Predictive Multiplicity in Classification

A Omitted Proofs

Proof of Proposition 1. 'We use the Triangle Inequality to bound the distance between the vector of predictions of the
baseline model and the predictions of a competing model in the e-level set. Let y = {y, };—; be the vector of labels, let
9 = {ho(x;)}7—, be the vector of predictions of the baseline model, and let ' = {h'(x;)}i~, be the predictions of a
competing model A’ in the e-level set. Note that y,y’, 9 € {+1, —1}". Now, we can express the risk of the baseline model
R(hy), the risk of the competing model R(%), and the discrepancy between & and h’ ,denoted &(hg, h'), in terms of these
three vectors by

. 1 .
R(ho) = ZH?J—Z/”
1
Ry = Zlly =/l

1, .
(o, ') = 11y’ =31

Next, consider the triangle formed in R" by the points ¥,y and ¢, with side lengths ||y — 9||, ||y’ — §|| and ||y — %/||. The
Triangle Inequality gives us that

ly" =9l < lly = y'll + lly = 3]l-

Substituting using the three equations above, we have
8(ho, ') < R(ho) + R(h).

Since i’ € S,(hg), we have by the definition of the e-level set that R(h') < R(hg) + e. We can then rewrite the above
expression to yield .

5(]10, h/) < 2R(h0) +e€
Recall that 6 (ho) := max/cg 4, 1 6(ho, 1. Since each i’ € S, (hy) satisfies §(hg, ') < 2R(hg) + €, we have the result
that 0, (hg) < 2R(hg) + €. O
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B MIP Formulation for Training the Best Linear Classifier

We fit a classifier that minimizes the training error by solving an optimization problem of the form:

n

min > 1h(z;) # yi]

heH ‘
=1

We solve this optimization problem via the following MIP formulation:
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Here, constraints (6a) set the mistake indicators {; < 1[h(x;) # y;]. These constraints depend on: (i) a margin parameter
~ > 0, which should be set to a small positive number (e.g., v = 1074); and (ii) the “Big-M” parameters M; which can be
setas M; = v+ max, ¢ x ||&; |« since we have fixed ||w|[; = 1 in constraint (6e). Constraint (6¢) produces an improved
lower bound by encoding the necessary condition that any classifier must make exactly one mistake between any two points
(i,') € K with identical features z; = , and conflicting labels. Here, K = {(i,i') : ; = x,y; = +1,y; = —1} is the

set of points with conflicting labels.
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C Additional Experimental Results
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Figure 4. Multiplicity profiles for the compas and pretrial datasets.
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Figure 5. Multiplicity profiles for the recidivism datasets.
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AD HOC MEASUREMENT
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Figure 6. Multiplicity profiles for the compas and pretrial datasets produced via pools of logistic regression models.
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AD HOC MEASUREMENT
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Figure 7. Multiplicity profiles for the recidivism datasets produced via pools of logistic regression models.



