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Stochastically Dominant Distributional Reinforcement Learning Appendix

1. Experimental Details
1.1. Regression Comparison

This experiment compared empirical first and second moment estimates between quantile regression and solutions of a
Wasserstein gradient flow. The distributions were parameterized with the same number of particles, which we varied for
values of 5, 10, 20, and 50. Particles were trained on data from a five-component Gaussian mixture model of those sample
sizes. We draw samples from each component with equal probability ci = 1/5, using the means µi ∈ {−5,−3, 0, 5, 6, 9},
and standard deviations σi ∈ {1, 2, 1, 2, 1, 0.5}, for i = 1, · · · , 5. Models were evaluated on a separate draw of the same
size as the training set. We computed the target values, y, using empirical estimates from 104 samples. The violin plots show

the distribution of root mean square error RMSE =
√

1
N

∑N
n=1(y − ŷ)2 samples between the targets and the estimates ŷ

over N = 100 trials.

1.2. Ablation Study

Figure 1. Ablations: Temperature β and step size h in proximal loss.

We ablated the minimum temperature β−1 ∈ {0.01, 0.1, 0.2, 0.25, 0.5, 0.9} and step size h ∈ {0.01, 0.1, 0.5, 1., 10.} over
50 trials. Data came from the five-component mixture model used in the Regression Comparison experiment. We report the
root mean square error in the first and second moments with targets computed using 104 samples and empirical estimators.

1.3. WGF Policy Evaluation

Here we perform policy evaluation on Monte Carlo (MC) returns from the optimal policy. The optimal policy was obtained
by running Q-learning for 104 episodes with an (ε = 0.1)-greedy behavior policy, γ = 0.9, learning rate α = 0.5, and using
an absorbing terminal state. MC returns were computed for each state from 200 rollouts of 200 time steps. We parameterized
a discrete distribution with 200 particles initialized from a standard N (0, 1) Gaussian, then transported them using 100
gradient steps with a step size of 0.5. The proximal loss was annealed down from β−1 = 1 to 0.25 in minimum steps of
0.5; the proximal time step was set to h = 1. We report the curves of the proximal loss and the squared value error at each
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Stochastically Dominant Distributional Reinforcement Learning Appendix

gradient step.

1.4. WGF in the Control Setting

This experiment used the OpenAI Gym (Brockman et al., 2016) environments MountainCar, CartPole, and LunarLander
with discrete actions. We estimated particle locations using a two layer fully-connected neural network, each with 256
hidden units. We trained these networks with the WGF proximal loss and the quantile regression loss from (Dabney et al.,
2017). Both models regressed 2 quantiles. We used the Adam optimizer (Kingma & Ba, 2015) with a step size of 10−3.
We used experience replay with batches of size 32 and a total capacity of 104. Agents explored with and (ε = 0.1)-greedy
policy, using γ = 0.99 until the absorbing state was reached. We report data for 5 independent trials.

1.5. Control in the Presence of Uncertainty
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Figure 2. Modified CliffWorld with multiple solutions.

This experiment used data generated in the CliffWalk environment (Sutton & Barto, 2018). The agent moves in four cardinal
directions. We modified the reward function so they were assigned randomly according to Figure 2. Here N (µ)

σ denotes
N (µ, σ). For the random rewards, we clipped them to be within the interval [−10, 10]. Both the WGF and quantile regression
agents used a tabular representation of 16 particles for each return distribution. Learning occurred with γ = 1, a horizon
length of 500, and the same loss settings used in the policy evaluation experiment. However, the number of gradient steps
was limited to 50, unless a tolerance of 10−8 was exceeded below first. We report data gathered from M = 50 independent
trials. The 95% confidence intervals were computed using the standard t-distribution with M − 1 degrees of freedom.

2. Mathematical Proofs and References to Supporting Results
This section provides proofs to our main theoretical results. For our supporting results, we provide references to their original
sources. We drop the superscript notation introduced in the main paper, used to denote single measures for state-action pairs.
All the following results involving probability measure apply for single measures.

Lemma 1. Let τ ∈ (0, 1) and consider ξτ = F−1X (τ). Then F−2X (τ) = E[X ≤ ξτ ].

