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A. Supplementary Material
A.1. Proofs

Here we provide proof outlines for all lemmas and theorems
in sections 3,4, and 5.

Lemma 3.1. If 9h⇤
2 PA,H : ra(h⇤) =

ra0(h⇤), 8a, a0 2 A then r(h⇤) = argmin
r2P

R

A,H

krk1.

Proof. By contradiction, assume 9h0
2 PA,H :

kr(h0)k1 < kr(h⇤)k1. Then we have

ra(h
0)  kr(h0)k1 < kr(h⇤)k1 = ra(h

⇤), 8a 2 A

And therefore rh0 � rh⇤ ! h⇤ 62 PA,H, which contradicts
the hypothesis.

Lemma 3.2. Let hER 2 H be an equal risk classifier
such that ra(hER) = ra0(hER)8 a, a0, and let h⇤ be the
Pareto fair classifier. Additionally, define the Pareto fair
post-processed equal risk classifier h

⇤

ER : ra(h⇤

ER) =
||r(h⇤)||18 a 2 A, then we have

Proof. Note that krhERk1 � krh⇤k1, otherwise
krhERk1 < krh⇤k1 and also hER � h

⇤, which contra-
dicts the definition of h⇤.

The statement therefore follows from ra(hER) =
krhERk1 � krh⇤k1 = ra(h⇤

ER) � ra(h⇤) 8a 2 A.

Theorem 4.1. Given H a convex hypothesis class and
{ra(h)}a2A convex risk functions then:

1. The Pareto front is convex: 8r, r0 2 P
R

A,H, � 2

[0, 1], 9r00 2 P
R

A,H : r00 � �r + (1� �)r0.

2. Every Pareto solution is a solution to Problem 2: 8r̂ 2
P

R

A,H, 9µ : r̂ = r(µ).

Proof. We prove the first item of the theorem statement, the
second item is a direct application of the results in (Geof-
frion, 1968).

Let h
0
, h

00
2 PA,H, with corresponding risk vectors

rh0 , rh00 . Using the convexity of ra(h), 8� 2 [0, 1] we
have

�ra(h
0) + (1� �)ra(h

0) � ra(�h+ (1� �)h00).

Since H is convex, h� = �h
0 + (1� �)h00

2 H. We have
two possibilities;

• h
�
2 PA,H, therefore, by definition rh� 2 P

R

A,H and
rh� � �r0 + (1� �)r00;;

• h
�
/2 PA,H, therefore 9 r̂ 2 P

R

A,H, r̂ � r�.

In both cases, for all risk vectors r0, r00 2 P
R

A,H,� 2

[0, 1] 9 r̂ 2 P
R

A,H : r̂ � �r0 + (1� �)r00

Theorem 4.2. Given input features X 2 X and categori-
cal target and sensitive group variables Y 2 Y and A 2 A

respectively, with joint distribution p(X,Y,A), and linear
weights µ = {µa}a2A, the optimal predictor to the linear
weighting problem h(µ) for both Brier score and Cross-
Entropy is

h
µ(x) =

P
a2A

µap(x|a)p(y|x,a)P
a2A

µap(x|a)
,

with corresponding risks

r
BS
a (µ) = EX,Y |a[||�

Y
� p(y|X, a)||22]+

EX|a

h
||p(y|X, a)� h

µ(X)||22

i
,

r
CE
a (µ) = H(Y |X, a)+

EX|a

h
DKL

⇣
p(y|X, a)

����hµ(X)
⌘i

,

where p(y|X, a) = {p(Y = yi|X,A = a)}|Y|

i=1 is
the probability mass vector of Y given X and A = a.
H(Y |X, a) is the conditional entropy H(Y |X,A = a) =
EX|A=a[H(Y |X = X,A = a)].

Proof. We observe that the linear loss function
P
a2A

µara(h)

can be decomposed as
P
a2A

µara(h)

=
P
a2A

µaEX|a

⇥
EY |X,a[`(h(X), Y )]

⇤

=
P
a2A

µaEX

⇥p(X|a)
p(X) EY |X,a[`(h(X), Y )]

⇤

=
P
a2A

µaEX

⇥p(X|a)
p(X) EY |X [p(Y |X,a)

p(Y |X) `(h(X), Y )]
⇤

= EX

⇥
1

p(X)EY |X [

P
a2A

µap(X|a)p(Y |X,a)

p(Y |X) `(h(X), Y )]
⇤

= EX

⇥
P

a2A

µap(X|a)

p(X) EY⇠Pµ(Y |X)[`(h(X), Y )]
⇤
,

with P
µ(Y |X) =

P
a2A

µap(X|a)p(y|X,a)
P

a2A

µap(X|a) , and denoting

p(y|X, a) = {p(Y = yi|X, a)}|Y|

i=1 the conditional prob-
ability mass vector of Y |X, a.

For both the Cross-Entropy loss `
CE(h(X), Y ) =

h�
Y
, ln(h(X))i and the Brier score loss `BS(h(X), Y ) =

k�
Y
� h(X)k22, the minimizer of EY⇠P (Y |X)[`(h(X), Y )]

is attained at h(X) = P (Y |X). Therefore, we can plug in
this optimal estimator to recover
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h
µ(x) =

P
a2A

µap(x|a)p(y|x,a)P
a2A

µap(x|a)
.

Plugging in the optimal classifier hµ(x) on the risk formu-
lations we get the expressions for both scores as analyzed
next.

Brier Score:

r
BS
a (µ) =
= EX,Y |a[||�

Y
� h

µ(X)||22]
= EX,Y |a[||�

Y
� p(y|X, a) + p(y|X, a)� h

µ(X)||22]
= EX,Y |a[||�

Y
� p(y|X, a)||22]

+EX,Y |a[||p(y|X, a)� h
µ(X)||22]+

+2EX,Y |a

h
[�Y � p(y|X, a)]T [p(y|X, a)� h

µ(X)]
i

= r
BSmin
a + EX|a

h
||p(y|X, a)� h

µ(X)||22

i

+2EX|a

h
[p(y|X, a)� p(y|X, a)]T

i⇥
p(y|X, a)� h

µ(X)
⇤

= r
BSmin
a + EX|a

h
||p(y|X, a)� h

µ(X)||22

i
,

where the equalities are attained by expanding the l2-norm,
observing that p(y|X, a) and h(X) do not depend on ran-
dom variable Y , and also that EY |X,a[�

Y ] = p(y|X, a).
We also denoted r

BSmin
a = EX,Y |a[||�

Y
� p(y|X, a)||22],

which is the risk attained by the Bayes optimal estimator for
group a.

Cross Entropy:

r
CE
a (µ) =

= �EX,Y |a

hP
|Y|

i=1 �
Y
i log[hµ

i (X)]
i

= �EX,Y |a

hP
|Y|

i=1 �
Y
i log[

hµ
i (X)p(yi|X,a)
p(yi|X,a) ]

i

= �EX,Y |a

hP
|Y|

i=1 �
Y
i log[p(yi|X, a)]

i
+

+EX,Y |a

hP
|Y|

i=1 �
Y
i log[p(yi|X,a)

hµ
i (X) ]

i
=

= r
CEmin
a + EX|a

hP
|Y|

i=1 p(yi|X, a)log[p(yi|X,a)
hµ
i (X)

i

= r
CEmin
a + EX|a

h
DKL

⇣
p(y|X, a)

����hµ(X)
⌘i

,

where we again use the linearity of the expectation and
the equality EY |X,a[�

Y ] = p(y|X, a). We also denote
r
CEmin
a = H(Y |X,A = a).

Lemma 4.3. In the conditions of Theorem 4.2 we observe
that if Y ? A|X then

r
BS
a (µ) = EX,Y |a[||�

Y
� p(y|X)||22] 8µ

r
CE
a (µ) = H(Y |X) 8µ,

Likewise, if H(A|X)! 0 then

r
BS
a (µ)! EX,Y |a[||�

Y
� p(y|X, a)||22] 8µ

r
CE
a (µ)! H(Y |X, a) 8µ.

Proof.
If Y ? A|X then

h
µ(x) =

P
a2A

µap(x|a)p(y|x,a)P
a2A

µap(x|a)
,

= p(y|x),

in which case the resulting expressions for rBS
a (µ), rCE

a (µ)
are immediate and do not depend on µ

If H(A|X) ! 0 then we have p(a|x) = 1, p(a0|x) =
0 8 a 6= a

0
, x : p(x|a) > 0. Therefore we can write

h
µ(x) =

P
a2A

µap(x|a)p(y|x,a)P
a2A

µap(x|a)

=
P

a2A
µap(a|x)p(a)p(y|x,a)P
a2A

µap(a|x)p(a)

= p(y|x, a), 8a, x : p(x|a) > 0,

and again the resulting expressions for rBS
a (µ), rCE

a (µ) are
immediate from direct substitution.

We now present two auxiliary lemmas that will help us prove
Theorem 5.1.

Lemma A.1. Let PR

A,H be a Pareto front, and let r(µ) 2
P

R

A,H denote the solution the linear weighting Problem
given by Eq.(2). Then 8µ,2 RA

+ , I ✓ A,⌘ : ⌘i > 08i 2
I, ⌘i = 08i 2 A \ I.

Then at least one risk in the I coordinates is reduced, or
both risk vectors are the same in I, i.e.,

9j 2 I : rj(µ+ ⌘) < rj(µ) _ rI(µ+ ⌘) = rI(µ).

Proof. Denote �(µ) =
P

a2A
µara(µ), �A\I(µ) =P

a2A\I
µara(µ), and rI(µ) = {ra(µ)}a2I .

By contradiction, we negate the thesis to get

(rI(µ+ ⌘) � rI(µ)) ^ (9j 2 I : rj(µ+ ⌘) > rj(µ)).

We discuss 2 cases.

