Appendix: Adding Seemingly Uninformative Labels Helps in Low Data
Regimes

A. The CSAW-S Dataset

As one of our contributions, we release the CSAW-S dataset,
which can be found at https://github.com/ChrisMats/CS AW-
S. CSAW-S is a curated dataset containing mammography
images with annotations of breast cancer and breast anatomy
from experts and non-experts. It can be used to replicate
our study, repurposed for other semantic segmentation tasks,
or used in conjunction with other breast cancer datasets
(e.g. DDSM (Lee et al., 2017), INbreast (Bowyer et al.,
2000)) to form a large repository of mammograms with
tumor annotations.

A.1. Collection

The CSAW-S dataset contains mammography screening im-
ages from 172 different cases of breast cancer. It is split
into a training/validation set containing 312 images from
150 patients and a test set of 26 images from 23 different
patients. The data was split to ensure that roughly the same
distribution of classes appears in the training and test splits.
In total, 338 high-resolution grayscale images of both MLO
(Mediolateral-Oblique) and CC (Cranial-Caudal) views ap-
pear in the dataset. The screening images composing the
dataset were selected from CSAW, a large corpus of screen-
ings gathered from Hologic devices in Stockholm between
2008 and 2015 (Dembrower et al., 2019). The dataset is
annotated with 12 classes (see Figure 1) including the can-
cer class (the expert task), ten classes representing breast
anatomy (complementary classes), and the background class.
The cancer annotations are provided by three radiology ex-
perts. The choice of which classes to annotate was guided
by a discussion with the radiologist experts with a seman-
tic segmentation task in mind (labeling prominent anatomy
for quality control and studying possible correlation with
cancer). Non-experts provided annotations for the com-
plementary classes in the training set. Experts provided
annotations for the complementary classes in the test set but
not the training set. The non-experts had no prior experience
with mammography images, but received a short training
session. The complementary classes are highly imbalanced,
with some appearing very infrequently (e.g. lymph nodes
and calcifications, see Table 1).

A.2. Preprocessing

The image files from the mammography device are in the
DICOM image format. The metadata of each file contains
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Figure 1. Three randomly selected examples from the CSAW-S
dataset, which contains screening mammography images from 172
cases of breast cancer. Expert radiologist labels for cancer and
complementary labels of breast anatomy made by non-experts are
provided for all 342 images. The non-expert labels are in some
cases imprecise or inaccurate (e.g. skin folds in top & bottom rows,
or the improperly labeled object in lower-left of the middle row).
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Table 1. Class ratios in the CSAW-S training set by pixel count and
by image frequency reveal highly imbalanced classes.

PIXEL COUNT (%) IMAGE FREQUENCY (%)
background 66.501  background 100.0
mammary gland 28.522 mammary gland 100.0
pectoral muscle 2.879 cancer 100.0
thick vessels 0.616 skin 100.0
skin 0.615 nipple 86.2
cancer 0.292 text 80.1
non-mammary tissue  0.271 thick vessels 77.9
foreign object 0.124 non-mammary tissue  55.4
nipple 0.082 calcifications 52.2
lymph nodes 0.063 pectoral muscle 50.0
text 0.031 lymph nodes 21.8
calcifications 0.003 foreign object 18.6

intensity windows (center and width) that determine the
proper range of displayed pixel intensities accounting for
differences in acquisition such as exposure, compression,
etc. As a preprocessing step, we normalize each image using
the DICOM window center and width metadata to re-scale
the intensity range of the images. The re-scaling is done
linearly and pixels outside the defined range are clipped. We
used this approach because, as reported in (Clunie, 2003),
the window values that are chosen by the operator or device
result in consistent appearance for display. Many images
exhibited inverted contrast (i.e. the background was white).
To rectify this, we corrected the images by inspecting the
DICOM photometric interpretation attribute which deter-
mines whether the minimum pixel value is black or white.
Finally, we convert the DICOM files to 8-bit PNG images.

A.3. Expert and Non-expert Annotations

Cancer annotations for the training/validation set were pro-
vided by EXPERT 1. The complementary labels were
sourced from seven non-experts with no medical training,
one annotator per image. Each non-expert annotated be-
tween 15 and 109 images.

Along with each test image we provide cancer annotations
from three expert radiologists: EXPERT 1, EXPERT 2 and
EXPERT 3. Complementary labels of the breast anatomy
are provided by both experts and non-experts for the test
set. EXPERT 1 and EXPERT 2 provide the complementary
labels (no complementary labels are provided by EXPERT
3 but they may be available in the future). Complementary
labels are also provided by three non-expert annotators. The
test set complementary labels were not utilized in our study,
but are provided for other researchers interested in semantic
segmentation of medical images.

