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Abstract
In this work we formulate and formally character-
ize group fairness as a multi-objective optimiza-
tion problem, where each sensitive group risk is
a separate objective. We propose a fairness crite-
rion where a classifier achieves minimax risk and
is Pareto-efficient w.r.t. all groups, avoiding un-
necessary harm, and can lead to the best zero-gap
model if policy dictates so. We provide a simple
optimization algorithm compatible with deep neu-
ral networks to satisfy these constraints. Since
our method does not require test-time access to
sensitive attributes, it can be applied to reduce
worst-case classification errors between outcomes
in unbalanced classification problems. We test
the proposed methodology on real case-studies
of predicting income, ICU patient mortality, skin
lesions classification, and assessing credit risk,
demonstrating how our framework compares fa-
vorably to other approaches.

1. Introduction
Machine learning algorithms play an important role in de-
cision making in society. When these are used to make
high-impact decisions such as hiring, credit-lending, predict-
ing mortality for intensive care unit patients, or classifying
skin lesions, it is paramount to guarantee that the prediction
is both accurate and unbiased with respect to sensitive at-
tributes such as gender or ethnicity. A model that is trained
naively may not have these properties by default; see, for
example (Barocas & Selbst, 2016).

In these critical applications, it is desirable to impose some
fairness criteria. Some well-known definitions of group
fairness in the machine learning literature attempt to make
algorithms whose predictions are independent of the sensi-
tive populations (e.g., Demographic Parity, (Louizos et al.,
2015; Zemel et al., 2013; Feldman et al., 2015)); or al-
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gorithms whose outputs are independent of the sensitive
attribute given the objective’s ground truth (e.g., Equality of
Odds, Equality of Opportunity, (Hardt et al., 2016; Wood-
worth et al., 2017)). Notions of Individual Fairness have
also been proposed (Dwork et al., 2012; Joseph et al., 2016;
Zemel et al., 2013). These can be appropriate in many sce-
narios, but in domains where quality of service is paramount,
such as healthcare, we argue that it is necessary to strive for
models that are as close to fair as possible without introduc-
ing unnecessary harm (Ustun et al., 2019). Additionally, a
model satisfying these characteristics can be post-processed
to introduce a controlled performance degradation that re-
sults in a perfectly fair, albeit harmful classifier. This is a
decision beyond algorithmic design and is left to the policy-
maker, but machine-learning should inform fairness policy
and provide the necessary tools to implement it.

Here we focus on group fairness in terms of predictive risk
disparities, a metric that has been explored in recent works
such as (Calders & Verwer, 2010; Dwork et al., 2012; Feld-
man et al., 2015; Chen et al., 2018; Ustun et al., 2019). We
formulate fairness as a Multi-Objective Optimization Prob-
lem and use Pareto optimality (Mas-Colell et al., 1995) to
define the set of all efficient classifiers, meaning that the
increase in predictive risk on one group is due to a decrease
in the risk of another (no unnecessary harm). We consider
problems where target labels available for training are trust-
worthy (not affected by discrimination), and tackle fairness
as a minimax problem where the goal is to find the classifier
with the smallest maximum group risk among all efficient
models. As a design choice, this implies that a system’s risk
is as good as its worst group performance, but we do not
enforce zero risk disparity if the disadvantaged groups do
not benefit directly. When perfect fairness is achievable, this
reduces to finding the efficient classifier in our hypothesis
class that has the same risks among all groups. Our approach
differs from post-hoc correction methods like the ones pro-
posed in (Hardt et al., 2016; Woodworth et al., 2017), where
zero-disparity is enforced by design, and test-time access to
sensitive attributes is needed. Since our proposed method-
ology does not require the latter, and is not restricted to
binary sensitive and target variables, it can also be used to
reduce worst-case classification error between outcomes in
imbalanced classification scenarions.



Minimax Pareto Fairness: A Multi Objective Perspective

Main Contributions. We formulate group fairness as a
Multi-Objective Optimization Problem (MOOP), where
each objective function is the sensitive group conditional
risk of the model. We formalize no unnecessary harm fair-
ness using Pareto optimality (Mas-Colell et al., 1995); and
characterize the space of Pareto-efficient classifiers for con-
vex models and risk functions, which include deep neural
networks (DNNs) and standard classifier losses. We show
that all efficient classifiers under these conditions can be
recovered with a simple modification of the overall risk
function. We introduce and discuss minimax Pareto fairness
(MMPF), where we select the efficient classifier with the
smallest worst group conditional risk, and provide a simple
and efficient algorithm to recover this classifier using stan-
dard (Stochastic) Gradient Descent on top of an adaptive
loss. Critical to numerous applications in fairness and pri-
vacy, the proposed methodology does not require test-time
access to the sensitive attributes. We also show that if the
policy mandate is to obtain a zero-gap classifier, we can add
harmful post-hoc corrections to the MMPF model, which
ensures the lowest risk levels across all groups under cer-
tain conditions. In addition to this, we demonstrate how
our methodology performs on real tasks such as inferring
income status in the Adult dataset (Dua & Graff, 2017a),
predicting ICU mortality rates in the MIMIC-III dataset
from hospital notes (Johnson et al., 2016), classifying skin
lesions in the HAM10000 dataset (Tschandl et al., 2018),
and assessing credit risk on the German Credit dataset (Dua
& Graff, 2017b). Finally, since our methodology does not
require access test-time sensitive attributes, it can be used
to reduce worst-case classification error between outcomes
in unbalanced classification problems. Code is available at
github.com/natalialmg/MMPF.

