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Abstract
Evidence suggests that networks trained on large
datasets generalize well not solely because of the
numerous training examples, but also class di-
versity which encourages learning of enriched
features. This raises the question of whether this
remains true when data is scarce – is there an
advantage to learning with additional labels in
low-data regimes? In this work, we consider a
task that requires difficult-to-obtain expert anno-
tations: tumor segmentation in mammography
images. We show that, in low-data settings, per-
formance can be improved by complementing the
expert annotations with seemingly uninformative
labels from non-expert annotators, turning the task
into a multi-class problem. We reveal that these
gains increase when less expert data is available,
and uncover several interesting properties through
further studies. We demonstrate our findings on
CSAW-S, a new dataset that we introduce here,
and confirm them on two public datasets.

1. Introduction
When abundant training data is available, deep learning
approaches have achieved remarkable feats, especially in
areas like computer vision and natural language processing.
However, even within these well-studied domains, there
exist many important problems for which data is scarce.

In medicine, large well-labeled datasets are difficult to come
by for a variety of reasons. Often, legal regulations and
privacy concerns prohibit the distribution of data. Or there
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Göran Hospital, Stockholm, Sweden 6Karolinska University Hospi-
tal, Stockholm, Sweden. Correspondence to: Christos Matsoukas
<matsou@kth.se>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 1. We consider low-data regime tasks where expert data is
difficult to obtain, such as tumor segmentation in mammography
images from the CSAW-S dataset. A network trained with only ex-
pert annotations of the tumors (blue) is significantly outperformed
by the same network which is given additional complementary
non-expert annotations (red) of breast anatomy (e.g. skin, pectoral
muscle, nipple), turning the task into a multi-class problem. Perfor-
mance is measured for varying numbers of training images/patients
by intersection over union (IoU) over five repetitions (shaded area
indicates 95% CI).

simply may not be enough patients to collect the data from.
This may be due to the rare nature of a disease that only
affects a limited population, or due to the logistics of collect-
ing data from different administrative regions. Sometimes
the techniques used for diagnosis are expensive or require
painful procedures (e.g. biopsies), and thus data is only col-
lected when deemed absolutely necessary. Finally, there
are cases where sufficient data may be available, but crucial
expert-level annotations are prohibitively expensive or diffi-
cult to obtain. This problem is common in other domains
such as astronomy and biology where either data or expert
knowledge is difficult to obtain.

In this work, we observe that performance on expert im-
age segmentation tasks can be significantly improved by
adding seemingly uninformative annotations during train-
ing. Although we cannot offer a definitive explanation for
this effect, we surmise that the class diversity encourages
learning of enriched features that capture complementary
information to the main task. The additional labels do not
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contain any direct evidence for the expert task, but they may
give indirect support by providing revealing information
about other content in the image.

The principal benefit of this approach is that model perfor-
mance can be increased without changing the architecture
or collecting additional expert training examples. The addi-
tional labels can be obtained inexpensively and do not need
to be of high quality. This allows one to achieve better per-
formance when it is simply not possible to obtain more data,
and to optimize the costs of the data acquisition process by
considering the trade-offs between collecting new examples,
expert annotations, and non-expert annotations.

Many researchers share an intuition that adding information
to the learning targets improves performance, and in fact
many related techniques discussed in this work are based
on this principle (e.g. distillation, multi-task learning). Our
contribution is to demonstrate and gain insights into this
principal for complementary labels, which is not yet well
understood.

As our main case study, we introduce CSAW-S, a dataset of
mammography images which includes expert annotations
of tumors and non-expert annotations of breast anatomy and
artifacts in the image (described in Section 4). Using this
dataset we experimentally show that tumor segmentation
performance, a task that requires expert annotations, is sig-
nificantly improved by providing additional complementary
non-expert labels (e.g. skin, nipple, pectoral muscle). We
further show that this benefit becomes more prominent as
data becomes more scarce.