Class labels of each image in the dataset are provided in
the form of independent full pixel-wise binary masks for
each class. These annotations were generated using QuPath
(Bankhead et al., 2017), a tool for annotating large medical
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Figure 2. Results on CSAW-S when evaluating using annotations
from different experts: EXPERT 1 (top) , EXPERT 2 (middle)
and EXPERT 3 (bottom). The training data was annotated by
EXPERT 1, biasing the models towards this expert. Evidently,
training with complementary labels results in higher IoU scores
for all cases. This difference is magnified when evaluating the
annotations provided by EXPERT 2 and EXPERT 3, indicating an
increased robustness to annotator bias when complementary labels
are used. Interestingly, all models performed better when evaluated
on EXPERT 3’s annotations.
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Figure 3. Results after merging the confusing classes person and
rider on the CITYSCAPES dataset into a unified label human (the
complementary classes are reduced from 32 to 31). Compared to
Figure 5 in the main article, there is an absolute increase in IoU
scores in both models, but the overall trend remains, and it is clear
that additional complementary labels still help.

images. Annotators were instructed to completely mark
each class. In case of overlaps, all overlapping objects were
labeled. In this work, we do not address multi-label classi-
fication (where each pixel can be associated with multiple
classes). Therefore, the 11 binary masks for each image
were combined to form a single multi-class mask as follows.
Each pixel was assigned a single label by inspecting the 11
masks. Unannotated pixels were designated as background.
Pixels with only one matching annotation receives the class
label of the corresponding masks. In case of overlap, the
labels were determined by the following priority order (with
lower values having higher priority): (1) cancer, (2) calcifi-
cation, (3) lymph node, (4) thick vessel, (5) foreign object,
(6) skin, (7) nipple, (8) text, (9) non-mammary tissue, (10)
pectoral muscle, (11) mammary gland and (12) background.
The twelve-class masks generated by this process were used
to train the networks.

A.4. Class Imbalance

The multi-class annotations for the CSAW-S dataset, pro-
duced as described above, are highly imbalanced (see Table
1). Classes such as cancer, skin, mammary gland, and back-
ground appear in every image, but with vast differences in
area (e.g. cancer only accounts for 0.29% of pixels in the
dataset while mammary gland accounts for 28.3%). Some
classes are even more rare, such as lymph nodes and calci-
fications which are present in 22.2% and 51.2% of images
(respectively), but only account for 0.064% and 0.004% of
total pixels. These two particular classes are extremely rare
in terms of image support but are also useful signs for diag-
nosing cancer. Therefore, these rare but important classes
present an interesting segmentation challenge.
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Figure 4. Relative IoU gains between the with- and without-
complementary label models on CITYSCAPES when the main
target is person (orange) and human (purple). The human class
contains both person and the confusing label, rider.

A.5. Generating Training Examples

Throughout our experiments on the CSAW-S dataset, we
generate training samples by randomly extracting 512 x 512
patches from the full resolution mammography images. This
is because (1) the high resolution of the mammograms cause
memory issues during the training procedure, and (2) the
small training set sizes necessitate the use of heavy augmen-
tations, which also causes memory issues. To ensure more
balanced class representation in the training data, we gener-
ate training examples for every image by sampling 10 center-
cropped patches from locations belonging to each of the 12
classes (uniform sampling). We perform this data generation
strategy offline once for each of the 5 experimental repeti-
tions since it is an expensive procedure, in terms of memory
and computation. The with- and without-complementary
label models share the same training example crops for each
experimental repetition.

During training we employ an extensive set of augmenta-
tions including rotations and elastic transformation in addi-
tion to standard random flips, random crops of 448 x 448,
random brightness and random contrast augmentations on
the 512 x 512 patches.

A.6. Evaluating Against Different Experts

The CSAW-S training set contains cancer annotations only
from EXPERT 1. This biases networks trained on this data
towards the opinion of this expert. The test set includes
tumor annotations from EXPERT 1 and two additional expert
radiologists. As seen in the main article, agreement between
the experts is relatively low (x20.67), therefore we expect the
IoU scores to differ when evaluating on annotations from the
other experts. As we can see in Figure 2, the complementary
labels result in increased performance over the baseline,
regardless of which expert is considered. Furthermore, we
can see that the generalization gap between the models
trained with and without complementary labels increases as
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Figure 5. Results when imposing a domain shift between the train-
ing and test data by ordering the training examples. Compared
with Figure 5 from the main text, we note that the domain shift
causes an absolute drop in performance for both models, but the
performance gap remains steady.

we evaluate on EXPERT 2 and EXPERT 3. This indicates
that the model with complementary labels is more robust to
annotator bias. Interestingly, all models performed better
when evaluated on EXPERT 3’s annotations.

B. Sanity Checks For the Training Procedure

We ran a series of sanity checks to satisfy any concerns
regarding the standard training protocol used in our experi-
ments. We report that our finding — a significant generaliza-
tion gap between models with and without complementary
labels — remains consistent regardless of the training tech-
nique used.