2. Related Work
There is a growing body of work on group fairness in ma-
chine learning. Following (Friedler et al., 2019), we em-
pirically compare our methodology against the works of
(Feldman et al., 2015; Kamishima et al., 2012; Zafar et al.,
2015). Our method shares conceptual similarities with (Za-
far et al., 2017; Woodworth et al., 2017; Agarwal et al.,
2018; Oneto et al., 2019), but differs on the fairness ob-
jective and how it is adapted to work with standard neural
networks. Although optimality is often discussed in the fair-
ness literature, it is usually in the context of error-unfairness
tradeoffs (Kearns & Roth, 2019; Kearns et al., 2017), and
not between sensitive groups as studied here. The conflict
between perfect fairness and optimality has been previously
studied in (Kaplow & Shavell, 1999), we acknowledge this
impossibility and formally characterize what is achievable
in the context of machine learning and classification.

The work presented in (Hashimoto et al., 2018) discusses
decoupled classifiers (one per sensitive group) as a way of

minimizing group-risk disparity, but simultaneously cau-
tions against this methodology when presented with insuf-
ficiently large datasets. The works of (Chen et al., 2018;
Ustun et al., 2019) also empirically report the disadvantages
of decoupled classifiers as a way to mitigate risk disparity.
Here we argue for the use of a single classifier since it does
not require access to sensitive group membership during
test time, and might allow transfer learning between diverse
groups when possible. If access to group membership dur-
ing test time is available, this can be naturally incorporated
as part of our observation features; with a sufficiently rich
hypothesis set, this is equivalent to training separate classi-
fiers, with the added benefit of positive transfer on samples
were groups share optimal decision boundaries (Ustun et al.,
2019; Wang et al., 2020).

The work of (Chen et al., 2018) uses the unified bias-
variance decomposition advanced in (Domingos, 2000) to
identify that noise levels across different sub-populations
may differ, making perfect fairness parity impossible with-
out explicitly degrading performance on one group. Their
methodology attempts to bridge the disparity gap by collect-
ing additional samples from high-risk sub-populations. Here
we modify the classifier loss to improve worst-case group
performance without inducing unnecessary harm, which
could be considered synergistic with their methodology.

3. Minimax Pareto Fairness: Formulation
and Basic Properties

Consider we have access to a dataset D = {(xi, yi, ai)}ni=1
containing n independent triplet samples drawn from a joint
distribution (xi, yi, ai) ⇠ P (X,Y,A), where xi 2 X are
our input features (e.g., images, tabular data), yi 2 Y is our
target variable, and ai 2 A indicates group membership or
sensitive status (e.g., ethnicity, gender); our input features
X may or may not explicitly contain A, meaning sensitive
attributes need not be available at deployment.

Let h 2 H be a classifier from a hypothesis class H

trained to infer y from x, h : X ! [0, 1]|Y|. We use
�
Y

2 {0, 1}|Y| : �Yi = 1(Y = yi), i = 1, ..., |Y|, to de-
note the one-hot representation of Y . Given a loss function
` : [0, 1]|Y|

⇥ [0, 1]|Y|
!

+ the group-specific risk of clas-
sifier h on group a is ra(h) = EX,Y |A=a[`(h(X), �Y )]. We
approach fairness as a Multi-Objective Optimization Prob-
lem (MOOP), where the classifier h is our decision variable,
the group-specific risks {ra(h)}

|A|

a=1 are our objective func-
tions, and they conform a risk vector r(h) = {ra(h)}

|A|

a=1.
The MOOP can be stated as

min
h2H

(r1(h), r2(h), . . . , r|A|(h)). (1)

We use dominance (Miettinen, 2008) to define optimality
for a MOOP, namely, Pareto optimality, the definitions are
given below. We later formally characterize the space of
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optimal multi-objective classifiers h for well-known losses,
and argue a fairness criteria where a fair classifier is both
Pareto optimal and has the smallest maximum group risk.
Lemmas and theorems are stated without proof throughout
the main text, proofs are provided in Section A.1.
Definition 3.1. Dominant vector: A vector r0 2 k is said
to dominate r 2

k, noted as r0 � r, if r0i  ri, 8i =
1, . . . , k and 9j : r0j < rj (i.e., strict inequality on at least
one component). Likewise, we denote r0 � r if r 6� r0

Definition 3.2. Dominant classifier: Given a set of group-
specific risk functions r(h), a classifier h0 is said to dom-
inate h

00

, noted as h0
� h

00

, if r(h0) � r(h
00

). Similarily,
we denote h

0
� h

00

if r(h0) � r(h
00

).
Definition 3.3. Pareto front and Pareto optimality: Given
a family of classifiers H, and a set of group-specific risk
functions r(h), the set of Pareto front classifiers is PA,H =
{h 2 H : @h0

2 H|h
0
� h} = {h 2 H : h � h

0
8h

0
2 H}.

The corresponding achievable risks are denoted as PR

A,H =

{r 2
+|A| : 9h 2 PA,H, r = r(h)}. A classifier h is a

Pareto optimal solution to the MOOP in Eq.(1) iff h 2 PA,H.

No unnecessary harm fairness. The Pareto front defines
the best achievable trade-offs between population risks
ra(h). This is already suited for classification and regres-
sion tasks where the sensitive attributes are categorical. Con-
straining the classifier to be in the Pareto front disallows
laziness, there exists no other classifier in the hypothesis
class H that is at least as good on all group-specific risks
and strictly better in one of them. In this sense, we say that
a classifier in the Pareto front does no unnecessary harm.