Case �A\I(µ) > �A\I(µ+ ⌘):

By definition of r(µ), r(µ+ ⌘) we observe
P

a2A
(µa + ⌘a)ra(µ) �

P
a2A

(µa + ⌘a)ra(µ+ ⌘),P
a2I

(µa + ⌘a)ra(µ) + �A\I(µ) �
�

P
a2I

(µa + ⌘a)ra(µ+ ⌘) + �A\I(µ+ ⌘),X

a2I

(µa + ⌘a)(ra(µ)� ra(µ+ ⌘))

| {z }
0

�

� �A\I(µ+ ⌘)� �A\I(µ)| {z }
>0

,
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where the inequalities in the underbrackets are a direct result
of the case assumptions, these inequalities contradict the
hypothesis.

Case �A\I(µ)  �A\I(µ+ ⌘):

We can directly observe that
P

a2A
(µa + ⌘a)ra(µ)

=
P

a2I
(µa + ⌘a)ra(µ) + �A\I(µ)


P

a2I
(µa + ⌘a)ra(µ) + �A\I(µ+ ⌘)

<
P

a2I
(µa + ⌘a)ra(µ+ ⌘) + �A\I(µ+ ⌘),

which again contradicts the hypothesis.

Lemma A.2. Let PR

A,H be a Pareto front, and let r(µ) 2
P

R

A,H denote the solution the linear weighting Problem
given by Eq.(2). Let I ✓ A and let µI : µI

I
> 0,µI

A\I
=

0, kµI
k
1
1 = 1. Then

(9i 2 I : ri(µ
I) < kr(µ)k1) _ (µ 2 µ⇤).

Proof. By contradiction, assume

(ri(µ
I) � kr(µ)k1, 8i 2 I) ^ (µ 62 µ⇤).

We can then write
P

a2A
µ
I

ara(µ
I) �

P
a2A

µ
I

akr(µ)k1
>

P
a2A

µ
I

akr(µ
⇤)k1

�
P

a2A
µ
I

ara(µ
⇤),

which contradicts the definition of r(µI).

Theorem 5.1. Let PR

A,H be a Pareto front, and r(µ) 2

P
R

A,H denote the solution to the linear weighting Prob-
lem 2. For any µ0

62 argmin
µ2�|A|�1

||r(µ)||1, and µ⇤
2

argmin
µ2�|A|�1

||r(µ)||1, the sets

Ni = {µ : ri(µ) < ||r(µ0)||1}

satisfy:

1. µ⇤
2

T
i2A

Ni;

2. If µ 2 Ni ! �µ+ (1� �)ei 2 Ni, 8� 2 [0, 1], i =
1, . . . , |A|, where ei denotes the standard basis vector;

3. 8 I ✓ A, µ : µA\I = 0! µ 2
S
i2I

Ni;

4. If r(µ) is also continuous in µ, then 8 I ✓ A such
that µ 2

T
i2I

Ni ! 9✏ > 0 : B✏(µ) ⇢
T
i2I

Ni;

5. If PR

A,H is also convex, then r(µ⇤) 2 argmin
r2P

R

A,H

||r||1.

Proof.

Property 1: We can directly observe that

ra(µ
⇤)  kr(µ⇤)k1 < kr(µ0)k1, 8a 2 A,

and therefore µ⇤
2

T
i2A

Ni.

Property 2: Direct application of Lemma A.1.

Property 3: Direct application of Lemma A.2.

Property 4: For all i 2 I we have ri(µ) < kr(µ0)k1,
since ri(µ) is also continuous in µ, 9 ✏i > 0 : 8µ00

2

B✏i(µ)! ri(µ) < kr(µ0)k1. Taking ✏ = min
i2I

✏i we have

B✏(µ) ⇢
T
i2I

Ni.

Property 5: Immediate since every point in the Pareto front
in this condition can be expressed as a solution to the linear
weighting Problem 2. Proven in Theorem 4.1 and (Geof-
frion, 1968).

A.2. Analysis of Proposed Optimization Method

Here we discuss some of the properties of the APStar Algo-
rithm (Algorithm 1). Key observations regarding the update
sequence can be summarized as follows:

• Updates µt+1 = (µt + 1
Kk1µtk

1
1
1µt) K

K+1 always sat-

isfy µt
� 0, kµt

k
1
1 = 1,

• Consecutive updates that do not decrease the minimax
risk have a step size that converges to 0: kµt+1

�

µt
k
2
2 = 1

K+1kµ
t
� 1µtk

2
2 

1
K+1 ! 0,

• The update sequence µt+1 = (µt + ⌘) K
K+1 ; K  

K + 1 converges to ⌘. That is µt+1
! ⌘.

So far, we showed that the choice of update sequence al-
ways proposes feasible weighting vectors, with progres-
sively smaller step sizes, but that nonetheless can reach any
point in the feasible region given sufficient updates.

We can also state that the update directions 1µ

k1µk
1
1

are not
fixed points of the algorithm unless they themselves are a
viable update vector.
Lemma A.3. Let µ0 with corresponding kr(µ0)k1 in the
conditions of Theorem 5.1. Denote the possible update
directions of Algorithm 1 as

⌘I : ⌘i =

(
1
|I|

, i 2 I,

0 o.w.
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Similarly, denote

1µ : 1µ
i =

(
1 if ri(µ) > kr(µ0)k1,

0 o.w.

All update directions that are non-viable descent updates
are repellors. That is, if I ✓ A : kr(⌘I)k1 > kr(µ0)k1
then 9✏ : 8µ 2 B✏(⌘I); 1µ

k1µk
1
1
6= ⌘I .

Proof. This is a direct corollary of properties 3 and 4 of
Theorem 5.1

A full convergence proof of the algorithm would need to
show that this algorithm has no cycles. This can be moti-
vated to a point by observing that the update directions are
equivalent to performing gradient descent on the following
function:

F (µ) =
|A|P
i=1

(1� µa)1(ri(µ) � r̄),

rF (µ) = �{(ri(µ) � r̄)}|A|

i=1 = �1µ,

(3)

where we abuse the notation rF (µ) since the function is
not differentiable on the boundaries where ri(µ) = r̄. We
do note however that even on those points, 1µ is a valid
descent direction. Function F (µ) can be shown to have no
non-global minima in the set µ : µ > 0, kµk11 = 1, and
global minina on all µ 2

T
i2A

Ni. We do note, however, that

gradient descent on discontinous functions can still produce
cycles on pathological cases.

Figure 4 (repeating Figure 3 for convenience) shows exam-
ples of iterations of the APStar algorithm across randomly
generated star-convex sets satisfying the conditions of The-
orem 5.1. We observe that the algorithm converges to a
viable update direction in all instances. Convergence for
simple cases happens in few iterations, but challenging sce-
narios can still be appropriately solved with the proposed
algorithm; on average, our algorithm is significantly faster
than random sampling, especially in challenging scenarios.
An explanation on how these distributions are sampled is
presented next.

SAMPLING STAR-CONVEX DISTRIBUTIONS

Here we describe a simple procedure to sample Star-convex
distributions in �2 that satisfy the properties of Theorem
5.1.

We note that any point in the �2 simplex can be embedded
into 2 by using the following function,

f(µ) : �2
!

2
,

f(µ) = ( 2µ1+µ2

2 ,

p
3µ2

2 ).

Figure 4. Synthetic data experiment on star-shaped sets. (a) Ran-
domly sampled star sets satisfying the conditions of Theorem 5.1;
a random starting point is sampled (Blue), and the trajectories
recovered by the APStar algorithm are recorded until convergence
(Red); number of iterations and intersection area are shown for all
examples. (b) Empirical distribution of the number of iterations re-
quired to converge as a function of the percentage of linear weights
that lie in the triple intersection; values are shown for the APStar
algorithm, random sampling, and the multiplicative weight update
(MWU) algorithm proposed in (Chen et al., 2017) for minimax
optimization. The number of iterations required by the algorithm
is well below both samplers, this is especially apparent for low
area ratio scenarios. APStar finds a viable weight in all scenarios,
with simpler sets and initial conditions requiring a smaller number
of iterations on average.

In this restricted 2 space, we note parametric curves of
the form Ci : [0,

⇡
3 ]!

+ can be used to parametrize the
Star-shaped sets we require for Theorem 5.1. Namely, for
any Star-shaped set Ni 2 �2 centered on ei, we can find a
function Ci : [0,

⇡
3 ]!

+ such that

Ni = {µ 2 �2 : di = hf(µ)� f(ei), f(ei+1)� f(ei)i,
✓i = \(f(µ)� f(ei), f(ei+1)� f(ei),

di < Ci(✓i)}
S
{f(ei)}.

Figure 5 illustrates the relationship between curves Ci and
their corresponding Star-shaped sets Ni.

To create a curve Ci, we construct a piecewise-linear func-
tion by sampling K tuples (✓ji , r

j
i )

K
j=0 satisfying

0 = ✓
0
i < · · · < ✓

K
i = ⇡/3,

r
j
i 2 [0, 1] 8j = 0, . . . ,K.

In our convergence experiments, we set K = 7, r
j
i ⇠

U [0, 1] and (✓ji )
K�1
j=1 = Sort((u ⇠ U [0,⇡/3])K�1

j=1 ). We
sample C0, C1, C2 independently and then reject these func-
tions if the corresponding sets N0, N1, N2 do not satisfy
the properties of Theorem 5.1. Namely, properties 2 and
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Figure 5. Illustration of Star-shaped sets Ni 2 �2. The sets Ni

can be parametrized by the boundary curves Ci, all points that
connect the boundary Ci with f(ei) conform the Star-shaped set
Ni.

4 are satisfied by construction, we check that Property 1 is
satisfied by verifying that N0 [N1 [N2 contains at least
one element.

Property 3 is verified by checking that N0\N1\N2 covers
the entire triangle in R

2, and also that

C0(0) + C1(⇡/3) > 1,
C1(0) + C2(⇡/3) > 1,
C2(0) + C0(⇡/3) > 1.