We validate our findings by demonstrating that the observed
effect holds in other domains, using public datasets includ-
ing CITYSCAPES and PASCAL VOC in Section 5. Further-
more, we performed a number of additional studies to gain
further insights into the effects of complementary labels,
such as the dependence on the number of labels and the
relative importance of label types. Our contributions are
summarised as follows:

• We show empirical evidence that inexpensive comple-
mentary labels improve model performance in low-
data regimes.

• We observe this effect in 1) a high-impact medical
task where training examples are difficult to acquire
and expert annotations are expensive and, 2) two well-
studied public datasets.

• We conduct a series of studies that reveal further in-
sights about this phenomenon. We show a) how the
effect lessens as data increases b) that complementary
labels provide robustness to annotator bias c) the ef-
fectiveness of different labels d) trivial labels are not
useful e) performance increases with more labels f)
low-quality labels are nearly as good as high-quality

labels g) complementary labels increase training stabil-
ity f) complementary labels provide some robustness
to domain shifts.

• We release the CSAW-S dataset used in this study to
the public, which contains valuable mammography im-
ages with labels from multiple experts and non-experts
that can be used to replicate our study and for other
segmentation tasks.

Finally, to promote transparency and reproducibil-
ity, we share our open-source code, available at
github.com/ChrisMats/seemingly uninformative labels and
CSAW-S at https://github.com/ChrisMats/CSAW-S.

2. Related Work
Perhaps the most well-established method of dealing with
insufficient training data is to learn transferable represen-
tations in a similar domain where data is more abundant,
a technique routinely executed by means of pretraining on
IMAGENET. The underlying assumption for this approach is
that the domain gap is small, i.e., the distribution the model
is pretrained on has structural similarities to the target task’s
conditional probability distribution (Bengio, 2012). Un-
fortunately, this assumption does not necessarily hold for
all tasks (Azizpour et al., 2016), for example between nat-
ural and medical images. Raghu et al. have shown that
IMAGENET pretraining offers only marginal improvement
for some medical tasks, mainly attributed to better weight
scaling and initialization (Raghu et al., 2019).

He et al. showed that initialization with IMAGENET yields
no gains compared to random initialization in the big-data
regime (He et al., 2019b). Interestingly, as they moved
towards the low-data regime they noticed benefits from IM-
AGENET pretraining began to appear for PASCAL VOC but
not for MS-COCO. The authors link this effect to the rel-
atively low number of classes and object instances in the
PASCAL VOC dataset. In other words, IMAGENET pretrain-
ing helps more when the downstream task is less diverse.
Azizpour et al. argue that IMAGENET pretrained models
benefit more from the diversity of classes than the num-
ber of training examples. Finally, it has been established
that label correlation can increase accuracy in multi-label
classification tasks by providing information regarding the
interactions among them (Huang & Zhou, 2012). In line
with these insights, we conjecture that more diverse anno-
tations yield better representations and consequently better
performance in scarce data settings.

Beyond transfer learning, modern methods such as unsu-
pervised or weakly/semi-supervised approaches, can learn
representations yielding comparable performance to super-
vised learning (Jing & Tian, 2019) provided the domain gap
is relatively small. Recently, He et al. reported downstream
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task performances even better than supervised pretraining
(He et al., 2019a). Unfortunately, as in the supervised case,
these methods require large amounts of data, which is a
challenge in medical tasks (Hesamian et al., 2019).

Data augmentation techniques are widely employed when
training models with limited data. In their seminal work,
Ronneberger et al. have shown the effectiveness of suitable
augmentations for medical image segmentation. Learning
augmentations during training (Cubuk et al., 2019; Zhao
et al., 2019) and GAN-based augmentation (Frid-Adar et al.,
2018; Mondal et al., 2018) can also be employed in order to
alleviate the effects of data scarcity.

Promising results have also been shown by k-shot meth-
ods (Roy et al., 2020) in low data regimes where certain
classes only have a few or no representation in the training
set. However, the domain gap and data scarcity are also
significant problems in the k-shot settings as most of the
methods in the literature rely on IMAGENET pretraining,
which limits it’s applicability in non-natural image domains.