Literature on fairness has focused on putting constraints on
the norm of discrimination gaps (Zafar et al., 2017; 2015;
Creager et al., 2019; Woodworth et al., 2017). Here we
focus on minimizing the risk on the worst performing group
(Definition 3.4), these two criteria often yield similar results,
and can be shown to be identical for Pareto optimal classi-
fiers when |A| = 2. For more than 2 sensitive groups, there
may be situations where minimum risk discrepancy leads
to higher minimax risk (e.g., a classifier that increases both
the minimum and maximum risk but decreases their gap
is still optimal if a third group sees their risk diminished).
Constraining solutions to be Pareto optimal and minimizing
the maximum risk preserves the overall idea of reducing
risk disparities while avoiding some potentially undesirable
tradeoffs. We formalize this next:
Definition 3.4. Minimax Pareto fair classifier and Minimax
Pareto fair vector: A classifier h⇤ is a Minimax Pareto fair
classifier if it minimizes the worst group-specific risk among
all Pareto front classifiers, h

⇤
2 argmin

h2PA,H

max
a2A

ra(h) =

argmin
h2PA,H

kr(h)k1, with corresponding Minimax Pareto-fair

risk vector r⇤ = r(h⇤).
An important consequence of this formulation is that when

the hypothesis class H contains a classifier that is both
Pareto optimal and has zero risk disparity, this classifier is
also Minimax Pareto fair.
Lemma 3.1. If 9h⇤

2 PA,H : ra(h⇤) = ra0(h⇤), 8a, a0 2
A then r(h⇤) = argminr2P

R

A,H
krk1.

Even when perfect equality of risk is desirable, Pareto classi-
fiers still serve as useful intermediaries. To this end, Lemma
3.2, shows that any classifier in H that attains equality of
risk has worse performance on all groups than the Minimax
Pareto fair classifier. Furthermore, we can post-process the
Pareto fair classifier to be perfectly fair by increasing risk on
over-performing groups, this procedure is still no worse than
obtaining an equal risk classifier in our hypothesis class.
Lemma 3.2. Let hER 2 H be an equal risk classifier
such that ra(hER) = ra0(hER)8 a, a0, and let h⇤ be the
Pareto fair classifier. Additionally, define the Pareto fair
post-processed equal risk classifier h

⇤

ER : ra(h⇤

ER) =
||r(h⇤)||18 a 2 A, then we have

ra(hER) � ra(h⇤

ER) � ra(h⇤) 8a 2 A.

We provide a fair optimal classifier that improves the worst
group risk. It also serves as an intermediate step to get
perfect fairness; the decision between the two is left to the
policymaker. To exemplify these notions graphically, Figure
1 shows a scenario with binary sensitive attributes a where
none of the Pareto classifiers achieve equality of risk. Here
the noise level differs between groups, and the Pareto fair
risk r⇤ is not achieved by either a Naive classifier (mini-
mizes expected global risk), or a classifier where groups
are re-sampled to appear with equal probability (Balanced
classifier). We observe how the discrimination gap along the
Pareto front is closed by trading off performance from one
group to another. The gap can be further closed by moving
outside the Pareto front, but this discrimination reduction is
a result of performance degradation on the privileged group,
with no tangible upside to the underprivileged one.

Section 5 provides a method to recover the minimax Pareto
fair classifier (MMPF) from training samples. Before that,
Section 4 shows important properties of Pareto-efficient
classifiers for convex hypothesis classes, including DNNs,
and risk functions.

4. Analysis of Pareto Optimal Solutions
In this section we characterize the Pareto front for convex
hypothesis classes and convex risk functions. under these
conditions the models have attractive regularity properties.
Definition 4.1. Convex hypothesis class and risk function:
A hypothesis class H ✓ {h : X ! [0, 1]|Y|

} is convex iff
8h

0
, h

00
2 H, � 2 [0, 1],! �h

0 + (1� �)h00
2 H.

A risk function r : H ! + is convex iff 8� 2

[0, 1] r(�h0 + (1� �)h00)  �r(h0) + (1� �)r(h00)
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Figure 1. Achievable risk trade-offs for a binary classification prob-
lem Y 2 {0, 1} with two unbalanced groups A 2 {0, 1}, and
covariates X|A ⇠ N(µA, 1) (parameters provided in Supplemen-
tary Material). Left: Pareto front risks and the equal risk line; the
minimax Pareto fair point (green) does not achieve equality of risk;
the trade-offs attained by standard (Naive, blue) classifier and a
class-rebalanced (Balanced, cyan) classifier are also shown. The
Utopia point (red) corresponds to the minimum achievable risk
for each group. Right: Parametrization of group risks along the
Pareto front line, and on the minimax Pareto fair to Equal Risk
line (Unnecessary harm). All points in the Pareto front efficiently
trade-off performance between groups; the trajectory outside of
the Pareto front, however, does not improve performance on the
worst performing group r0, it only degrades performance on r1.