A.3. MMPF Implementation Details

Here we present implementation details to estimate the Min-
imax Pareto Fair classifier from data. As mentioned in
Section 5, the APStar algorithm (Algorithm 1) requires an
optimizer to solve the linear weighting problem (Problem 2).
We propose two options, one minimizes it using stochastic
gradient descent (SGD), we call this approach joint esti-
mation, and it is described in Algorithm 2. Note that each
batch samples the sensitive attributes uniformly in order to
reduce the variance of the conditional risk estimators for
every group in every batch. The second approach was also
presented in Section 5 and is called plug-in. Here each
conditional distribution (p(Y |X,A), p(A|X)) is estimated
independently from the data, and the optimal model for
a given weighting vector µ is computed using the expres-
sion derived in Theorem 4.2, Algorithm 3 describes this
approach.

In both the joint and plug-in approach, the APStar algorithm
makes decision based on the risk vector evaluated on the
validation datasets. This is done to empirically improve
generalization and disallow excessive overfitting.

Algorithm 2 Joint Estimation
Input: Train D

tr = {(xi
, y

i
, a

i)}Ntr
i=1, Validation

D
val = {(xi

, y
i
, a

i)}Nval
i=1 , Network: h✓o , Weights: µ,

Loss `(·, ·), Learning Rate: lr, Decay rate = �, Epochs:
nE , Batch Size: nB , Maximum Patience = nP

h
⇤
 h✓o , epochs 0, patience 0

repeat
t 0, h✓  h

⇤

while t <
Ntr
nB

do
{ai}

nB
i=1 ⇠ U [1, .., |A|]; {xi, yi|ai}

nB
i=1 ⇠ D

tr

r(h✓) 
nPnB

i=1 1[ai=a]`(h✓(xi),yi)PnB
i=1 1[ai=a]

o

a2A

✓  ✓ � lrr✓hµ, r(h✓)i
t t+ 1

end while
epochs += 1 # epoch ended; evaluate on validation
rval(h✓) 

nP
i2Dval 1[ai=a]`(h✓(xi),yi)P

i2Dval 1[ai=a]

o

a2A

if hµ, rval(h✓)i  hµ, rval(h⇤)i then
h
⇤
 h✓; patience 0

else
lr  �lr; patience += 1

end if
until epochs� nE _ patience � nP

return h
⇤
, rval(h⇤)

Algorithm 3 Plug-in Estimation

Input: Validation D
val = {(xi

, y
i
, a

i)}Nval
i=1 , Networks

estimating p(Y |X, a) : {pY✓a}
|A|

a=1 and p(A|X): pA� , Pri-
ors {pa}

|A|

a=1, Weights: µ, Loss `(·, ·).

h
⇤(x) 

P|A|

a=1 pY
✓a

(x)pA
� (x)µa

paP|A|

a=1 pA
� (x)µa

pa

rval(h⇤) 
nP

i2Dval 1[ai=a]`(h⇤(xi),yi)P
i2Dval 1[ai=a]

o

a2A

return h
⇤
, rval(h⇤)

A.4. Synthetic Data Experiments

We tested our approach on synthetic data where the obser-
vations are drawn from the following distributions:

A ⇠ U [1, ..., |A|],
X|A = a ⇠ N(ma, 1),
Y |X = x,A = a ⇠ Ber

�
fa(x)

�
,

fa(x) = ⇢
l
a1[x  ta] + ⇢

h
a1[x > ta].

(4)

Note that fa(x) is a piecewise-constant function. We used
Brier Score as our loss function, then the Bayes-optimal
classifier for each group is fa(x), while the optimal clas-
sifier for the linear weighting problem can be computed
numerically using the expression derived in Theorem 4.2.

For the synthetic experiments presented in this section we
chose |A| = 3, {m0,m1,m2} = {�0.5, 0, 0.5}, {t0, t1, t2}
= {�0.25, 0, 0.25}, ⇢l0,1,2 = 0.1, ⇢h0,1 = 0.9, and ⇢

h
2 = 0.8.
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Figure 6.a shows the conditional distributions p(X|a) and
p(Y |X, a) obtained with these parameters, along with the
minimax Pareto fair classifier.

We evaluate performance of the APStar algorithm performs
when h

µ
, r(µ) are computed using the closed form formula

in Theorem 4.2, expectations are computed via numerical in-
tegration. This enables us to evaluate the performance of the
algorithm in the infinite sample and perfect h optimization
regime. We recover the optimal minimax Pareto fair weights
µ⇤ via grid search, since a closed form solution for these
weights is not available. Figure 6.b and Figure 6.c show
how the risk vector r(µ) and linear weights µ approach the
minimax optimal r⇤,µ⇤ as a function of iterations of the
APStar algorithm. Figure 2 shown in Section 5 was also
generated with these parameters.

Figures 6.d and 6.e show the performance of the algorithm
as a function of training samples, the classifier is imple-
mented using an NN, and is minimized using SGD. Table
7 in Section A.9 provides the architecture and optimization
details. We observe that the optimal classifier is non-linear
(see Figure 6.a) which motivates the use of NNs for estima-
tion. Note that relative errors decrease with the number of
samples. In both cases, the algorithm is able to effectively
converge to the minimax Pareto fair risk.

The Pareto curve shown in figure 1 (Section 3) was gener-
ated with parameters |A| = 2, {m0,m1} = {�0.5, 0.5},
{t0, t1} = {�0.25, 0.25}, {⇢

l
0, ⇢

l
1} = {0.3, 0.05},

{⇢
h
0 , ⇢

h
1} = {0.7, 0.95} and Brier Score risk.

Figure 6. Synthetic data experiment. (a) Conditional distributions
p(X|a) and p(Y = 1|X, a), the minimax Pareto fair classifier
h⇤ is also shown. (b) The APStar algorithm converges to the
optimal risk and weight vectors in a scenario where access to
ground truth joint distributions is provided. (c) shows how the
minimax risk is reduced in this scenario as well. (d) and (e) show
minimax convergence of risk and weight vectors respectively as a
function of samples when the classifier hµ is estimated with a fully
connected neural network. Relative error quickly decays when
more samples are acquired.

A.5. Plug in vs Joint Estimation Analisis

We empirically compare the performance of the plug-in and
joint estimation approaches presented in Section 4. The
main advantage of plug-in estimation is that once the con-
ditional classifiers are calculated, evaluating a new weight
vector does not require any optimization; in contrast, joint
estimation requires a full optimization run for each new
weight vector. The main advantage of joint estimation is
that it requires a single model, and makes use of all samples
to train it; this can be beneficial when samples are scarce,
and can be motivated by the transfer learning literature. In
our problem setting, we can consider sensitive groups as
different domains or tasks, and our goal is to find a model
that has the best minimax performance. If the conditional
distributions p(Y |X, a) and p(X|a) match for every a 2 A

(Y ? A|X and X ? A), we are in the optimal transfer
learning scenario where all groups benefit from each others’
samples to estimate the target. In this situation, the joint
approach would be expected to perform better on the test
set than the plug-in approach. From this ideal case we can
identify the following two deviations:

• Case I: Y ? A|X and d(p(X|a), p(X|a
0)) � ✏,

8a, a
0
2 A, ✏ > 0;

• Case II: X ? A and d(p(Y |X, a), p(Y |X, a
0)) � ✏,

8a, a
0
2 A, ✏ > 0;

where d(., .) is some distance or divergence between distri-
butions.

Case I keeps Y ? A|X , but p(X|a) differ across a values.
It is reasonable to assume that as ✏ increases, the difference
in the group conditional risks on test data for joint and plug-
in estimation will be low. Note that in this scenario, if the
hypothesis class is unbounded, there is no trade-off between
group risks as shown in Lemma 4.3, hence the Pareto front
is the Utopia point; we expect the joint estimation approach
to outperform plug-in estimation at the same number of
weight updates.

Case II keeps X ? A, but p(Y |X, a) differ across a val-
ues. In this scenario, there may be a trade-offs between
group risks. We argue that in a finite sample scenario, as
✏ increases, it is not clear if joint estimation will be better
or worse than plug-in since the former may be affected by
negative transfer.

EXPERIMENTS

We empirically examine these cases by choosing |A| = 2
and simulating synthetic data from the following distribu-
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tion:

X|0 ⇠ N (0, 1), X|1 ⇠ N (m1, 1),m1 � 0,
Y |X, 0 ⇠ Ber(f0(X)), Y |X, 1 ⇠ Ber(f1(X)),
A ⇠ Ber( 12 ),

(5)
where

f0(X) = (0.6 + 0.21[x � 0])sign[sin(2⇡X) + 1]
+0.2� 0.11[x � 0],

f1(X) = (1� �)f0(X) + �[1� round(f0(X))],
� 2 [0, 1].

(6)
Note that parameter m1 is used to change the separation
between p(X|0) and p(X|1); we measure this using KL-
divergence DKL(p(X|0), p(X|1)) = m2

1
2 . The parameter �

controls the difference between p(Y |X, 1) and p(Y |X, 0),
we measure this using EX [DKL(p(Y |X, 0), p(Y |X, 1))],
which can be numerically approximated. For Case I we
choose � = 0 and m0 2 {0, 0.5, 1, 1.5, 2}; for Case II we
choose m0 = 0 and � 2 {0, 0.2, 0.5, 0.8}.