In this work, we argue that adding new labels that com-
plement the ones provided for the principal task improves
generalization in low-data regimes. Side information is a
term for extraneous information, often a different modality
than the source data, that can be exploited for a principal task
(Kang et al., 2017). For example, (Tian et al., 2015) used ad-
ditional datasets to introduce side information –expressed as
scene and pedestrian attributes– to pedestrian classification.

3. Complementary Labels
Our central idea is simple but effective in practice. We argue
that seemingly uninformative complementary labels, used
as additional learning targets, have a direct impact on the
model’s generalization for image segmentation in low data
regimes.

These new annotations are often seemingly uninformative
in the sense that they do not contain any direct information
about the object of interest. However, they do contain use-
ful information describing other semantically meaningful
objects present in the image. These labels complement the
expert labels by providing rich contextual information, so
we refer to them as complementary labels. For the task of
locating tumors in mammograms, complementary labels
might include the skin, pectoral muscle, and other parts of
anatomy (Figure 2). Complementary labels do not require
expert knowledge and do not need to be particularly accu-
rate, so crowdsourcing or other low-cost solutions can be
employed to collect them.

The advantage of complementary labels is that they are easy
to obtain and the performance boost comes without major
changes to the model architecture or additional training ex-

Figure 2. The CSAW-S dataset, released here, contains 342 mam-
mograms with expert radiologist labels for cancer and complemen-
tary labels of breast anatomy made by non-experts. The non-expert
labels are imperfect and in some cases may seem uninformative,
yet they provide useful cues for segmentation of the tumor.

amples. On the other hand, as more expert data are available,
complementary labels yield diminishing returns (Figure 1).
So consideration must be given to the performance-cost
trade-off between obtaining inexpensive labels for existing
data or collecting new data with expert labels.

Our observation invites an obvious question – why does
adding complementary annotations lead to better perfor-
mance? Although we cannot provide a definitive answer,
we offer two plausible explanations:

1. Complementary labels encourage learning of enriched
representations. With sufficient training examples,
deep neural networks learn rich features that represent
not only the object of interest, but also model the diver-
sity of shapes and textures in the background. In clas-
sification and detection tasks, evidence has shown that
networks learn to exploit information from the back-
ground (Ribeiro et al., 2016; Ghorbani et al., 2019).
But in the low data regime, the network struggles to
model the background because the data is insufficient
to capture such a diverse distribution. Complementary
labels help the network make sense of reduced back-
ground data by structuring it into more meaningful
sub-classes with less individual variation. Analogous
explanations have been hypothesized in (Huh et al.,
2016; Azizpour et al., 2016) for classification and ob-
ject detection (He et al., 2019b), where it is argued that
providing fewer labels per image has a similar effect
to removing training examples.

2. Complementary labels help to model interactions be-
tween objects. Objects that are near, interact with, or
look similar to the target object contain information
regarding the correlation and interaction that the target
has with its environment. Providing complementary
labels allows the network to exploit interactions and
correlations between these additional labels and the tar-
get, resulting in better generalization. A similar line of
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thinking explains how knowledge distillation benefits
from interactions between labels through soft labeling
(Hinton et al., 2015; Furlanello et al., 2018). Likewise,
in (Huang & Zhou, 2012) correlations between rare
labels are exploited to achieve better performance in a
multi-label prediction task.

In the following sections, we provide experimental evidence
supporting the benefits of complementary labels in low data
regimes and explore practical questions surrounding their
use and effects on generalization. In particular, we address:

• What is the effect of changing the number of training
examples/expert annotations?

• What constitutes a good complementary label?

• What is the effect of adding new complementary la-
bels?

• How does the quality of complementary labels affect
performance?

• Do complementary labels provide robustness: 1) to
annotator bias, 2) to domain shifts in the training data,
and 3) training stability?

Through the following experiments on CSAW-S and two
well-known public datasets, we attempt to characterize these
properties of complementary labels.

4. Experiments on Medical Images
In this section we investigate how the addition of comple-
mentary labels affects the model’s performance in a low
data setting on an expert medical task.