In detail, we tested the following variations to our standard
training procedure:

e We replaced the DeepLabv3 segmentation model with
FCN-32 (Long et al., 2015). We found no change in
the generalization gap.

e We replaced GroupNorm with BatchNorm. We found
no change in the generalization gap.

o Instead of using IMAGENET pretrained models, we ran-
domly initialized the weights. We found no change in
the generalization gap, although there was a significant
drop in performance for both cases.

e We froze the normalization statistics /) throughout the
training process and 2) for the first 60% of the training
iterations and fine tune for the rest 40%. We found that
freezing the normalization statistics did not help the
for CSAW-S dataset but for the CITYSCAPES and PAS-
CAL Voc there were significantly large improvements,
especially towards the extreme low data regime. As
has been reported before (Raghu et al., 2019; He et al.,
2019), this is because the statistics dramatically change
as we move from the natural domain to the medical
one.
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Figure 6. Relative IoU gains (between models trained with and
without complementary labels) when imposing a domain shift
between the training and test data (purple), and when there is
no domain shift (orange). Both cases show models trained with
complementary labels. Note that, although the purple curve is
noisier, there seems to be little effect on IoU performance gap
between the two setups, indicating robustness to domain shifts.

e We extended the default augmentations with random
scale and resizing as well as elastic transforms. As
expected, augmentations resulted in increased gener-
alization for every case. Nonetheless, we found that
heavy augmentations favour the models trained with
complementary labels slightly more.

e We evaluated the importance of complementary labels
when the main target is trivial (e.g. class sky and ego
vehicle in CITYSCAPES). We consider a class as trivial
when it has many of the following traits which make it
easily distinguishable: little texture variation, regular
shape, clear edges, and large pixel-count per image.
For these cases, we find high IoU scores even when
limited examples are present. We also found that the
most important factor is the normalization method, and
gains from the complementary labels only persist in
the extreme low data regime (less than 10-20 training
examples).

Finally, we note that we tuned our training settings for the
case where only expert annotations are available (no com-
plementary labels) and set them as default to ensure that
the gains from the complementary labels are valid. We did
not further tune the settings for models with complementary
labels, so this likely leads to sub-optimal settings and an
under-reporting of the actual generalization gap.

C. Easily Confused Classes

The class person is easily confused with the class rider in
the CITYSCAPES dataset. We investigated whether gains
from the complementary labels for the person segmenta-
tion task are due to the explicit modeling of the rider class.
In other words, are the observed effects attributed to com-
plementary labels actually due to the modeling of easily
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Table 2. Class ratios in the PASCAL VOC dataset by pixel count
and by image frequency.

PIXEL COUNT (%) IMAGE COUNT (%)

background 64.7  ambiguous 99.9
ambiguous 5.9 background 99.5
person 5.2 person 29.9
cat 3.1 chair 9.9
bus 2.0 cat 8.9
dog 1.9 car 8.5
train 1.8 dog 8.3
car 1.6 bird 7.2
sofa 1.5 sofa 6.4
motorbike 1.3 aeroplane 6.0
dining table 1.3 bottle 5.7
chair 1.2 train 5.7
horse 1.1 tv/monitor 5.7
bird 1.0 dining table 5.6
tv/monitor 1.0 motorbike 5.5
sheep 1.0 potted-plant 5.5
cow 0.9 boat 5.3
aeroplane 0.9 bus 53
boat 0.7 horse 4.6
potted-plant 0.7 bicycle 4.4
bottle 0.7 cow 4.4
bicycle 0.3 sheep 4.3

confused classes? Intuitively, explicitly modeling the rider
class, which would otherwise be part of the background (in
the without-complementary labels case), should help reduce
false positives. To investigate, we merged the annotations
of the classes person and rider into a unified label human
and repeated the experiments. Although the absolute IoU
scores for both models improved (Figure 3), the relative
IoU gains from the complementary labels showed no appre-
ciable change (Figure 4). Thus, we infer that although the
explicit modeling of confusing classes is helpful (see label
importance in the main text), it is not the only reason that
including complementary labels are beneficial in low data
regimes.

D. Robustness to Domain Shifts

As described in the main article at the end of Section 5.3,
we tested if adding complementary labels improves model
robustness to domain shifts. Our goal in this experiment
is to test if complementary labels help when there is a do-
main shift between the training distribution and the test
distribution. For example, if medical images acquired from
certain devices appear in the training set, and images from a
different set of devices appear in the test set.

We set up an experiment in which domain shifts were artifi-
cially imposed in the training data as follows. An ordered
training set is created by shuffling images individually from
each city, and then placing them in a random order grouped
by city. For example, this may result in a training set with im-

Table 3. Class ratios in the CITYSCAPES dataset by pixel count
and by image frequency.