Figure 7 shows three examples of synthetic data gener-
ated with these distributions were the input variable X ,
sensitive variable A, and target Y exhibit various depen-
dencies. Figures 7.a and 7.b show examples of conditional
distributions p(X|A) and p(Y = 1|X,A) for Cases I and
II. Figure 7.c shows an example were both X 6? A and
Y 6? A. Additionally, we plot the MMPF classifier h⇤(X).
When Y ? A|X we have that h⇤(X) = p(Y |X) and when
X ? A, h⇤(X) is a linear combination of p(Y |X, 0) and
p(Y |X, 1) with the minimax weight coefficients. These are
direct consequences of Theorem 4.2. In Figure 7.c h

⇤(X)
shows a more complex interaction since both p(X|a) and
p(Y |X, a) differ between a values. Asymptotically, since
p(a = 1|X = 1) = 1, p(a = 0|X = �1) = 1, we
recover h⇤(1) = p(Y |X, 1) and h

⇤(�1) = p(Y |X, 0).

Figure 7. (a), (b), and (c) show conditional distributions for p(Y =
1|X, a) (top) and p(X|a) (bottom), simulated according to Eq.5
and Eq.6 for three situations. (a) corresponds to case I (Y ? A|X),
(b) to case II (X ? A) and (c) to Y 6? A|X and X 6? A. All
plots of p(Y = 1|X, a) include the optimal minimax Pareto fair
classifier h⇤(X).

Figure 8 compares the performance of the plug-in and joint
estimation approach. On both approaches, we limit the
number of weight updates of the APStar algorithm to 15.
Figure 8.a compares relative differences in the risk vector
as a function of the divergence between p(X|0) and p(X|1)
for 4k and 9k train samples and Case I (Y ? A). Figure
8.b compares accuracies under the same conditions. We
observe that in this scenario, the benefit of joint estimation
is evident, especially with a small number of samples. Note
that this gap is reduced as DKL(p(X|0)||p(X|1)) and the
number of samples increases; as expected, both methods
perform better when more samples are available.

Figures 8.c and 8.d show the same comparisons for Case II.
In this scenario there is no clear difference between plug-
in and joint estimation, though the former appears to be
marginally better; both methods improve performance with
additional samples.

Figure 8. (a) Relative error of the estimated Minimax Pareto Fair
risk as a function of divergence between p(X|0) and p(X|1) for
Case I (Y ? A|X) at 4k and 9k training samples. (b) shows the
corresponding accuracy comparison. (c) and (d) mirror (a) and (b)
for Case II (X ? A).

UNBALANCED CLASSIFICATION: Y = A

In balanced risk minimization, we have Y = A. If the
risk function is either Cross Entropy or Brier Score, we can
apply Theorem 4.1 and recover

h
µ(x) =

⇢ µa

p(a)p(a|x)
P

a02A

µ0
a

p(a0)p(a
0|x)

�|A|

a=1

.

This particular scenario is noteworthy because the plug-in
approach only needs to estimate p(a|x) = p(y|x), all Pareto
optimal classifiers can be easily derived from p(y|x) by sim-
ply re-weighting each component of the output probability
vector. This re-weighting requires no expensive minimiza-
tion procedure, and enables extensive iterations of the AP-
Star algorithm to find the optimal weight vector µ. For these
types of scenarios, it is advantageous to estimate p(y|x) by
using a Naive or Balanced classifier, and then derive all
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optimal classifiers via a simple weighting of the output vec-
tor, the optimal weights can still be found using our APStar
algorithm.

OBSERVATION SUMMARY

We summarize our observations from these experiments and
discussions.

• Joint estimation may benefit from transfer learning and
seems to be no worse than plug-in estimation even
when target conditional distributions do not match.
Note that a certain amount of negative transfer may be
required by the minimax Pareto Fair classifier, which
may negate the advantages of plug-in estimation when
target conditional distributions differ.

• Plug-in estimation requires multiple (|A|+ 1) models,
while joint estimation only requires one; this makes
this approach impractical in some scenarios. However,
the former approach allows for cheap iterations of the
APStar algorithm.

• In the balanced classification problem (Y = A), plug-
in estimation requires the same number of models as
joint estimation, but is cheaper to evaluate.

A.6. Methods

We compare the performance of the following methods:

Kamishima. (Kamishima et al., 2012) uses logistic regres-
sion as a baseline classifier, and requires numerical input
(observations), and binary target variable. Fairness is con-
trolled via a regularization term with a tuning parameter ⌘
that controls the trade-off between fairness and overall accu-
racy. ⌘ is optimized via grid search with ⌘ 2 (0, 300) as in
the original paper. We report results on the hyperparameter
configuration that produces the best minimax cross-entropy
across sensitive groups.

Feldman. (Feldman et al., 2015) provides a preprocessing
algorithm to sanitize input observations. It modifies each
input attribute so that the marginal distribution of each coor-
dinate is independent of the sensitive attribute. The degree
to which these marginal distributions match is controlled
by a � parameter between 0 and 1. It can handle numerical
and categorical observations, as well as non-binary sensitive
attributes, and arbitrary target variables. Following (Friedler
et al., 2019), we train a linear logistic regressor on top of
the sanitized attributes. � is optimized via grid search with
increments of 0.05. We report results on the hyperparameter
configuration that produces the best minimax cross-entropy
across sensitive groups.

Zafar. (Zafar et al., 2015) Addresses disparate mistreat-
ment via a convex relaxation. Specifically, in the implemen-
tation provided in (Friedler et al., 2019), they train a logistic
regression classifier with a fairness constraint that mini-
mizes the covariance between the sensitive attribute and the
classifier decision boundary. This algorithm can handle cat-
egorical sensitive attributes and binary target variables, and
numerical observations. The maximum admissible covari-
ance is handled by a hyperparameter c, tuned by logarithmic
grid search with values between 0.001 and 1. We report
results on the hyperparameter configuration that produces
the best minimax cross-entropy across sensitive groups.

Hardt. (Hardt et al., 2016) proposes a post-processing al-
gorithm that takes in an arbitrary predictor and the sensitive
attribute as input, and produces a new, fair predictor that
satisfies equalized odds. This algorithm can handle binary
target variables, an arbitrary number of sensitive attributes,
and any baseline predictor, but requires test-time access to
sensitive attributes. it does not contain any tuning parameter.
We apply this method on top of both the Naive Classifier
and our Pareto Fair classifier.

Naive Classifier (Naive). Standard classifier,
trained to minimize an expected risk h =
argmin

h2H

EX,A,Y [`(h(X), �Y )]. The baseline classi-

fier class H is implemented as a neural network and varies
by experiment as described in Section A.9, the loss function
also varies by experiment and is also described in Section
A.9. Optimization is done via stochastic gradient descent.

Balanced Classifier (Balanced). Baseline classifier de-
signed to address undersampling of minority classes,
trained to mimimize a class-rebalanced expected risk h =
argmin

h2H

EA⇠U [1,...,|A|],(X,Y )⇠P (X,Y |A)[`(h(X), �Y ]. Like

the Naive classifier, it is implemented as a neural network
and optimized via stochastic gradient descent. The sole
difference with the Naive classifier is that, during train-
ing, samples are drawn from the new input distribution
A ⇠ U [1, . . . , |A|]; X,Y |A ⇠ P (X,Y |A), which is
achieved by re-weighted sampling of the original training
dataset.

Minimax Pareto Fair (MMPF, joint and plug-in). Our
proposed methodology, finds a Pareto-optimal model h⇤

such that it has minimax Pareto risk r⇤. It achieves this
by searching for weighting coefficients µ⇤ such that r⇤ is
the solution to the corresponding linear weighted problem
(see Eq.2). This method alternates between minimizing a
linearly-weighted loss function (Eq.2), and updating the
weighting coefficients according to Algorithm 1. The base-
line classifier class H is implemented as a neural network
and varies by experiment as described in Section A.9, the
loss function also varies by experiment and is also described
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in Section A.9. The minimization of the weighted loss func-
tion at every step of the APStar algorithm is implemented
via stochastic gradient descent (joint estimation) or by di-
rect application of the closed form optimal classifier derived
in Theorem 4.2 (plug-in estimation). The latter approach
requires estimating p(a|x), p(y|x, a) and p(a).

A.7. Evaluation Metrics

Here we describe the metrics used to evaluate the perfor-
mance of all tested methods. We are given a set of test
samples Dt = {(xi, yi)}Ni=1 where xi 2 X is a realization
of our model input and yi 2 Y the corresponding objective.
We assume that Y is a finite alphabet, as in a classification
problem; we will represent the one-hot encoding of yi as
�
yi . Given a trained model h : X ! [0, 1]|Y| the predicted

output for an input xi is a vector h(xi) : kh(xi)k11 = 1
(e.g., output of a softmax layer). The predicted class is
ŷi = argmaxj hj(xi) and its associated confidence is
p̂i = maxj hj(xi). Ideally ŷi should be the same as yi.
Using these definitions, we compute the following metrics.

Accuracy (Acc): 1
N

PN
i=1 1(yi = ŷi). Fraction of correct

classifications in dataset.

Brier Score (BS): 1
N

PN
i=1 ||�

yi � ~pi||
2 where �

yi is the
one-hot representation of the categorical ground truth value
yi. This quantity is also known as Mean Square Error
(MSE).

Cross Entropy (CE): � 1
N

PN
i=1h�

yi , logh(xi)i also
known as negative log-likelihood (NLL) of the multinomial
distribution.

Expected Calibration Error (ECE):
1
N

PM
m=1

��P
i2Bm

[1(yi = ŷi) � p̂i]
�� where M is

the number of bins to divide the interval [0, 1] such that
Bm = {i 2 {1, .., N} : p̂i 2 (m�1

M ,
m
M ]} are the group of

samples that our model assigns a confidence (p̂i) in the
interval (m�1

M ,
m
M ]. Measures how closely the predicted

probabilities match the true base rates.

Maximum Calibration Error (MCE):
maxm2{1,...,M}

�� 1
|Bm|

P
i2Bm

[1(yi = ŷi)� p̂i]
��. Measures

worst-case miscalibration errors.

These metrics are computed independently for each sensitive
subgroup on the test set and reported in Section A.10.

A.8. Details on Experiments on Real Data

The following is a description of the data and experiments
for each of the real datasets. The information present here
is summarized in Table 6.