4.1. The CSAW-S Dataset

The CSAW-S dataset is a companion subset of CSAW, a
large cohort of mammography data gathered from the en-
tire population of Stockholm invited for screening between
2008 and 2015, which is available for research (Dembrower
et al., 2019). We release the CSAW-S subset containing
mammography screenings from 172 different patients with
annotations for semantic segmentation. The patients are
split into a test set of 26 images from 23 patients and train-
ing/validation set containing 312 images from 150 patients.
Further details regarding the collection and pre-processing
of the data can be found in the Appendix.

The training/validation images are accompanied by cancer
annotations by an expert radiologist, EXPERT 1, and the test
images come with cancer annotations from two additional
radiologists, EXPERT 2 and EXPERT 3. Complementary
labels are provided for the entire dataset in the form of
full pixel-wise masks of each image corresponding to 11
additional highly imbalanced classes representing breast

Figure 3. Segmentation results on CSAW-S show complementary
labels improve performance in low-data settings. From top to
bottom: the full mammogram, a detailed image of the tumor region,
the expert annotations and ground truth (yellow), predictions from
networks trained with only the tumor labels (blue) and predictions
from a network trained with both tumor labels and complementary
labels (red). Experiments are repeated using small training sets
of varying size, N = {25, 50, 100, 263}, the best result from 5
runs is shown for each model. Expert annotations appear in shades
of gold; a dashed box indicates an annotator did not find a tumor.
Ground truth is determined where at least two annotators agree
cancer is present (consensus in column 4 is no tumor).

anatomy and other objects (see Figure 2 and Appendix for
details). The complementary annotations were sourced from
non-experts with no medical training, and therefore contain
errors. Complementary annotations from EXPERT 1 and
EXPERT 2 are also provided for the test set. The ground
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Table 1. Expert and model agreement on CSAW-S (IoU)

EXPERT
1

EXPERT
2

EXPERT
3

with
co

mp.
∗

with
ou

t c
om

p.
∗

Ground Truth 0.69 0.66 0.83 0.33 0.21

EXPERT 1 0.67 0.68 0.31 0.21

EXPERT 2 0.66 0.29 0.17

EXPERT 3 0.34 0.21
∗Mean IoU for models trained with 50 patients.

truth for the expert task is determined as regions where at
least two experts agree cancer is present (Fig. 3).

4.2. Experimental Setup

We split the train/validation sets by patient, 130/20. This
resulted in 263/49 images per set. Many of our experiments
investigate how performance depends on the size of the
training set. For these cases, we create subsets of N = {25,
50, 100, 263} images by sampling the training set at the
patient level. We perform five runs for each experiment by
sampling with replacement 5 times, and report the average
performance along with the 95% confidence interval.

Our goal is to improve expert task performance by including
complementary non-expert labels. Hence, we define two
training settings to test this

1. with complementary labels – where expert labels and
complementary labels are provided to train the network

2. without complementary labels – where only expert
labels are provided.

These cases are compared throughout Sections 4 and 5.

4.3. Implementation Details

We use DeepLab3 (Chen et al., 2017) with ResNet50 (He
et al., 2016) as the backbone for all experiments. Following
He et al. and Raghu et al., we initialize all models with
IMAGENET pretrained weights and we replace BatchNorm
layers with GroupNorm layers (Wu & He, 2018). We use
an ADAM (Kingma & Ba, 2014) optimizer throughout our
experiments. Due to memory limitations and the high reso-
lution of mammograms, we train using 512× 512 patches.
To ensure good representation in the training data, for every
full image we sample a center-cropped patch from 10 ran-
dom locations belonging to each of the 12 classes (the same
for training with and without complementary labels).

To alleviate overfitting issues associated with extreme low
data regimes, we employ an extensive set of augmentations
including rotations and elastic transformation in addition to
standard random flips, random crops of 448× 448, random
brightness and random contrast augmentations. We report
results for each run using the best checkpoint model. Since

EXPERT 2 EXPERT 3

Figure 4. Complementary labels provide robustness to annotator
bias. The training data was annotated by EXPERT 1, biasing the
models towards this expert. Test results evaluated on annotations
from the other experts show that models provided with complemen-
tary labels performed consistently better (indicating robustness to
bias) than those without (measured by change in IoU).

the cross entropy loss does not precisely represent the IoU
metric we consider both the validation IoU and loss when
selecting the best model. For all of our experiments we
fine-tuned the learning rate for each setting and the results
are averaged over 5 runs, unless otherwise specified.