PIXEL COUNT (%) IMAGE COUNT (%)

road 36.61 ego vehicle 100.0
building 20.06  pole 98.8
vegetation 14.35  static 98.7
car 6.69 road 98.6
sidewalk 5.41 building 98.5
sky 3.04 vegetation 97.0
ego vehicle 243 car 94.8
static 1.42 traffic sign 94.4
ground 1.29 sidewalk 94.0
person 1.26 sky 86.3
pole 1.18 person 78.5
terrain 1.05 traffic light 55.8
fence 0.77 terrain 54.9
parking 0.63 bicycle 53.7
wall 0.58 dynamic 44.7
traffic sign 0.52 fence 42.1
bicycle 0.4 ground 34.7
bridge 0.3 rider 342
dynamic 0.29 wall 31.6
train 0.27 parking 24.4
truck 0.23 rect. border 222
bus 0.22 unlabeled 19.7
rect. border 0.22 motorcycle 17.1
traffic light 0.19 truck 11.9
rail track 0.19 bus 8.6
rider 0.14 out of roi 8.6
motorcycle 0.1 bridge 7.5
tunnel 0.05 polegroup 7.2
caravan 0.04 train 4.4
out of roi 0.03 rail track 35
trailer 0.02 trailer 2.5
unlabeled 0.01 caravan 1.9
guard rail 0.01 tunnel 0.8
polegroup 0.01 guard rail 0.6

ages from Stuttgart, then Aachen, Hamburg, etc. Then, we
repeat the experiments for person segmentation. The mod-
els are trained using subsets of the randomly ordered and
shuffled training sets, with the same schedule as our main
experiments N = {25, 50, 100, 200, 350, 500, 1000, 2475}.
We repeat this 5 times for each N. The result of this pro-
cedure is that models trained with NV = 25 or N = 50 will
only see data from a single city, but will be tested on a set
containing all cities (each city contains between 77 and 259
images). This represents our imposed domain shift. As
more data is added, more cities will appear in the training
set.

We find that adding complementary labels improve perfor-
mance in the presence of domain shifts (Figure 5). Although
the absolute IoU performance is lower when the domain
shift is imposed than than when there is no domain shift,
the performance gap between models with and without com-
plementary labels holds and widens to some extent (Figure
6). Furthermore, while the curve for the model trained with
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Figure 7. Segmentation results on CITYSCAPES show complemen-
tary labels improve performance in low-data settings. From top
to bottom: the full image, fine annotations and predictions from
networks trained with only the person labels (blue) and predictions
from a network trained with both person labels and complementary
labels (red) using N = {25,100, 350, 2475} training examples.
In the last row, complementary labels begin to hurt performance
(the crossover in Figure 5 in the main text).

complementary labels retains the same shape as in Figure 5
from the main text, the curve for the model trained without
complementary labels shows more variance, and is sensitive
to steps where new cities are added (Figure 5).

E. Label Frequency on CITYSCAPES and
PASCAL VoOC

In Table 2 and Table 3, we report the number of pix-
els and the number of images that contain each class
for CITYSCAPES and PASCAL VoOC. Note that the
CITYSCAPES dataset has severe class imbalance whereas
PASCAL VocC is more balanced — the most and least fre-
quent classes differ by at most one order of magnitude at
most (excluding the background and ambiguous class). The
greater pixel count imbalance in CITYSCAPES corroborates
our qualitative observation that objects in CITYSCAPES are
more likely to appear at different scales than in PASCAL
Voc. For complex classes like person, this can make the
segmentation problem significantly harder and may par-
tially explain the performance difference between the two
datasets.
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Figure 8. Segmentation results on PASCAL VOC show complemen-
tary labels improve performance in low-data settings. From top to
bottom: the full image, annotations and predictions from networks
trained with only the person labels (blue) and predictions from a
network trained with both person labels and complementary labels
(red) using N = {200, 500, 1464} training examples.

F. Segmentation Results on CITYSCAPES and
PASCAL VoC

In Figure 5 and Figure 6 of the main text, we showed quan-
titatively that adding complementary labels results in in-
creased IoU scores for CITYSCAPES and PASCAL VoOC
in low data regimes. In Figure 7, we visualize results for
CITYSCAPES and confirm that segmentations from models
trained with complementary labels result in more accurate
segmentation masks in low data regimes where segmen-
tation are generally poor. As we increase the number of
training examples, we see diminishing returns when adding
complementary labels. When a large number of examples
are included in the training procedure (last row of Figure 7),
complementary labels begin to hurt performance.

In Figure 8, we visualize the model predictions on PASCAL
Voc and confirm that the segmentation results also reflect
the trend in IoU we reported in the main text: when lim-
ited samples are present in the training set, the addition of
complementary labels results in better segmentations.
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