Proof. By conjugate duality,

F−2X (τ) = τξτ − F (2)
X (x),

= τξτ − τE[X − ξτ |X ≤ ξτ ],

= τE[X|X ≤ ξτ ],

= E[X ≤ ξτ ].

Proposition 1. Z(s,a1) �(2) Z
(s,a2) if, and only if

∑j
i=1 z

[i]
a1 ≥

∑j
i=1 z

[i]
a2 , ∀ j = 1, · · · , N.
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Proof. We prove the result in the context of random returns. However, this holds for general random variables. We consider
two random returns induced by the actions a1 and a2, respectively denoted Z(s,a1), Z(s,a2). Each return is approximated
with a discrete Lagrangian measure

µ(s,a1) ≈ 1

N

N∑
n=1

δ
z
(n)
a1

, µ(s,as) ≈ 1

N

N∑
n=1

δ
z
(n)
a2

.

Given that Z(s,a1) �(2) Z
(s,a2), we know by the definition that F−2

Z(s,a1)(τ) ≥ F−2
Z(s,a2)(τ) for all τ ∈ (0, 1). Invoking

Lemma ?? allows us to rewrite the definition with total expectations

E[Z(s,a1) ≤ ξ(τ)a1 ] ≥ E[Z(s,a2) ≤ ξ(τ)a2 ], ∀ τ ∈ (0, 1).

Denote the ordered coordinates of a return distribution to be z[1] ≤ z[2] ≤ · · · ≤ z[N ]. Then with particle sets from each
measure, we have

j∑
i=1

z[i]a1 ≥
j∑
i=1

z[i]a2 , ∀ j = 1, · · · , N.

The other implication follows by normalizing the sums with 1/N and invoking Lemma ?? again to arrive at the definition.

Proposition 2 (Fishburn (1980)). Assume µ has two finite moments. Then X �(2) Y implies µ(1)
X ≥ µ

(1)
Y or µ(1)

X = µ
(1)
Y

and µ(2)
X ≤ µ

(2)
Y , where (·) denotes a particular moment of the distribution µ.

Proof. This result follows from Theorem 1 of Fishburn (1980), which proves an ordering dominance of any finite degree.

Proposition 3. Let {µt}t∈[0,1] be an absolutely-continuous curve in P(R) with finite second-order moment. Then for
t ∈ [0, 1], the vector field vt = ∇( δEδt (µ)) defines a gradient flow on P(R) as ∂tµt = −∇ · (µtvt), where ∇ · u is the
divergence of some vector u.

Proof. See Ambrosio (2005), Theorem 8.3.1.

Proposition 4. Let µ0 ∈ P2(R) have finite free energy E(µ0) <∞, and for a given h > 0, let {µ(h)
t }Kt=0 be the solution of

the discrete-time variational problem, with measures restricted to P2(R), the space with finite second moments. Then as
h→ 0, µ(h)

K → µT , where µT is the unique solution of the Fokker-Plank equatio at T = hK.

Proof. See Jordan et al. (1998), Theorem 5.1.

Proposition 5. Let {µ(h)
t }Kt=0 be the solution of the discrete-time JKO variational problem, with measures restricted to

P2(R), the space with finite second moments. Then E(µt) is a decreasing function of time.

Proof. We show that the free-energy E(µ) = F (µ) + β−1H(µ) is a Lyapunov functional for the Fokker-Planck (FP)
equation. Following the approach of (Markowich & Villani, 1999), we consider the change of variables µt = hte

−U , where
we let β = 1 without loss of generality. With this, FP is equivalent to

∂tht = ∆ht −∇U · ∇ht. (1)

Whenever φ is a convex function, one can check the following is a Lyapunov functional for (1), and equivalently FP:∫
φ(ht)e

−Udz =

∫
φ(µte

U )e−Udz.

Differentiating with respect to time shows

d

dt

∫
φ(ht)e

−Udz = −
∫
φ′′(ht)|∇ht|2e−Udz < 0.
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Now consider φ(ht) = ht log(ht)− ht + 1. With the identity
∫

(ht − 1)e−Udz = 0, we find∫
φ(ht)e

−Udz =

∫
µt log

( µt
e−U

)
dz =

∫
µt(U + log µt)dz = E(µ).