MIMIC-III. This dataset consist of clinical records col-
lected from adult ICU patients at the Beth Israel Dea-
coness Medical Center (MIMIC-III dataset) (Johnson et al.,

Table 6. Basic characteristics of real datasets

Dataset Objective Sensitive
Attribute

Train/
Val/
Test

Splits

Adult
(Dua & Graff, 2017a)

2 categories:
Income

4 categories:
Gender (F/M),

Ethnicity(W/NW)
60/20/20 5

German
(Dua & Graff, 2017b)

2 categories:
Credit

2 categories:
Gender (F/M) 60/20/20 5

MIMIC-III
(Johnson et al., 2016)

2 categories:
Mortality (A/D)

8 categories:
Mortality(A/D),

Age (A/S)
Ethnicity (W/NW)

60/20/20 5

HAM10000
(Tschandl et al., 2018)

7 categories:
Type of lesion

7 categories:
Type of lesion 60/20/20 5

2016). The goal is predicting patient mortality from clinical
notes. We follow the pre-processing methodology outlined
in (Chen et al., 2018), where we analyze clinical notes ac-
quired during the first 48 hours of ICU admission; discharge
notes were excluded, as where ICU stays under 48 hours. Tf-
idf statistics on the 10, 000 most frequent words in clinical
notes are taken as input features.

We identify 8 sensitive groups as the combination of age (un-
der/over 55 years old), ethnicity as determined by the major-
ity group (white/nonwhite); and outcome (alive/deceased).
Here we will use the term adult to refer to people under 55
years old and senior otherwise. This dataset shows large
sample disparities since 56.7% corresponds to the overall
majority group (alive-senior-white) and only 0.4% to the
overall minority group (deceased-adult-nonwhite).

We used a fully connected neural network as described in
Table 7 as the baseline classifier for our proposed MMPF
framework. We compare our results against both the Naive
and Naive Balanced algorithms using the same neural net-
work architecture, and use crossentropy (CE) as our training
loss. We also evaluate the performance of Zafar, Feldman
and Kamishima applied on the feature embeddings learned
by the Naive classifier (results over the original input fea-
tures failed to converge on the provided implementations).

We report the performance across a 5-fold split of the data,
we used a 60/20/20 train-validation-test partition as de-
scribed on Table 6 and report results over the test set. We
denote the overall sensitive attribute as the combination
of outcome (A:alive/D:deceased), age (A:adult/S:senior)
and ethnicity (W:white, NW:nonwhite) with shorthand no-
tation of the form D/A/W to denote, for example, deceased,
white adult. We also note that results on Zafar, Kamishima
and Hardt were done over only the sensitive attributes
Adult/Senior and White/Nonwhite, outcome was not con-
sidered as a sensitive attribute for both methods. This was
done because Hardt requires test-time access to sensitive
attributes, which would not be possible for the outcome vari-
able, and Zafar attempts to decorrelate sensitive attributes
and classification decision boundaries, which is counter-
productive when the sensitive attribute includes the correct
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decision outcome.

HAM10000. This dataset contains over 10, 000 dermato-
scopic images of skin lesions over a diverse population
(Tschandl et al., 2018). Lesions are classified in 7 diagnos-
tic categories, and the goal is to learn a model capable of
identifying the category from the lesion image. The dataset
is highly unbalanced since 67% of the samples correspond to
a melanocytic nevi lesion (nv), and 1.1% to dermatofibroma
(df).

Here we chose to use the diagnosis class as both the target
and sensitive variable, casting balanced risk minimization
as a particular use-case for the proposed Pareto fairness
framework.

We load a pre-trained DenseNet121 network (Huang et al.,
2017) and train it to classify skin lesions from dermatoscopic
images using our Pareto fairness framework. We compared
against the Naive and the Balanced training setup. Note that
in the Balanced approach we use a batch sampler where
images from each class have the same probability, this can
be seen as a naive oversampling technique. Table 7 shows
implementation details.

We report the performance across 5-fold split of the data, we
used a 60/20/20 train-validation-test partition, and report re-
sults over the test set. For each group we follow the original
notation: Actinic keratoses and intraepithelial carcinoma /
Bowen’s disease (akiec), basal cell carcinoma (bcc), benign
keratosis-like lesions (bkl), dermatofibroma (df), melanoma
(mel), melanocytic nevi (nv) and vascular lesions (vasc).

Adult. The Adult UCI dataset (Dua & Graff, 2017a) is
based on the 1994 U.S. Census and contains data on 32, 561
adults. The data contains 105 binarized observations rep-
resenting education status, age, ethnicity, gender, and mar-
ital status, and a target variable indicating income status
(binary attribute representing over or under $50, 000). Fol-
lowing (Friedler et al., 2019), we take ethnicity and gen-
der as our target sensitive attributes, defining four sub-
groups (White/Other and Male/Female). We also present
results considering just the gender as sensitive attribute
(Male/Female). To compare our MMPF framework evenly
against the other methods, we limit our hypothesis class to
linear logistic regression (MMPF LR). Additionally, we also
show results for a Neural Network model (MMPF); a model
class that satisfies the convexity property.

German. The German credit dataset (Dua & Graff, 2017a)
contains 20 observations collected across 1000 individuals,
and a binary target variable assessing the individual’s credit
score as good or bad. We consider gender (Male/Female)
as the sensitive attribute, which is not included in the data
but can be inferred. As in the Adult dataset, we limit our
hypothesis class to linear logistic regression to compare

evenly across methodologies.

A.9. Neural Network Architectures and Parameters

Table 7. Summary of network architectures and losses. All net-
works have a softmax output layer. ADAM was used as the training
optimizer, with the specified learning rates (lr) and batch size nB .
Logistic Regression was trained using the implementation provided
in Sklearn (Pedregosa et al., 2011).

Dataset Network
Body Gate Loss

type
Parameters

training

Synthetic Dense ResNet
(512x512)x2 ELU BS nB=512

lr=1e-3
Adult

German
Logistic

Regression (LR) - CE -

Adult Dense ResNet
(512x512)x2 - CE nB=32

lr=5e-4

MIMIC-III FullyConnected
2048x2048 ELU CE/BS nB=512

lr=1e-6/5e-6

HAM10000 DenseNet121
(Huang et al., 2017) ReLU BS nB=32

lr=5e-6

Table 7 summarizes network architectures and loss functions
for all experiments in this paper (Section 6 and supplemen-
tary material). Note that all networks have a standard dense
softmax as their final layer. The training optimizer is ADAM
(Kingma & Ba, 2014), loss functions were either crossen-
tropy (CE) or Brier Score (BS), also known as categorical
mean square error (MSE).

For joint estimation, the weights µ were initialized uni-
formly, we selected maximum patience nP = 20, a decay
rate � = 0.25 and a maximum of 500 epochs. All experi-
ments terminated from lack of generalization improvement
rather than maximum number of epochs. For the APStar
algorithm we picked ↵ = 0.5, we allowed a maximum num-
ber of 20 iterations. The regularization parameter in the
Sklearn implementation of logistic regression was set to
C = 1e6 following (Friedler et al., 2019).

In the plug-in approach, each conditional probability was
estimated with the architectures and parameters specified in
Table 7 maximum patience nP = 20, a decay rate � = 0.25
and a maximum of 500 epochs. Here we allowed the APStar
algorithm to have a maximum of 500 iterations since each
iteration does not require optimization, only risk evaluation.

A.10. Supplementary Results

Here we present expanded results on all datasets. Accuracy
(Acc), Brier Score (BS), Cross-Entropy (CE), Expected
Calibration Error (ECE) and Maximum Calibration Error
(MCE) are displayed per sensitive group. Mean and stan-
dard deviations are reported when avaialble across 5 splits.
Disparity between best and worst groups is computed per
split, and the mean and standard deviation of this value is
reported. Note that this way of computing disparity may
lead to seemingly large disparity values, since the worst and
best performing group per split may differ.
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Table 8. HAM10000 dataset. We underline the worst group metric per method, and bold the one with the best minimax performance.
Smallest disparity is also bolded.

Acc comparison
Group akiec bcc bkl df mel nv vasc Disparity

Ratio 3.3% 5.1% 11% 1.1% 11.1% 67% 1.4% 65.9%
Naive 39.1±5.7 % 58.4±7.0 % 51.5±4.3 % 2.6±3.5% 43.7±4.3 % 93.7±1.1 % 66.9±6.6 % 91.1±3.9%
Balanced 67.9±6.9 % 73.4±4.2 % 58.2±9.9 % 75.7±7.6 % 58.1±5.8 % 73.5±1.6 % 83.9±8.3 % 32.5±4.6%
MMPF P 64.2±5.1 % 66.2±5.8 % 63.9±6.8 % 69.6±13.5% 67.5±3.9% 64.1±1.0% 71.2±1.0% 19.8±6.6%

BS comparison
Group akiec bcc bkl df mel nv vasc Disparity

Ratio 3.3% 5.1% 11% 1.1% 11.1% 67% 1.4% 65.9%
Naive 0.816±0.082 0.586±0.083 0.675±0.068 1.384±0.043 0.808±0.043 0.093±0.015 0.48±0.102 1.291±0.042
Balanced 0.459±0.089 0.37±0.048 0.579±0.1 0.392±0.106 0.565±0.069 0.361±0.02 0.211±0.106 0.45±0.066
MMPF P 0.494±0.078 0.463±0.065 0.49±0.074 0.447±0.131 0.447±0.042 0.5±0.015 0.38±0.127 0.228±0.058