Definition 4.2. Convex Pareto front: A Pareto front
P

R

A,H ✓
|A| is convex if 8r, r0 2 P

R

A,H,� 2

[0, 1], 9r� 2 P
R

A,H such that r� � �r + (1� �)r0

Convexity of the hypothesis class for DNNs can be seen as a
natural consequence of the Universal Function Approxima-
tion Theorem, shown for fully connected neural networks in
(Hornik et al., 1989), and more recently for convolutional
NNs (CNNs) in (Zhou, 2020). Note that this convexity is
w.r.t. its function output space (i.e., for any two classifiers
in the hypothesis class h1, h2, there exists a classifier in this
same family h� : h�(x) = (1� �)h1(x) + �h2(x)8x,� 2

[0, 1]), the parameter space itself may be highly non-convex.
As for risk functions, many standard classification losses
such as Brier Score (rBS

a (h) = EX,Y |a[k�
Y
� h(X)k22])

and Cross Entropy (rCE
a (h) = EX,Y |a[h�

Y
, ln(h(X))i])

are convex w.r.t. the classifier output.

The following theorem (Theorem 4.1) shows that under
these conditions, the Pareto front can be fully characterized
by solving the linear weighting problem:

ĥ = argmin
h2H

P
|A|

a=1 µara(h);

kµk11 = 1, µa > 0, a = 1, ..., |A|.

(2)

We use the shorthand notation h
µ to describe a classifier

that solves Problem 2; likewise, we denote r(µ) = rhµ .
We utilize the results derived in (Geoffrion, 1968) to show
that when both the hypothesis class H and the risk functions
are convex, any optimal classifier h 2 PA,H is a solution
to Problem 2 for some choice of weights µ. Note that even

when the risk functions and hypothesis class are non-convex,
solutions to Problem 2 still belong to the Pareto front.
Theorem 4.1. Given H a convex hypothesis class and
{ra(h)}a2A convex risk functions then:

1. The Pareto front is convex: 8r, r0 2 P
R

A,H, � 2

[0, 1], 9r00 2 P
R

A,H : r00 � �r + (1� �)r0.

2. Every Pareto solution is a solution to Problem 2: 8r̂ 2

P
R

A,H, 9µ : r̂ = r(µ).
We can then characterize the Pareto optimal classifiers for
Brier score (BS) and Cross-Entropy (CE) in the infinite sam-
ples and unbounded hypothesis class regime. The following
provides an expression for the optimal classifiers and risks
in terms of the probability densities and weights.
Theorem 4.2. Given input features X 2 X , categorical
target Y 2 Y and sensitive group A 2 A, with joint distri-
bution p(X,Y,A), and weights µ = {µa}a2A, the optimal
predictor to the linear weighting problem h(µ) for both
Brier score and Cross-Entropy is

h
µ(x) =

P
a2A

µap(x|a)p(y|x,a)P
a2A

µap(x|a)
,

with corresponding risks

r
BS
a (µ) = EX,Y |a[||�

Y
� p(y|X, a)||22]+

EX|a

h
||p(y|X, a)� h

µ(X)||22

i
,

r
CE
a (µ) = H(Y |X, a)+

EX|a

h
DKL

⇣
p(y|X, a)

����hµ(X)
⌘i

,

where p(y|X, a) = {p(Y = yi|X,A = a)}|Y|

i=1 is
the probability mass vector of Y given X and A = a.
H(Y |X, a) is the conditional entropy H(Y |X,A = a) =
EX|A=a[H(Y |X = X,A = a)].

The optimal risks for BS and CE are decomposed as the
sum of two non-negative terms. The first term corresponds
to the minimum achievable group risk, attained with the
group-specific optimal classifier p(y|X, a), this is indepen-
dent of h

µ. The second term measures the discrepancy
between p(y|X, a) and the optimal predictor h

µ. Since
both risk functions are convex, this is a full characterization
of all asymptotically optimal multi-objective classifiers; this
includes our proposed minimax Pareto fair classifier.

From the expressions in Theorem 4.2 we observe that if the
separability condition Y ? A|X is satisfied, the minimum
risk for each subgroup is attained. Here the Pareto front only
contains the Utopia point (see Figure 1). Additionally, if the
entropy of the sensitive attribute given our features is small
(A is well predicted from X), the Pareto front also tends to
the Utopia point. This is formalized in the following lemma.
Lemma 4.3. In the conditions of Theorem 4.2 we observe
that if Y ? A|X then

r
BS
a (µ) = EX,Y |a[||�

Y
� p(y|X)||22] 8µ,

r
CE
a (µ) = H(Y |X) 8µ.
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Likewise, if H(A|X) ! 0 then
r
BS
a (µ) ! EX,Y |a[||�

Y
� p(y|X, a)||22] 8µ,

r
CE
a (µ) ! H(Y |X, a) 8µ.

Note that even on these ideal cases (Y ? A | X or
H(A|X) ! 0), the baseline risks between groups might dif-
fer. Therefore, perfect equality of risk may only be achieved
by selecting sub-optimal classifiers (unnecessary harm), or
by improving the input features X; this observation concurs
with previous analysis on classifiers’ bias-variance tradeoffs
done in (Chen et al., 2018; Domingos, 2000).

5. Minimax Pareto Fair Optimization
Our goal is to find the Pareto classifier h⇤ that minimizes
the risk of the worst performing sensitive groups (i.e., h⇤

2

argmin
h2PA,H

kr(h)k1). It is important to note that the classifier

h
⇤ is not necessarily unique, nor is its corresponding risk

vector r⇤ = r(h⇤). Throughout this section, we assume that
the hypothesis for Theorem 4.1 are satisfied, therefore, for
every minimax vector r⇤ there is a set of weights µ⇤ such
that r⇤ is a unique solution for Problem 2 (r⇤ = r(µ⇤)).