4.4. Results

Do complementary labels help? Our main results appear
in Figure 1, where we quantify the effects of adding comple-
mentary labels measured by IoU. Evidently, training with
complementary labels outperforms the case where only ex-
pert tumor annotations are used by a large margin. Although
the absolute IoU performance is relatively low, inter-expert
agreement is also low (≈.67), and adding complementary
labels results in a 57% relative gain in IoU towards the level
of expert agreement (Table 1). Segmentation visualizations
appear in Figure 3, showing especially noticeable benefits
when very little training data is available.

What is the effect of changing the amount of training
examples? From the results in Figure 1 it is evident that the
benefit of complementary labels is magnified as we move
towards lower data regimes. Models trained with expert and
complementary labels from 50 patients outperform models
trained on only expert labels from 130 patients.

Do complementary labels provide robustness against
annotator bias? A major challenge facing intelligent di-
agnostic systems is disagreement between experts (Ker-
likowske et al., 1998). Because expert annotations are costly,
most medical imaging datasets are annotated by only a few
experts. The CSAW-S training set was annotated solely by
EXPERT 1. This can introduce bias in the model towards
the opinion of that expert. To test if adding complementary
labels introduces robustness to annotator bias in our models,
we measure performance using test set annotations from the
other experts. In Figure 4 we report the change in IoU when
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Figure 5. Results on CITYSCAPES using the person class as the
expert class. Performance with (red) and without (blue) comple-
mentary labels is measured for varying numbers of training images
over five repetitions (shaded area indicates 95% CI). An additional
comparison to examine the impact of low-quality complimentary
labels (violet) shows little effect.

evaluating using annotations from EXPERT 2 and EXPERT
3 compared to EXPERT 1. In both cases, adding comple-
mentary labels increases robustness against annotator bias.
Interestingly, both models performed better when evaluated
on EXPERT 3’s annotations.

5. Further Studies Using Public Data
We confirm our findings on two publicly available datasets,
CITYSCAPES and PASCAL VOC, and also delve deeper –
using these well-known datasets to investigate several inter-
esting properties of complementary labels.

5.1. Public Datasets

CITYSCAPES (Cordts et al., 2016), is a sizable public dataset
of urban street scenes with a large and diverse set of annota-
tions. While the protocol for most segmentation research is
to use 19 of the 34 annotated classes, in the interest of better
understanding complementary labels, we use all 34 classes.

Although expert knowledge was not necessary to annotate
CITYSCAPES, our goal is to test the effects of complemen-
tary labels on an expert task. We simulate this by choosing
the person class as the target class, so the goal becomes per-
son segmentation. The other 33 classes are either treated as
complementary labels, or merged into a single background
class for the baseline. We selected person because of the
high intra-class variance, relatively small size, and moderate
image frequency. Additionally, the rider class (e.g. cyclists,
motorcycle riders) presents an opportunity to examine per-
formance when confusing objects are present. We randomly
select 500 images from the official training set to use as the
validation set, and we use the rest for training. For testing,
we use the official validation set of fine annotations.

PASCAL VOC (Everingham et al., 2015) is a well-studied

Figure 6. Results on PASCAL VOC using the person class as the
expert class. Because person occurs rarely, measurements are
taken at different numbers of training samples than the previous
experiments.

object recognition dataset composed of 21 object classes
and a background class. Here, we also choose the person as
the main target and we consider the other 20 classes as either
complementary labels or background. In PASCAL VOC, the
person class is present in only 30% of the training images,
which allows us to investigate how complementary labels
perform for expert tasks on rare events. We used the official
train-2012 as training set and we sampled 500 images
from the test-2012 as our validation set. We used the
remaining 949 images from test-2012 to evaluate the
final performance.

5.2. Implementation Details

For consistency, we kept the training procedure constant
throughout our experiments and used the training settings
outlined in Section 4, with the following exceptions: random
rotation and elastic augmentations were omitted, and the full
images were resized to 512× 512 instead of using patches.
We note that settings optimized for CSAW-S might be sub-
optimal for these datasets (see Appendix), but we opted to
maintain the same settings for better comparability.

