecise (in particular, it does not immediately detect
when P acquires the ball), which is why the DyRep model
cannot learn from data to assign probability ≈ 0 to domain-
impossible events.

F.7. Training Details

For every model in §6, including the baseline models, we
had to choose the dimension D that is specified in the
embed and event declarations of its NDTT program. For

simplicity, all declarations within a given program used the
same dimension D, so that each program had a single hy-
perparameter to tune. We tuned this hyperparameter sepa-
rately for each combination of program, domain, and train-
ing size (e.g., each point in Figure 1 and each bar in Fig-
ures 2, 3 and 4), always choosing the D that achieved the
best performance on the dev set. Our search space was {4,
8, 16, 32, 64, 128}. In practice, the optimal D for a model
of a non-synthetic dataset (§6.2) was usually 32 or 64.

To train the parameters for a given D, we used the Adam al-
gorithm (Kingma & Ba, 2015) with its default settings and
set the minibatch size to 1. We performed early stopping
based on log-likelihood on the held-out dev set.

F.8. Ablation Study II Details

In the final experiment of §6.2, all embeddings have dimen-
sion 0. Each event type still has an extra dimension for its
intensity (see §3.2). The set of possible events at any time is
unchanged. However, the intensity of each possible event
now depends only on which rules proved or updated that
possible event (through the bias terms of those rules); it no
longer depends on the embeddings of the specific atoms
on the right-hand-sides of those rules. Two events may
nonetheless have different intensities if they were proved
by different :- rules, or proved or updated by different se-
quences of <- rules (where the difference may be in the
identity of the <- rules or in their timing).

Our experimental results in Figure 4 show that the neural
networks have really been learning representations that are
actually helpful for probabilistic modeling and prediction.