Computing µ⇤ directly can be challenging, even when
closed form solutions for the classifiers and risks are avail-
able, as shown in Theorem 4.2 for Brier Score and Cross
Entropy. A potential approach to estimate µ⇤ would be to
perform sub-gradient descent on kr(µ)k1. This approach
suffers from two main setbacks. First, closed form for-
mulas for the Jacobian rµr(µ) require accurate estimates
of the conditional distributions p(x|a) and p(y|x, a); or of
p(a), p(a|x) and p(y|x, a). Secondly, kr(µ)k1 can poten-
tially have local minima on µ.

We propose a simple optimization method to recover µ⇤ that
only requires access to function evaluations of r(µ). Note
that given µ, the risk vector r(µ) can be obtained by esti-
mating the optimal classifier with the expression derived in
Theorem 4.2 (plug-in estimation), which requires the condi-
tional densities p(a), p(a|x) and p(y|x, a). Another option
is to directly minimize Problem, 2 (joint estimation). Both
approaches can be implemented using DNNs for estimation.
Note that the second approach makes use of all samples to
estimate a single classifier, while estimating the densities
p(a|x), p(y|x, a) individually may suffer from data frag-
mentation and cannot benefit from transfer learning, which
could be harmful for a sensitive group with limited data
(Ustun et al., 2019; Wang et al., 2020).

To avoid blind sampling of the weighting vectors µ, Theo-
rem 5.1 summarizes important properties that any weighting
vector µ0 must satisfy to improve the minimax risk at any
given iteration (µ0 : kr(µ0)k1 < kr(µ)k1).
Theorem 5.1. Let PR

A,H be a Pareto front, and r(µ) 2

P
R

A,H denote the solution to the linear weighting Prob-
lem 2. For any µ0

62 argmin
µ2�|A|�1

||r(µ)||1, and µ⇤
2

argmin
µ2�|A|�1

||r(µ)||1, the sets Ni = {µ : ri(µ) <

||r(µ0)||1} satisfy:

1. µ⇤
2

T
i2A

Ni;

2. If µ 2 Ni ! �µ+ (1� �)ei 2 Ni, 8� 2 [0, 1], i =
1, . . . , |A|, where ei denotes the standard basis vector;

3. 8 I ✓ A, µ : µA\I = 0 ! µ 2
S
i2I

Ni;

4. If r(µ) is also continuous in µ, then 8 I ✓ A such
that µ 2

T
i2I

Ni ! 9✏ > 0 : B✏(µ) ⇢
T
i2I

Ni;

5. If PR

A,H is also convex, then r(µ⇤) 2 argmin
r2P

R

A,H

||r||1.

Therefore, finding an updated weighting vector µ that dimin-
ishes the minimax risk is equivalent to finding an element in
the intersection of |A| subsets defined on the �|A|�1 sim-
plex. These subsets Ni are themselves star-shaped sets w.r.t.
the basis element ei, whose intersections \i2INi form open
sets. Property 3 in the theorem provides a straightforward
rule to find elements belonging to any arbitrary union of the
coordinate descent regions [i2INi.

Figure 2. Synthetic data experiment with 3 sensitive groups. (a)
and (d) show a simplex diagram of the linear weights µ on the
fifth and tenth iteration of the APStar algorithm; blue, green and
red shaded areas correspond to the Ni areas at iterations, t =
5, t = 10, the optimal linear weight lies in their intersection. (b)
and (c) show the risk values and linear weights as a function of
the iteration counter; shaded regions represent standard deviations
across 5 randomized runs. (e) shows relative error as a function of
iterations for both risks and weights; (f) shows similar information
comparing the maximum risk against the theoretical optimal. Risks
for all groups converge to the minimax value, while the weights
converge to µ⇤. Simulation details are provided in Section A.4.

Using these observations, we propose the Approximate Pro-
jection onto Star Sets (APStar) Algorithm (Algorithm 1)
to iteratively refine the minimax risk by updating the lin-
ear weighting vector. The main intuition behind this algo-
rithm is that whenever we observe a weighting vector that
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Algorithm 1 APStar
Input: hypothesis class: H, initial weights: µ, risk functions:

ra(·), optimizer: {arg}min
h2H

|A|P
i=1

µiri(h), ↵ 2 (0, 1), Kmin

Initialize:
h, r(µ) {arg}min

h2H

P
µiri(h)

r̄  kr(µ)k1; K  1.
repeat

1µ  {1(ri(µ) � r̄)}|A|

i=1

µ (↵µ+ 1�↵
Kk1µk

1
1
1µ) K

(K�1)↵+1

h, r(µ) {arg}min
h2H

P
µiri(h); K  K + 1

if kr(µ)k1 < r̄ then
r̄  kr(µ)k1, K  min(K,Kmin)
h⇤,µ⇤, r⇤

 h,µ, r(µ)
end if

until Convergence
Return: h⇤,µ⇤, r⇤

reduces the risk in a subset of groups I (µt
2 \i2INi),

we can generate a new vector µt+1 that linearly interpo-
lates between µt and a vector µA\I

2 [i2A\INi that be-
longs to the union of the unsatisfied group risks (µt+1

!

↵µt + (1�↵)µA\I). An analysis of the convergence prop-
erties of APStar is provided in Section A.2.