CE comparison
Group akiec bcc bkl df mel nv vasc Disparity

Ratio 3.3% 5.1% 11% 1.1% 11.1% 67% 1.4% 65.9%
Naive 1.924±0.321 1.19±0.188 1.405±0.142 4.178±0.209 1.589±0.104 0.195±0.029 1.069±0.282 3.983±0.19
Balanced 0.944±0.172 0.715±0.096 1.199±0.211 0.898±0.295 1.122±0.128 0.787±0.038 0.456±0.281 0.95±0.218
MMPF P 1.011±0.177 0.913±0.158 0.949±0.135 1.047±0.401 0.85±0.068 1.128±0.033 0.804±0.242 0.615±0.156

ECE comparison
Group akiec bcc bkl df mel nv vasc Disparity

Ratio 3.3% 5.1% 11% 1.1% 11.1% 67% 1.4% 65.9%
Naive 0.211±0.019 0.125±0.026 0.189±0.032 0.598±0.047 0.287±0.03 0.03±0.001 0.156±0.049 0.568±0.047
Balanced 0.139±0.046 0.078±0.013 0.135±0.063 0.183±0.035 0.119±0.035 0.066±0.014 0.119±0.028 0.143±0.023
MMPF P 0.133±0.028 0.113±0.029 0.107±0.036 0.213±0.049 0.082±0.023 0.135±0.01 0.133±0.035 0.151±0.034

MCE comparison
Group akiec bcc bkl df mel nv vasc Disparity

Ratio 3.3% 5.1% 11% 1.1% 11.1% 67% 1.4% 65.9%
Naive 0.616±0.262 0.353±0.124 0.534±0.151 0.962±0.018 0.555±0.091 0.315±0.219 0.521±0.156 0.744±0.082
Balanced 0.505±0.157 0.383±0.177 0.49±0.22 0.548±0.145 0.272±0.024 0.227±0.06 0.636±0.126 0.474±0.089
MMPF P 0.369±0.134 0.362±0.156 0.362±0.172 0.59±0.098 0.266±0.032 0.285±0.037 0.556±0.107 0.444±0.058
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Table 9. MIMIC dataset. We underline the worst group metric per method, and bold the one with the best minimax performance. Smallest
disparity is also bolded. Standard deviations are computed across 5 splits.

Acc comparison

Group A/A/NW A/A/W A/S/NW A/S/W D/A/NW D/A/W D/S/NW D/S/W Disparity

Ratio 5.7% 13.3% 12.9% 56.7% 0.4% 0.9% 1.8% 8.3% 56.3%
Naive CE 98.7±0.8% 98.8±0.5% 97.6±0.5% 98.0±0.3% 26.0±10.0% 34.5±3.9% 20.6±2.1% 22.6±2.6% 79.4±1.7%
Naive BS 99.0±0.4% 98.8±0.4% 97.8±0.5% 98.1±0.3% 26.7±9.3% 34.6±4.4% 19.0±2.0% 21.2±1.9% 80.5±1.3%
Balanced CE 85.8±1.9% 86.2±1.1% 76.4±1.8% 79.2±0.4% 76.1±8.5% 80.1±3.3% 66.9±2.4% 67.3±2.1% 22.4±2.8%
Balanced BS 87.9±1.2% 87.5±1.4% 77.5±2.1% 79.3±0.5% 74.4±7.1% 78.8±3.4% 66.8±2.2% 68.0±2.1% 22.6±2.3%
Zafar 91.9±1.5% 93.9±1.4% 91.6±0.8% 93.2±0.5% 49.2±9.4% 41.7±9.2% 33.2±4.1% 32.0±2.4% 62.9±3.6%
Feldman 97.4±1.9% 97.7±1.9% 95.2±3.4% 95.6±3.3% 33.0±16.4% 35.4±8.0% 28.7±2.4% 31.9±3.6% 72.1±5.5%
Kamishima 98.5±1.2% 98.4±0.7% 96.8±0.9% 96.7±0.7% 26.7±9.8% 37.5±5.0% 25.1±5.1% 29.6±2.8% 76.4±5.2%
MMPF CE 83.3±2.1% 83.1±1.0% 71.3±1.4% 74.0±1.2% 81.6±6.5% 83.2±3.9% 73.2±3.0% 74.7±2.9% 16.2±2.8%
MMPF BS 86.0±0.9% 84.8±1.3% 72.6±1.7% 74.1±0.5% 78.9±9.5% 81.7±3.8% 73.1±2.0% 75.2±2.1% 17.1±3.5%
MMPF CE P 82.4±3.2% 81.8±1.2% 70.7±1.7% 74.4±0.8% 80.6±7.7% 84.5±3.0% 73.0±3.5% 72.4±3.1% 17.4±2.5%
MMPF BS P 81.8±5.6% 81.8±2.6% 70.7±2.1% 74.9±1.0% 78.0±8.6% 81.9±2.5% 72.6±2.8% 72.8±3.5% 17.8±3.8%

Naive BS+H 59.8±1.8% 59.9±1.9% 59.7±2.1% 59.8±2.1% 53.2±6.4% 51.2±3.2% 50.3±2.0% 50.5±0.9% 12.3±3.8%
Balanced BS+H 76.7±1.3% 77.1±1.1% 76.9±2.4% 76.7±1.4% 67.3±10.3% 66.7±2.9% 65.6±2.8% 66.6±3.2% 19.1±1.8%
Zafar+H 64.0±2.2% 64.2±1.4% 64.3±2.3% 64.2±1.9% 53.4±9.2% 52.9±4.5% 51.5±2.8% 52.1±1.6% 17.8±3.1%
Feldman+H 61.1±2.5% 61.2±2.4% 61.2±2.4% 61.3±2.5% 55.0±11.4% 49.7±1.9% 52.1±2.9% 50.8±3.1% 16.9±7.4%
Kamishima+H 60.0±0.8% 60.2±1.5% 60.2±1.3% 60.2±1.4% 53.9±6.7% 52.4±1.7% 51.6±2.2% 52.3±1.5% 11.9±1.9%
MMPF BS+H 72.6±2.3% 72.7±1.1% 72.1±1.7% 72.5±1.3% 72.1±8.6% 72.1±2.8% 72.0±3.7% 72.2±2.6% 11.4±3.5%

BS comparison

Group A/A/NW A/A/W A/S/NW A/S/W D/A/NW D/A/W D/S/NW D/S/W Disparity

Ratio 5.7% 13.3% 12.9% 56.7% 0.4% 0.9% 1.8% 8.3% 56.3%
Naive CE 0.029±0.004 0.029±0.005 0.054±0.007 0.048±0.003 0.995±0.141 0.896±0.072 1.086±0.014 1.053±0.022 1.064±0.019
Naive BS 0.034±0.004 0.035±0.005 0.059±0.007 0.053±0.003 0.961±0.134 0.836±0.068 1.051±0.013 1.022±0.016 1.025±0.021
Balanced CE 0.2±0.025 0.198±0.014 0.313±0.017 0.284±0.005 0.369±0.067 0.292±0.043 0.417±0.018 0.421±0.026 0.246±0.039
Balanced BS 0.19±0.018 0.188±0.013 0.307±0.019 0.283±0.004 0.386±0.062 0.31±0.039 0.418±0.014 0.413±0.026 0.251±0.04
Zafar 0.157±0.03 0.118±0.028 0.162±0.015 0.131±0.009 1.009±0.203 1.143±0.177 1.323±0.082 1.344±0.05 1.25±0.072
Feldman 0.038±0.026 0.035±0.03 0.072±0.051 0.068±0.052 1.172±0.303 1.116±0.104 1.258±0.077 1.213±0.067 1.288±0.084
Kamishima 0.027±0.011 0.026±0.008 0.063±0.011 0.06±0.008 1.053±0.163 0.936±0.095 1.062±0.041 0.993±0.026 1.108±0.078
MMPF CE 0.237±0.031 0.236±0.019 0.372±0.014 0.342±0.011 0.303±0.063 0.233±0.037 0.346±0.016 0.344±0.03 0.167±0.028
MMPF BS 0.212±0.015 0.217±0.017 0.354±0.016 0.337±0.006 0.331±0.057 0.254±0.035 0.352±0.017 0.338±0.028 0.17±0.027
MMPF CE P 0.274±0.033 0.269±0.017 0.373±0.013 0.343±0.011 0.325±0.061 0.271±0.025 0.363±0.012 0.37±0.027 0.144±0.017
MMPF BS P 0.272±0.06 0.262±0.03 0.368±0.014 0.332±0.01 0.323±0.079 0.256±0.032 0.357±0.022 0.365±0.032 0.168±0.042

CE comparison

Group A/A/NW A/A/W A/S/NW A/S/W D/A/NW D/A/W D/S/NW D/S/W Disparity

Ratio 5.7% 13.3% 12.9% 56.7% 0.4% 0.9% 1.8% 8.3% 56.3%
Naive CE 0.073±0.003 0.072±0.005 0.122±0.009 0.112±0.003 1.536±0.175 1.314±0.11 1.561±0.036 1.53±0.038 1.549±0.027
Naive BS 0.093±0.006 0.093±0.009 0.139±0.01 0.129±0.004 1.407±0.15 1.179±0.103 1.458±0.041 1.425±0.029 1.394±0.049
Balanced CE 0.332±0.036 0.324±0.02 0.473±0.021 0.435±0.008 0.575±0.092 0.458±0.051 0.605±0.026 0.613±0.037 0.329±0.052
Balanced BS 0.322±0.026 0.317±0.017 0.467±0.024 0.437±0.007 0.593±0.079 0.481±0.044 0.604±0.022 0.601±0.034 0.332±0.043
Zafar 1.71±0.468 1.199±0.298 1.834±0.261 1.363±0.127 14.611±4.841 17.197±4.31 21.829±2.593 22.653±1.918 21.729±2.164
Feldman 0.072±0.047 0.064±0.054 0.138±0.1 0.127±0.095 3.924±0.962 3.475±0.612 3.802±0.842 3.854±0.74 4.211±0.75
Kamishima 0.057±0.015 0.054±0.011 0.128±0.011 0.121±0.011 1.838±0.176 1.561±0.167 1.585±0.077 1.521±0.049 1.808±0.155
MMPF CE 0.378±0.041 0.373±0.026 0.547±0.019 0.508±0.012 0.501±0.101 0.377±0.045 0.517±0.023 0.517±0.04 0.232±0.037
MMPF BS 0.349±0.022 0.352±0.023 0.524±0.021 0.503±0.008 0.532±0.07 0.407±0.04 0.525±0.025 0.509±0.037 0.231±0.036
MMPF CE P 0.438±0.039 0.430±0.024 0.550±0.014 0.516±0.015 0.505±0.078 0.438±0.029 0.542±0.016 0.551±0.03 0.17±0.023
MMPF BS P 0.431±0.072 0.416±0.038 0.541±0.015 0.498±0.015 0.51±0.104 0.412±0.042 0.534±0.026 0.544±0.038 0.212±0.053