5.3. Results

Are the benefits of complementary labels observed in
other data? We confirm our previous findings on medical
images with data from CITYSCAPES and PASCAL VOC in
Figures 5 and 6 respectively. We note that, although they
are not directly comparable, the IoU gap between models
with/without complementary labels is nearly the same for
CSAW-S and CITYSCAPES, and the gap nearly doubles for
PASCAL VOC. The size of these datasets allowed us to
explore how the trend evolves further from the low-data
regime. Interestingly, on CITYSCAPES there appears to be a
crossover when the network is provided with approximately
400 examples where complementary labels seem to hurt
performance rather than help.



Adding Seemingly Uninformative Labels Helps in Low Data Regimes

Figure 7. Contributions of individual complementary labels. We
conducted a leave-one-out experiment where the network was
trained in turn using every complementary label in CITYSCAPES

except one. The importance of each label is measured by the
relative change in IoU for person classification when the label is
omitted. Labels marked in green, which tend to occur frequently
in the data with diverse appearances, improve performance. Labels
marked in yellow have little discernible effect, and labels marked
in red hurt performance. These tend to be omnipresent and trivial
(e.g. ego vehicle and rectification border).

Do all complementary labels contribute equally? We in-
vestigate whether all complementary labels contribute posi-
tively, and to what degree each complementary label helps.
To this end, we conducted a leave-one-out experiment where
the network was trained with every complementary label
except one, which was merged to the background. In this
way, we can measure the importance of the left-out class by
the change in segmentation IoU. As seen in Figure 7, there
is a clear disparity between various complementary labels.
Most of the complementary labels contribute positively –
removing them hurts the network’s performance (green).
The effect is unclear for nine (yellow), and for the rest there
is a clear advantage in removing them (red).

Looking more closely at Figure 7, we infer that the labels
which seem to contribute most are those that appear fre-
quently with diverse appearances (truck, car, traffic light).
Also, smaller objects that could potentially be confused
with the person class appear to help (pole groups). The least
helpful labels seem to be omnipresent and trivial (e.g. ego
vehicle and rectification border). Finally, we note that rider,
which can be easily confused with person, is important for
the network to avoid false positives (further experiments in
Appendix).

What is the effect of adding new complementary labels?
To measure the impact that the number of complementary
classes has on the model’s performance, we conducted a
series of experiments on CITYSCAPES where the number of
complementary labels provided to the network is steadily

Figure 8. The effect of adding new complementary labels. We
measure how IoU performance changes on CITYSCAPES for a
steadily increasing number of randomly selected complementary
classes. Interestingly, adding only a few classes hurts performance,
but once a sufficient number of labels is reached there is a clear
advantage. These results, with those of Figure 7, suggest that the
choice of which labels to include is important.

increased, N = {0, 1, 2, 4, 8, 16, 32}. The labels added in
each run are randomly selected, and each experiment is
repeated 5 times. The number of training examples was
fixed to 100 and person was again used as the expert target.
We observe an interesting trend in Figure 8, where adding
only a few random complementary labels hurts performance.
But once a sufficient number of labels are used, there is a
clear advantage to adding them. These results, combined
with those of Figure 7, imply that care should be taken when
choosing which complementary labels to include. Either
that, or a sufficient number should be collected to overcome
adverse effects from certain classes.

How does the quality of complementary labels affect
performance? We demonstrated in Section 3 that com-
plementary labels do not require expert knowledge, and also
noted that some the labels in CSAW-S contain errors and
noise. This leads us to the question: does quality of the
complementary annotations affect performance? Luckily,
the CITYSCAPES dataset includes two sets of annotations
for semantic segmentation, the fine and coarse set. The fine
set (high quality), seen in Figure 9, consists of high quality
dense pixel annotations whereas the coarse set (low quality)
includes approximate polygonal annotations – which omit
regions of objects in many cases and in some cases actually
mislabel objects. We tested the performance of the model
trained with low-quality annotations and compared it to the
high-quality annotations. To ensure the expert task was not
affected, we used high-quality annotations for the person
class in both cases. As we can see from Figure 5, the com-
plementary labels do not need to be accurate. Unexpectedly,
for the extreme low regimes, the low-quality annotations re-
sulted in slightly higher IoU scores. A possible explanation
is that the coarse labels avoid boundary regions between
objects, which may help learning.
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original high quality low quality