Figure 2 illustrates how the linear weights µ are updated on
a synthetic example, reducing the minimax risk; the example
shown is of a classifier with 3 sensitive groups where perfect
fairness is attainable, we observe how risks converge to their
common final value r⇤ and that the weights µ⇤ required to
recover this are not equally-weighted vector.

In Section 6 we apply the APStar algorithm to synthetic and
real datasets using DNNs and SGD to solve Problem 2. Note
that APStar can be applied to non-convex risk functions and
hypothesis classes, in which case the solutions to Problem
2 form a subset of the Pareto front and may not offer a full
characterization of all optimal solutions. In Section A.3
we provide implementation details; Pytorch code for this
algorithm will be made available.

6. Experiments and Results
We applied the proposed APStar algorithm to learn a min-
imax Pareto fair classifier (MMPF) and show how our ap-
proach produces well calibrated models that improve min-
imax performance across several metrics beyond the risk
measure itself. While details are provided in Section A.2,
Figure 3 illustrates how our algorithm is empirically conver-
gent and significantly faster than random sampling and the
multiplicative weight update (MWU) algorithm proposed in
(Chen et al., 2017) for minimax optimization in the context
of robustness. In sections A.4 and A.5 we validate the opti-
mization algorithm on synthetic data and compare joint ver-
sus plug-in estimation. Here we compare the performance

of our method against other state of the art approaches on a
variety of public fairness datasets.

Figure 3. Synthetic data experiment on star-shaped sets. (a) Ran-
domly sampled star sets satisfying the conditions of Theorem 5.1;
a starting point is sampled (Blue), trajectories recovered by the
APStar algorithm are recorded until convergence (Red); number
of iterations and intersection area are shown for all examples. (b)
Empirical distribution of number of iterations required to converge
versus percentage of linear weights that lie in the triple intersec-
tion; values are shown for APStar, random sampling, and the
multiplicative weight update (MWU) algorithm proposed in (Chen
et al., 2017) for minimax optimization. The number of iterations
required by the algorithm is well below the random sampler, this
is especially apparent for low area ratio scenarios.

6.1. Real Datasets: Methods and Metrics

We evaluate our method on mortality prediction (MIMIC-
III), skin lesion classification (HAM10000), income predic-
tion (Adult), and credit lending (German). The latter two
are common benchmarks in the fairness literature. Results
are reported for joint estimation (MMPF) and plug-in esti-
mation (MMPF P), presented in Section 5. We evaluate a
model trained to minimize the average risk (Naive) and one
that samples all sensitive groups equally (Balanced). When
applicable, we compare our results against the methodolo-
gies proposed in (Hardt et al., 2016; Zafar et al., 2015;
Kamishima et al., 2012; Feldman et al., 2015); for imple-
mentations on all methods except (Hardt et al., 2016), we
used the unified test-bed provided in (Friedler et al., 2019).
A description of these methods is provided in Section A.6.

Metrics used for evaluation include accuracy (Acc), Brier
Score (BS) and Cross-Entropy (CE), values are reported per
sensitive attribute, standard deviations computed across 5
splits are shown when available. For datasets containing
more than two sensitive groups (MIMIC-III, HAM10000)
we report dataset average (sample mean), group-normalized
average (group mean), worst performing group (worst
group), and largest difference between groups (disparity).
Note that the latter two are especially important in our set-
ting, since our explicit focus is to minimize worst-case per-
formance, and disparity is a common measure of interest in
fairness literature. For an in-depth description of these met-
rics and datasets, refer to Sections A.7 and A.8. Additional
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tables showing these and other metrics on a per-group basis
are provided in Section A.10. All tables bold the best result
for disparity and worst group risk.

Similarly to (Kamishima et al., 2012; Zafar et al., 2015;
Hardt et al., 2016; Woodworth et al., 2017), we omit the sen-
sitive attribute from our observation features, which broad-
ens the potential application of the framework. Classifiers
are implemented using neural networks and/or linear lo-
gistic regression; for details on architectures and hyper-
parameters, refer to Section A.9.

6.2. Predicting Mortality in Intensive Care Patients

We used clinical notes collected from adult ICU patients
at the Beth Israel Deaconess Medical Center (MIMIC-III
dataset) (Johnson et al., 2016) to predict patient mortal-
ity. We study fairness with respect to age (adult/senior),
ethnicity (white/nonwhite), and outcome (alive/deceased)
simultaneously (8 sensitive groups). Outcome is included
as a sensitive attribute because, in our experiments, patients
who ultimately passed away on ICU were under-served by a
Naive classifier (high classifier loss). Using the target label
as sensitive attribute addresses class imbalance by requiring
similar risk performance on each target label. It also demon-
strates a use-case where group membership would not be
available at test-time.

We use a fully connected NN with BS loss as the base hy-
pothesis class (results with CE provided in Section A.10),
input features are Tf-idf statistics on the 10k most frequent
words from clinical notes, mirroring (Chen et al., 2018). For
an even comparison, we provided the feature embeddings
of the Naive classifier as input to the baselines, since the
implementation in (Friedler et al., 2019) only includes linear
classifiers, this was also done since some of the available
implementations failed to converge in a reasonable time
with the original inputs. Table 1 reports Acc and BS of
tested methodologies. Note that, while the Balanced classi-
fier has significantly better worst-case BS performance than
the Naive classifier, MMPF is better still; these performance
gains are also reflected on Acc, showing that this improve-
ment goes beyond the training metric. Plug-in performance
(MMPF P) is not an improvement over joint estimation. Ac-
curacy comparison table incorporates the post-processing
methodology described in (Hardt et al., 2016) to achieve
zero accuracy disparity (“+H” suffix). Hardt post-processing
decreases the accuracy disparity gap w.r.t. the baseline meth-
ods but requires test-time access to group membership. The
best result is obtained on MMPF H, but we note that the best
minimax risk is still attained on the original MMPF model.