Thus, the free-energy functional is a Lyapunov function for the Fokker-Planck equation, and E(µt) is a decreasing function
of time. In the low-energy state the optimal distributional Bellman equation is satisfied with pure Brownian motion.

Theorem 1. If T µ = µ, then ProxW
hE(µ) = µ as β →∞.

Proof. Let d(µ, ν) be some distributional distance between measures µ and ν, such as the supremal k-Wasserstein =
sups,aWk(µ, ν). Furthermore, suppose µ∗ = T µ∗ is the fixed point of the optimal distributional Bellman operator T . We
consider the proximal operator

ProxWhE(µk) = arg min
µ

W2
2(µ, µk) + 2hE(µ).

It follows that µ∗ = T µ∗ and

d(T µ∗, µ∗) ≤ d(ProxWhE(µ∗), µ∗) = d

(
arg min

µ
W2

2(µ, µ∗) + 2h E(µ)︸ ︷︷ ︸
0 as β→∞

, µ∗
)
,

≤ d
(

arg min
µ

W2
2(µ, µ∗) = µ∗, µ∗

)
≤ 0

Distance is non-negative, so it must be that ProxWhE(µ∗) = T µ∗ = µ∗.

3. Expanded Background
3.1. Euclidean Gradient Flows

Suppose we have a smooth function F : Rd → R and an initial point x0 ∈ Rd. The gradient flow of F (x) is defined as
the solution to the differential equation dx

dτ = −∇F (x(τ)), τ > 0, and x(0) = x0. This has a unique solution if ∇F is
Lipschitz continuous.

Exact solutions are typically intractable. A standard numerical method, called the Minimizing Movement Scheme (MMS)
(Gobbino, 1999), evolves x iteratively for small steps along the gradient of F at the current point xk. The next point is

xk+1 = xk −∇F (xk+1)h,

for the step size h. Determining xk+1 is equivalent to solving the optimization problem

xk+1 ∈ arg min
x

F (x) +
||x− xk||22

2h
.

Where the squared Euclidean norm is denoted || · ||22. Convergence of the sequence {xk} to the exact solution has been
established for this method, (Ambrosio, 2005).

3.2. Sinkhorn’s Algorithm

We describe how the Kantorovich problem can be made tractable through entropy regularization, then present an algorithm
for approximating the W2

2 distance. The key message is that including entropy reduces the original Optimal Transport
problem to one of matrix scaling. Sinkhorn’s algorithm can be applied for this purpose to admit unique solutions.

The optimal value of the Kantorovich problem is the exact W2
2 distance. Given probability measures α =

∑N
i=1 αiδxi

and
β =

∑M
j=1 βjδyj , the problem is to compute a minimum-cost mapping, π, defined as a non-negative matrix on the product
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space of atoms {x1, · · · , xN} × {y1, · · · , yM}. Denoting the cost to move xi to yj as Cij = ||xi − yj ||2, we have

W2
2(α, β) = min

π∈RN×M
≥0

〈π,C〉 =
∑
ij

πijCij , (2)

such that π1M = α, π>1N = β. (3)

This approach constitutes a linear program, which unfortunately scales cubically in the number of atoms. We can reduce the
complexity by considering an entropically regularized version of the problem. Let ε be a regularization parameter. The new
problem is written in terms of the generalized Kullback Leibler (KL) divergence:

W2
2(α, β) ≈Wε(α, β) = min

π∈RN×M
≥0

〈π,C〉+ εKL(π||α⊗ β), (4)

=
∑
i,j

πijCij + ε
∑
i,j

[πij log
πij
αiβj

− πij + αiβj ], (5)

such that π1M = α, π>1N = β. (6)

The value of Wε(α, β) occurs necessarily at the critical point of the constrained objective function

Lε =
∑
i,j

πijCij + ε
∑
i,j

[πij log
πij
αiβj

− πij + αiβj ]

−
∑
i

fi

(∑
j

πij − αi
)
−
∑
j

gj

(∑
i

πij − βj
)
, (7)

∂Lε
∂πij

= 0 =⇒ ∀ i, j, Cij + ε log
π∗ij
αiβj

= f∗i + g∗j . (8)