Figure 9. Testing robustness to label quality. To test how com-
plementary label quality affects performance, we compare how
models trained with fine labels fare against models trained with
coarse labels on CITYSCAPES. Note that high quality labels are
given for the expert class, person, in both cases. Results in Figure
5 show little effect from reducing quality of complementary labels.

Do complementary labels improve training stability?
Over the course of our experiments, we noticed that the
addition of complementary labels resulted in more stable
training in the low data regime. Training with complemen-
tary labels yields smoother and clearer learning curves, as
seen in Figure 10, which makes it easier to identify signs of
overfitting.

Do complementary labels provide robustness to domain
shifts in the training data? A common issue in many
datasets – especially in medical applications – are domain
shifts within the data. For example, medical images can
be acquired from a small number of clinics with different
devices. The CITYSCAPES images were collected from
18 different German cities and Zurich. This phenomenon
can cause generalization issues if the training data is not
representative of the true distribution.

As a final investigation, we test if adding complementary
labels improves model robustness to domain shifts. We set
up an experiment in which domain shifts are artificially im-
posed in the training data as follows. An ordered training set
is created by shuffling images individually from each city,
and then placing them in a random order grouped by city.
For example, this may result in a training set with images
from Stuttgart, then Aachen, Hamburg, etc. Then, we repeat
the experiments for person segmentation. The models are
trained using subsets of the randomly ordered and shuffled
training sets, with the same schedule as our main experi-
ments N = {25, 50, 100, 200, 350, 500, 1000, 2475}. We
repeat this 5 times for each N . The result of this procedure
is that models trained with N = 25 or N = 50 will only see
data from a single city, but will be tested on a set containing
all cities (each city contains between 77 and 259 images). In
this way, we artificially impose a domain shift which lessens
as more training data is added (more cities will appear).

Our results appear in Figure 5 and Figure 6 the Appendix.
We find that adding complementary labels still improves
performance in the presence of domain shifts. Although
the absolute IoU performance is lower than in in Figure
5, the performance gap between models with and without
complementary labels widens to some degree. Note that the
curve for the model trained without complementary labels

Figure 10. Complementary labels improve training stability in low
data regimes. As seen in this IoU evolution curve training on 25
images from CITYSCAPES, training with complementary labels
yields smoother and clearer learning curves, which helps to identify
signs of overfitting.

shows more variance, and is more sensitive to steps where
new cities are added.

6. Conclusions
In this work we consider a semantic segmentation task and
show that adding inexpensive and seemingly uninformative
labels can significantly increase the model’s generalisation
under low data regimes. We demonstrate the effects of these
complementary labels on an expert medical task and on
the CITYSCAPES and PASCAL VOC datasets. We release a
new dataset, CSAW-S, along with this study which contains
valuable mammography images with labels from multiple
experts and non-experts that can be used to replicate our
study and for other tasks in conjunction with its larger com-
panion dataset.

We identify several interesting properties of complementary
labels. First, these labels yield larger benefits when data is
scarce. This property is critical in domains such as medicine
where data gathering and annotation costs are often pro-
hibitive. Separately, we find that complementary labels
need not be of high quality, which suggests crowd-sourcing
solutions or automation may be utilized for additional cost
savings. We note that not all labels are equally useful, a
fact that can help guide the annotation design process –
we witnessed that certain trivial objects hurt performance.
Complementary labels seem to provide several forms of
robustness to some degree: against annotator bias, against
domain shift, and increased training stability.

Complementary labels are a simple and effective means to
improve performance in low-data settings. We believe they
should be an essential tool in every practitioner’s toolkit.
However, further research is required to gain a better under-
standing of the mechanisms that result in this behavior.
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