6.3. Skin Lesion Classification

The HAM10000 dataset (Tschandl et al., 2018) contains
over 10k dermatoscopic images of 7 types of skin lesions;
with ratios between 67% and 1.1%. A Naive classifier exhib-

Table 1. MIMIC dataset. Group priors range from 0.4% to 57%.
In this and all tables we bold the best result for disparity and worst
group risk.

(a) Acc comparison
Sample
mean

Group
mean

Worst
group Disparity

Naive 89.5 ±0.2 61.9 ±1.7 19.0 ±2.0 80.5 ±1.3
Balanced 79.4±0.6 77.5±1.4 66.8±2.2 22.6±2.3
Zafar 86.2±0.3 65.8±1.8 32.0±2.4 62.9±3.6
Feldman 88.6±2.4 64.4±2.9 28.7±2.4 72.1±5.5
Kamishima 89.3±0.2 63.6±2.0 25.1±5.1 76.4±5.2
MMPF 76.2±0.2 78.3±1.5 72.6±1.7 17.1±3.5
MMPF P 75.5±1.0 76.8±1.3 70.7±2.1 17.8±3.8

Balanced+H 75.6±1.1 71.7±1.6 65.6±2.8 19.1±1.8
Zafar+H 62.8±1.6 58.3±2.1 51.5±2.8 17.8±3.1
MMPF+H 72.4±1.1 72.3±1.5 72.0±3.7 11.4±3.5

(b) BS comparison

Sample
mean

Group
mean

Worst
group Disparity

Naive .16 ±.01 .51 ±.02 1.05 ±.01 1.03 ±.02
Balanced .28±.01 .31±.01 .42±.01 .25±.04
Zafar .27±.01 .67±.04 1.34±.05 1.25±.07
Feldman .19±.04 .62±.04 1.26±.08 1.29±.08
Kamishima .16±.01 .53±.03 1.06±.04 1.11±.08
MMPF .32±.01 .3±.01 .35±.02 .17±.03
MMPF P .33±.01 .32±.01 .37±.01 .17±.04

ited no significant discrimination based on age or race. We
instead chose to use the diagnosis class as both the target and
sensitive variable. It was not possible to compare against
(Hardt et al., 2016) since the sensitive attribute is perfectly
predictive of the outcome; likewise, (Zafar et al., 2015) and
(Kamishima et al., 2012) cannot handle non-binary target
attributes in their provided implementations. Table 2 shows
results for MMFP P, since plug-in estimation is equivalent to
joint estimation when A = Y , but enables cheaper APStar
iterations (see Section A.5). The MMPF classifier improves
minimax BS and Acc when compared to both Naive and
Balanced classifiers.

Table 2. HAM10000 dataset. Group priors range from 1% to 67%.
(a) Acc comparison

Sample
mean

Group
mean

Worst
group Disparity

Naive 78.5 ± 0.5 50.8 ± 1.9 2.6 ±3.5 93.7 ±1.1
Balanced 70.1 ±2.1 70.1 ±2.2 52.6 ±5.3 32.5 ± 4.6
MMPF P 64.7 ±1.2 66.7 ± 3.5 56.9 ±3.1 19.8 ±6.6

(b) BS comparison
Sample
mean

Group
mean

Worst
group Disparity

Naive .31±.01 .69±.3 1.38±.04 1.29±.04
Balanced .41±.02 .42±.03 0.64±.05 0.45±.07
MMPF P .49±.02 .46±.04 0.56±0.4 0.23±.06
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6.4. Income Prediction and Credit Risk Assesment

We predict income in the Adult UCI dataset (Dua & Graff,
2017a) and assess credit risk in the German Credit dataset
(Dua & Graff, 2017b). We select gender (Male/Female)
as our sensitive attribute, additional results for gender and
ethnicity (Male/Female and White/Other) are also shown
for the Adult dataset. Tables 3, 4, and 5 show results for
linear logistic regression (LR suffix) and a fully connected
NN. Note that linear logistic regression is not a convex
hypothesis class, but is included to compare evenly against
the baselines.

Our approach leads to the best worst-case performance in
Acc and CE on the Adult dataset, although all methods per-
form similarly; this is especially true for the gender case,
where Kamishima has a slight advantage in terms of stan-
dard deviation in CE. On the German dataset, our method
produces the best worst-case CE results, and smallest dispar-
ities in both Acc and CE; Feldman does, however, have test
time access to sensitive attributes, which may explain the dif-
ference in Acc. We show results for Hardt post-processing
in Section A.10, with similar conclusions to the ones made
on the MIMIC dataset.
Table 3. Adult gender dataset. Females represent 32% of samples.