ECE comparison

Group A/A/NW A/A/W A/S/NW A/S/W D/A/NW D/A/W D/S/NW D/S/W Disparity

Ratio 5.7% 13.3% 12.9% 56.7% 0.4% 0.9% 1.8% 8.3% 56.3%
Naive CE 0.049±0.006 0.046±0.003 0.071±0.007 0.068±0.004 0.519±0.105 0.434±0.065 0.574±0.014 0.542±0.025 0.537±0.011
Naive BS 0.068±0.003 0.065±0.006 0.088±0.004 0.087±0.004 0.502±0.106 0.386±0.051 0.576±0.014 0.54±0.018 0.519±0.005
Balanced CE 0.066±0.015 0.049±0.011 0.039±0.013 0.029±0.008 0.173±0.048 0.1±0.03 0.073±0.029 0.057±0.022 0.148±0.042
Balanced BS 0.083±0.004 0.073±0.011 0.042±0.011 0.043±0.009 0.151±0.043 0.079±0.041 0.069±0.023 0.044±0.012 0.126±0.044
Zafar 0.079±0.015 0.059±0.014 0.081±0.008 0.065±0.004 0.511±0.099 0.576±0.089 0.666±0.039 0.671±0.025 0.627±0.037
Feldman 0.015±0.009 0.012±0.011 0.023±0.016 0.019±0.015 0.624±0.152 0.565±0.071 0.628±0.044 0.587±0.034 0.668±0.06
Kamishima 0.029±0.005 0.021±0.004 0.055±0.011 0.05±0.007 0.543±0.112 0.44±0.069 0.547±0.037 0.486±0.021 0.568±0.06
MMPF CE 0.041±0.015 0.029±0.015 0.055±0.018 0.03±0.008 0.152±0.057 0.08±0.021 0.076±0.03 0.039±0.013 0.143±0.04
MMPF BS 0.064±0.009 0.047±0.011 0.037±0.011 0.021±0.006 0.178±0.056 0.091±0.034 0.073±0.016 0.038±0.013 0.167±0.044
MMPF CE P 0.105±0.024 0.086±0.016 0.042±0.016 0.049±0.015 0.177±0.063 0.152±0.016 0.102±0.018 0.059±0.027 0.159±0.044
MMPF BS P 0.077±0.033 0.052±0.02 0.041±0.021 0.025±0.007 0.144±0.037 0.122±0.027 0.065±0.017 0.044±0.026 0.127±0.027

MCE comparison

Group A/A/NW A/A/W A/S/NW A/S/W D/A/NW D/A/W D/S/NW D/S/W Disparity

Ratio 5.7% 13.3% 12.9% 56.7% 0.4% 0.9% 1.8% 8.3% 56.3%
Naive CE 0.277±0.094 0.231±0.034 0.207±0.027 0.206±0.011 0.835±0.119 0.878±0.071 0.839±0.05 0.874±0.046 0.729±0.031
Naive BS 0.315±0.075 0.262±0.046 0.247±0.039 0.23±0.022 0.806±0.122 0.869±0.063 0.822±0.057 0.861±0.058 0.707±0.028
Balanced CE 0.138±0.024 0.087±0.016 0.074±0.025 0.049±0.013 0.383±0.072 0.225±0.167 0.191±0.077 0.119±0.043 0.393±0.062
Balanced BS 0.155±0.039 0.114±0.034 0.077±0.018 0.072±0.016 0.395±0.29 0.14±0.045 0.159±0.085 0.109±0.047 0.36±0.269
Zafar 0.483±0.227 0.647±0.15 0.591±0.192 0.445±0.086 0.619±0.122 0.678±0.164 0.696±0.059 0.696±0.034 0.495±0.154
Feldman 0.272±0.094 0.283±0.222 0.245±0.108 0.219±0.129 0.864±0.068 0.705±0.052 0.736±0.05 0.734±0.06 0.738±0.142
Kamishima 0.416±0.056 0.158±0.026 0.191±0.019 0.154±0.025 0.823±0.133 0.747±0.162 0.787±0.08 0.785±0.04 0.73±0.067
MMPF CE 0.102±0.043 0.059±0.022 0.097±0.028 0.068±0.02 0.346±0.119 0.24±0.156 0.147±0.05 0.073±0.027 0.352±0.114
MMPF BS 0.111±0.024 0.076±0.024 0.076±0.031 0.041±0.012 0.347±0.072 0.25±0.133 0.149±0.039 0.063±0.013 0.343±0.069
MMPF CE P 0.163±0.044 0.128±0.014 0.078±0.03 0.077±0.014 0.489±0.216 0.249±0.053 0.177±0.045 0.126±0.035 0.424±0.219
MMPF BS P 0.132±0.047 0.091±0.028 0.078±0.026 0.044±0.012 0.327±0.101 0.253±0.152 0.12±0.03 0.083±0.033 0.317±0.125



Minimax Pareto Fairness: A Multi Objective Perspective

Table 10. Adult ethnicity and gender dataset. We underline the worst group metric per method, and bold the one with the best minimax
performance. Smallest disparity is also bolded. Standard deviations are computed across 5 splits.

Acc comparison

type Female Other Male Other Female White Male White disc

Ratio 6.0% 7.7% 26.1% 60.3% 54.3%
Naive LR 94.7±0.9% 84.0±1.0% 91.8±0.4% 80.6±0.5% 14.1±1.0%
Balanced LR 95.0±1.0% 84.5±0.7% 91.9±0.4% 80.5±0.5% 14.5±1.0%
Zafar 95.1±0.9% 84.1±1.4% 92.0±0.2% 80.6±0.5% 14.5±0.9%
Feldman 95.1±1.0% 83.7±1.3% 91.8±0.4% 80.4±0.3% 14.7±0.9%
Kamishima 95.3±1.0% 83.8±0.6% 91.9±0.4% 80.0±1.2% 15.2±1.8%
MMPF LR 94.6±0.7% 84.7±1.0% 91.3±0.3% 80.6±0.5% 14.0±1.0%
MMPF LR P 94.6±0.7% 84.0±1.0% 91.4±0.6% 80.7±0.5% 13.9±1.0%
MMPF 94.6±1.2% 84.4±0.9% 91.5±0.5% 80.9±0.6% 13.6±1.5%
MMPF P 94.5±1.1% 84.3±1.5% 90.7±0.5% 81.0±0.8% 13.4±1.5%

Naive LR+H 76.3±1.0% 72.6±2.2% 75.6±1.6% 71.7±2.0% 5.6±0.8%
Balanced LR+H 76.5±1.2% 72.3±2.2% 75.7±2.0% 71.6±2.1% 5.7±0.6%
Zafar+H 73.8±2.5% 70.4±2.3% 73.3±2.5% 69.7±3.0% 5.0±0.7%
Feldman+H 74.8±2.7% 71.2±2.6% 74.2±2.3% 70.7±2.6% 5.5±1.1%
Kamishima+H 72.3±3.5% 68.5±3.2% 71.4±3.6% 68.0±4.0% 4.8±0.7%
MMPF LR+H 79.2±1.4% 75.4±1.5% 78.2±0.6% 74.4±1.8% 5.5±1.3%

BS comparison

type Female Other Male Other Female White Male White disc

Ratio 6.0% 7.7% 26.1% 60.3% 54.3%
Naive LR 0.079±0.009 0.207±0.012 0.119±0.004 0.266±0.005 0.187±0.011
Balanced LR 0.078±0.01 0.207±0.011 0.119±0.004 0.267±0.006 0.189±0.011
Zafar 0.076±0.01 0.208±0.015 0.118±0.003 0.265±0.005 0.189±0.01
Feldman 0.082±0.011 0.213±0.014 0.122±0.003 0.269±0.004 0.187±0.011
Kamishima 0.081±0.01 0.216±0.008 0.119±0.005 0.271±0.016 0.191±0.021
MMPF LR 0.084±0.009 0.206±0.013 0.126±0.004 0.264±0.005 0.18±0.01
MMPF LR P 0.085±0.007 0.209±0.014 0.127±0.006 0.264±0.005 0.18±0.007
MMPF 0.084±0.012 0.209±0.009 0.126±0.005 0.261±0.005 0.177±0.014
MMPF P 0.086±0.013 0.209±0.014 0.137±0.007 0.262±0.006 0.176±0.015

CE comparison

type Female Other Male Other Female White Male White disc

Ratio 6.0% 7.7% 26.1% 60.3% 54.3%
Naive LR 0.14±0.013 0.321±0.017 0.204±0.005 0.408±0.008 0.268±0.016
Balanced LR 0.138±0.013 0.322±0.018 0.203±0.004 0.411±0.008 0.273±0.015
Zafar 0.143±0.024 0.336±0.027 0.204±0.003 0.409±0.01 0.266±0.03
Feldman 0.149±0.015 0.332±0.019 0.21±0.005 0.412±0.006 0.262±0.016
Kamishima 0.146±0.014 0.337±0.013 0.202±0.006 0.414±0.023 0.269±0.026
MMPF LR 0.153±0.012 0.322±0.018 0.218±0.005 0.404±0.007 0.251±0.015
MMPF LR P 0.153±0.01 0.324±0.019 0.218±0.008 0.405±0.006 0.251±0.01
MMPF 0.141±0.017 0.326±0.015 0.219±0.009 0.404±0.009 0.263±0.022
MMPF P 0.151±0.021 0.331±0.029 0.245±0.007 0.41±0.014 0.258±0.03