The last line of (8) shows that the entropically-regularized solution is characterized by two vectors f∗ ∈ RN , g∗ ∈ RM .
With the following definitions

ui = exp(f∗i /ε), vj = exp(g∗j /ε), Kij = exp(−Cij/ε), (9)

we can write the optimal transport plan as π∗ = diag(αiui)Kdiag(vjβj). And the approximate Wasserstein distance can
be computed simply as

Wε(α, β) = 〈π∗, C〉+ εKL(π∗||α⊗ β) =
∑
ij

(f∗i + g∗j ) = 〈f∗, α〉+ 〈g∗, β〉

We mentioned that Optimal Transport reduces to positive matrix scaling. Indeed, using the vectors u and v, Sinkhorn’s
algorithm provides a way to iteratively scale K such that the unique solution is π∗. Initialize u(0) = 1N , and v(0) = 1M ,
then perform the following iterations for all i, j

v
(1)
j =

1

[K>(α� u(0))]j
, u

(1)
i =

1

[K(β � v(1))]i
,

...
...

v
(n+1)
j =

1

[K>(α� u(n))]j
, u

(n+1)
i =

1

[K(β � v(n+1))]i
. (10)

Sinkhorn’s algorithm performs coordinate ascent with f and g to maximize the dual maximization problem

Wε(α, β) = max
f∈RN ,g∈RM

〈f, α〉+ 〈g, β〉 − ε 〈α⊗ β, exp{(f ⊕ g − C)/ε} − 1〉 . (11)

Each update consists of kernel products, K>(α� u) and K(β � v), and point-wise divisions. We describe this procedure
in Algorithm 1, using computations in the log domain to numerically stabilize the updates. The log updates derive from (9)
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and (12):

log vj = − log
∑
i

Kijαiui log ui = − log
∑
j

Kijβjvj ,

gj = −ε log
∑
i

exp{(−Cij + fi)/ε+ logαi} fi = −ε log
∑
j

exp{(−Cij + gj)/ε+ log βj}. (12)

The Sinkhorn iterations typically loop until convergence. In practice, we choose a decreasing temperature sequence {εn}
with which to bound the number of iterations.

Algorithm 1 Sinkhorn’s Algorithm in the log domain for W2
2

1: input: Source and target measures α =
∑N
i=1 αiδxi

, β =
∑M
j=1 βjδyj , Annealing temperature sequence {εn}

2: # Initialize dual variables
3: i ∈ {1, · · · , N}, j ∈ {1, · · · ,M}
4: fi ← 0, gj ← 0 ∀ i, j
5: # Perform coordinate ascent in the log domain
6: for ε ∈ {εn} do
7: Cij = 1

2ε ||xi − yj ||
2 ∀ i, j

8: g
(n+1)
j ← −ε log

∑
i exp{(−Cij + f

(n)
i )/ε+ logαi} ∀ j

9: f
(n+1)
i ← −ε log

∑
j exp{(−Cij + g

(n+1)
j )/ε+ log βj} ∀ i

10: end for
11: # Return the entropic-regularized OT distance
12: output: 〈f, α〉+ 〈g, β〉

4. Supporting Results
4.1. Proof that the Gibbs measure minimizes free energy.

Remark 1. Let E(µ) = F (µ) + β−1H(µ), with F (µ) =
∫
U(z)dµ. The minimizer is the Gibbs density,

µ∗(z) = Z−1 exp{−βψ(z)},

where ψ(z) = U(z) +
∫ 1

0
λ(τ)S(z, τ)dτ , and Z =

∫
exp{−βψ(z)}dz.

Proof. We set the functional derivative, or the first variation, of E to zero and solve for µ. The derivatives are

δF

δµ
= U(z),

δH

δµ
= log(µ) + 1.

Solving for µ∗ emits a proportionality, which can be normalized as described:

U(z) + β−1(log(µ∗) + 1) = 0 =⇒ µ∗ ∝ exp{−βψ(z)}

4.2. On the prevalence of multiple solutions

We are concerned with settings where the agent must select between multiple equivalently-valued actions in a way that
minimizes uncertainty. Figure 3 shows the number of times these events occurred during the Control in the Presence
of Uncertainty experiment. We present this data to support the claim that multiple solutions occur often enough in our
experiment to merit a policy for selecting among the options.
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Figure 3. Frequency of multiple-solution events that occurred during the Control in the Presence of Uncertainty experiment.
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