(a) Acc comparison
Female Male Disparity

Naive LR 92.3±0.4 80.5±0.4 11.9±0.7
Balanced LR 92.3±0.3 80.3±0.7 12.0±0.7
Zafar 92.5±0.3 80.9±0.3 11.6±0.4
Feldman 92.3±0.3 80.7±0.2 11.6±0.1
Kamishima 92.6±0.4 80.9±0.4 11.7±0.7
MMPF LR 91.9±0.4 81.0±0.4 10.9±0.7
MMPF 92.1±0.3 81.3±0.3 10.8±0.5
MMPF LR P 92.0±0.4 81.0±0.5 11.0±0.6
MMPF P 91.7±0.3 81.5±0.5 10.1±0.5

(b) CE comparison
Female Male Disparity

Naive LR .204±.009 .411±.006 .207±.007
Balanced LR .204±.011 .416±.011 .211±.005
Zafar .202±.018 .398±.006 .195±.023
Feldman .201±.004 .403±.004 .203±.006
Kamishima .189±.006 .395±.004 .206±.007
MMPF LR .204±.008 .395±.006 .19±.011
MMPF .21±.019 .403±.025 .193±.013
MMPF LR P .208±.008 .395±.005 .187±.01
MMPF P .227±.019 .403±.023 .176±.014

7. Discussion
Here we formulate group fairness as a multi objective opti-
mization problem where each group-specific risk is an ob-
jective function. Our goal is to recover an efficient classifier
that reduces worst-case group risks ethically (i.e., avoiding
unnecessary harm). We consider problems where target
labels available for training are trustworthy (not affected by
discrimination). We formally characterized Pareto optimal
solutions for a family of models and risk functions, yielding
insight on the fundamental sources of risk trade-offs. We

Table 4. Adult ethnicity and gender dataset. Group priors range
from 6% to 60%.

(a) Acc comparison
Sample
mean

Group
mean

Worst
group Disparity

Naive LR 84.7±0.3 87.8±0.1 80.6±0.5 14.1±1.0
Balanced LR 84.7±0.3 88.0±0.3 80.5±0.5 14.5±1.0
Zafar 84.7±0.2 87.9±0.2 80.6±0.5 14.5±0.9
Feldman 84.5±0.2 87.7±0.3 80.4±0.3 14.7±0.9
Kamishima 84.3±0.8 87.8±0.3 80.0±1.2 15.2±1.8
MMPF LR 84.5±0.2 87.8±0.3 80.6±0.5 14.0±1.0
MMPF 84.8±0.3 87.8±0.4 80.9±0.6 13.6±1.5
MMPF LR P 84.6±0.3 87.7±0.2 80.7±0.5 13.9±1.0
MMPF P 84.6±0.4 87.6±0.5 81.0±0.8 13.4±1.5

(b) CE comparison
Sample
mean

Group
mean

Worst
group Disparity

Naive LR .332±.004 .268±.004 .408±.008 .268±.016
Balanced LR .333±.004 .268±.005 .411±.008 .273±.015
Zafar .334±.005 .273±.005 .409±.01 .266±.03
Feldman .337±.003 .276±.006 .412±.006 .262±.016
Kamishima .337±.015 .275±.009 .414±.023 .269±.026
MMPF LR .334±.004 .274±.005 .404±.007 .251±.015
MMPF .334±.005 .272±.003 .404±.009 .263±.022
MMPF LR P .335±.005 .275±.006 .405±.006 .251±.01
MMPF P .345±.009 .284±.01 .41±.014 .258±.03

Table 5. German dataset. Females represent 30% of samples.
(a) Acc comparison

Female Male Disparity

Naive LR 70.7±7.3 71.2±4.5 8.8±4.7
Balanced LR 71.6±5.9 70.9±4.1 5.8±3.6
Zafar 73.0±5.6 71.0±3.5 5.8±3.5
Feldman 73.5±8.6 71.9±4.3 7.9±4.4
Kamishima 68.8±6.8 72.7±2.6 6.0±4.4
MMPF LR 72.5±5.5 71.6±2.8 5.0±2.6
MMPF LR P 70.7±4.5 71.5±3.6 4.4±0.5

(b) CE comparison
Female Male Disparity

Naive LR .607±.1 .559±.069 .127±.064
Balanced LR .594±.082 .568±.068 .096±.05
Zafar .567±.09 .735±.205 .273±.151
Feldman .564±.096 .551±.063 .091±.068
Kamishima .62±.064 .545±.062 .075±.067
MMPF LR .565±.04 .544±.046 .048±.041
MMPF LR P .563±.043 .537±.051 .057±.034

proposed a simple algorithm to recover a model that im-
proves minimax group risk (MMPF), and does not require
test-time access to sensitive attributes.

We demonstrated the proposed framework and optimiza-
tion algorithm on several real-world case studies, achieving
state-of-the-art performance. The algorithm is straightfor-
ward to implement, and is agnostic to the hypothesis class,
risk function and optimization method, which allows inte-
gration with a variety of classification pipelines, including
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neural networks. If the hypothesis class or risk functions are
not convex, the algorithm can still be deployed to recover
Pareto-efficient models that reduce minimax risks, though
minimax optimality might not be achievable by optimizing
a linear weighting of the risk functions. While this paper
addresses minimal harm, other considerations like marginal
risk tradeoffs between groups may be of interest. Control-
ling these in the proposed framework can be achieved by
adding a constraint on the ratio between linear weights.

As an avenue of future research, we would like to auto-
matically identify high-risk sub-populations as part of the
learning process and attack risk disparities as they arise,
rather than relying on preexisting notions of disadvantaged
groups. The APStar algorithm is empirically convergent, but
a formal proof or counterexample is desireable. We strongly
believe that Pareto-efficient notions of fairness are of great
interest for several applications, especially so on domains
such as healthcare, where quality of service is paramount.
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