ECE comparison

type Female Other Male Other Female White Male White disc

Ratio 6.0% 7.7% 26.1% 60.3% 54.3%
Naive LR 0.02±0.006 0.03±0.003 0.019±0.003 0.014±0.004 0.018±0.003
Balanced LR 0.017±0.004 0.025±0.005 0.014±0.004 0.02±0.004 0.014±0.006
Zafar 0.013±0.003 0.032±0.008 0.015±0.003 0.012±0.004 0.021±0.011
Feldman 0.029±0.004 0.034±0.009 0.024±0.001 0.011±0.003 0.026±0.009
Kamishima 0.014±0.003 0.028±0.005 0.009±0.003 0.013±0.004 0.019±0.006
MMPF LR 0.036±0.007 0.028±0.008 0.036±0.006 0.01±0.003 0.031±0.005
MMPF LR P 0.029±0.007 0.033±0.009 0.024±0.009 0.013±0.002 0.025±0.003
MMPF 0.022±0.004 0.031±0.003 0.015±0.004 0.016±0.004 0.018±0.007
MMPF P 0.028±0.005 0.033±0.007 0.018±0.003 0.015±0.004 0.021±0.006

MCE comparison

type Female Other Male Other Female White Male White disc

Ratio 6.0% 7.7% 26.1% 60.3% 54.3%
Naive LR 0.146±0.079 0.111±0.032 0.082±0.028 0.036±0.014 0.132±0.06
Balanced LR 0.215±0.075 0.086±0.017 0.062±0.022 0.059±0.019 0.161±0.088
Zafar 0.174±0.046 0.118±0.03 0.061±0.038 0.033±0.013 0.145±0.044
Feldman 0.226±0.124 0.107±0.028 0.083±0.018 0.027±0.008 0.202±0.115
Kamishima 0.283±0.126 0.103±0.027 0.081±0.024 0.031±0.008 0.252±0.12
MMPF LR 0.109±0.033 0.077±0.019 0.085±0.02 0.03±0.008 0.088±0.031
MMPF LR P 0.22±0.078 0.118±0.063 0.059±0.021 0.038±0.005 0.184±0.079
MMPF 0.202±0.051 0.076±0.02 0.107±0.03 0.043±0.013 0.166±0.046
MMPF P 0.17±0.078 0.087±0.024 0.085±0.03 0.038±0.017 0.151±0.067
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Table 11. Adult gender dataset. We underline the worst group
metric per method, and bold the one with the best minimax perfor-
mance. Smallest disparity is also bolded. Standard deviations are
computed across 5 splits.

Adult gender Acc

Female Male Disparity

Ratio 32.1% 67.9% 35.9%
Naive LR 92.3±0.4 80.5±0.4 11.9±0.7
Balanced LR 92.3±0.3 80.3±0.7 12.0±0.7
Zafar 92.5±0.3 80.9±0.3 11.6±0.4
Feldman 92.3±0.3 80.7±0.2 11.6±0.1
Kamishima 92.6±0.4 80.9±0.4 11.7±0.7
MMPF LR 91.9±0.4 81.0±0.4 10.9±0.7
MMPF 92.1±0.3 81.3±0.3 10.8±0.5
MMPF LR P 92.0±0.4 81.0±0.5 11.0±0.6
MMPF P 91.7±0.3 81.5±0.5 10.1±0.5

Feldman+H 72.3±2.5% 76.5±2.7% 4.1±0.8%
Kamishima+H 73.5±2.0% 77.8±1.2% 4.3±1.4%
Zafar+H 73.3±2.7% 77.3±2.5% 4.0±1.1%
Naive LR+H 74.2±2.7% 78.6±2.1% 4.4±0.7%
Balanced LR+H 73.8±3.1% 77.7±2.9% 3.9±0.9%
MMPF LR+H 76.0±2.2% 79.8±1.6% 3.8±1.3%

Adult gender CE

Female Male Disparity

Ratio 32.1% 67.9% 35.9%
Naive LR .204±.009 .411±.006 .207±.007
Balanced LR .204±.011 .416±.011 .211±.005
Zafar .202±.018 .398±.006 .195±.023
Feldman .201±.004 .403±.004 .203±.006
Kamishima .189±.006 .395±.004 .206±.007
MMPF LR .204±.008 .395±.006 .19±.011
MMPF .21±.019 .403±.025 .193±.013
MMPF LR P .208±.008 .395±.005 .187±.01
MMPF P .227±.019 .403±.023 .176±.014

Adult gender BS

Female Male Disparity

Ratio 32.1% 67.9% 35.9%
Naive LR .116±.004 .268±.004 .152±.005
Balanced LR .117±.005 .272±.007 .155±.005
Zafar .11±.004 .258±.003 .147±.005
Feldman .115±.003 .263±.002 .148±.003
Kamishima .11±.005 .258±.003 .147±.005
MMPF LR .117±.006 .257±.004 .14±.007
MMPF .117±.004 .255±.004 .138±.007
MMPF LR P .119±.005 .258±.004 .138±.007
MMPF P .127±.003 .256±.005 .129±.003

Adult gender ECE

Female Male Disparity

Ratio 32.1% 67.9% 35.9%
Naive LR .026±.008 .013±.004 .013±.004
Balanced LR .023±.007 .014±.005 .01±.006
Zafar .01±.002 .01±.003 .003±.001
Feldman .026±.003 .01±.005 .016±.006
Kamishima .012±.003 .012±.002 .003±.003
MMPF LR .032±.005 .011±.003 .021±.005
MMPF .009±.002 .015±.003 .006±.004
MMPF LR P .028±.002 .009±.002 .019±.002
MMPF P .02±.006 .015±.001 .006±.005

Adult gender MCE

Female Male Disparity

Ratio 32.1% 67.9% 35.9%
Naive LR .064±.012 .027±.013 .037±.019
Balanced LR .065±.034 .031±.009 .034±.027
Zafar .058±.013 .032±.01 .027±.008
Feldman .071±.017 .024±.013 .047±.012
Kamishima .073±.008 .031±.009 .042±.002
MMPF LR .072±.017 .033±.006 .039±.021
MMPF .057±.021 .031±.003 .026±.019
MMPF LR P .064±.004 .03±.004 .034±.004
MMPF P .085±.023 .047±.01 .039±.024

Table 12. German dataset. We underline the worst group metric
per method, and bold the one with the best minimax performance.
Smallest disparity is also bolded. Standard deviations are com-
puted across 5 splits.

German Acc
Female Male Disparity

Ratio 29.5% 70.5% 41.0%
Naive LR 70.7±7.3 71.2±4.5 8.8±4.7
Balanced LR 71.6±5.9 70.9±4.1 5.8±3.6
Zafar 73.0±5.6 71.0±3.5 5.8±3.5
Feldman 73.5±8.6 71.9±4.3 7.9±4.4
Kamishima 68.8±6.8 72.7±2.6 6.0±4.4
MMPF LR 72.5±5.5 71.6±2.8 5.0±2.6
MMPF LR P 70.7±4.5 71.5±3.6 4.4±0.5

Naive LR+H 57.5±1.7 57.8±1.8 5.7±3.6
Balanced LR+H 60.5±4.2 60.9±4.5 4.6±3.3
Feldman+H 61.6±4.7 62.2±5.0 7.1±3.9
Kamishima+H 61.7±4.0 61.3±4.2 4.5±2.2
Zafar+H 59.8±4.0 60.5±4.9 6.6±4.9
MMPF LR+H 65.7±4.7 65.9±4.7 3.6±1.7

German CE
Female Male Disparity

Ratio 29.5% 70.5% 41.0%
Naive LR .607±.1 .559±.069 .127±.064
Balanced LR .594±.082 .568±.068 .096±.05
Zafar .567±.09 .735±.205 .273±.151
Feldman .564±.096 .551±.063 .091±.068
Kamishima .62±.064 .545±.062 .075±.067
MMPF LR .565±.04 .544±.046 .048±.041
MMPF LR P .563±.043 .537±.051 .057±.034

German BS
Female Male Disparity

Ratio 29.5% 70.5% 41.0%
Naive LR .404±.077 .379±.05 .094±.043
Balanced LR .393±.069 .38±.043 .071±.036
Zafar .379±.07 .383±.052 .072±.05
Feldman .375±.079 .371±.045 .07±.05
Kamishima .413±.051 .368±.044 .047±.048
MMPF LR .379±.038 .368±.039 .044±.03
MMPF LR P .381±.039 .363±.041 .051±.025

German ECE
Female Male Disparity

Ratio 29.5% 70.5% 41.0%
Naive LR .136±.047 .099±.029 .051±.036
Balanced LR .136±.032 .107±.032 .038±.025
Zafar .117±.039 .097±.038 .047±.022
Feldman .129±.045 .091±.04 .052±.043
Kamishima .125±.067 .082±.029 .052±.04
MMPF LR .096±.036 .046±.019 .056±.046
MMPF LR P .088±.039 .049±.008 .047±.034

German MCE
Female Male Disparity

Ratio 29.5% 70.5% 41.0%
Naive LR .308±.11 .23±.023 .095±.091
Balanced LR .322±.127 .216±.088 .106±.046
Zafar .255±.135 .206±.08 .138±.072
Feldman .285±.096 .166±.048 .137±.083
Kamishima .212±.084 .157±.052 .062±.062
MMPF LR .18±.067 .11±.046 .093±.075
MMPF LR P .172±.073 .11±.029 .106±.046


