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Abstract

Learning from unordered sets is a fundamental
learning setup, recently attracting increasing at-
tention. Research in this area has focused on the
case where elements of the set are represented by
feature vectors, and far less emphasis has been
given to the common case where set elements
themselves adhere to their own symmetries. That
case is relevant to numerous applications, from
deblurring image bursts to multi-view 3D shape
recognition and reconstruction. In this paper, we
present a principled approach to learning sets of
general symmetric elements. We first characterize
the space of linear layers that are equivariant both
to element reordering and to the inherent symme-
tries of elements, like translation in the case of
images. We further show that networks that are
composed of these layers, called Deep Sets for
Symmetric elements layers (DSS), are universal
approximators of both invariant and equivariant
functions. DSS layers are also straightforward to
implement. Finally, we show that they improve
over existing set-learning architectures in a series
of experiments with images, graphs and point-
clouds.

1. Introduction
Learning with data that consists of unordered sets of ele-
ments is an important problem with numerous applications,
from classification and segmentation of 3D data (Zaheer
et al., 2017; Qi et al., 2017; Su et al., 2015; Kalogerakis
et al., 2017) to image deblurring (Aittala & Durand, 2018).
In this setting, each data point consists of a set of elements,
and the task is independent of element order. This inde-
pendence induces a symmetry structure, which can be used
to design deep models with improved efficiency and gen-
eralization. Indeed, models that respect set symmetries,
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e.g. (Zaheer et al., 2017; Qi et al., 2017), have become the
leading approach for solving such tasks. However, in many
cases, the elements of the set themselves adhere to certain
symmetries, as happens when learning with sets of images,
sets of point-clouds and sets of graphs. It is still unknown
what is the best way to utilize these additional symmetries.

A common approach to handle per-element symmetries, is
based on processing elements individually. First, one pro-
cesses each set-element independently into a feature vector
using a Siamese architecture (Bromley et al., 1994), and
only then fuses information across all feature vectors. When
following this process, the interaction between the elements
of the set only occurs after each element has already been
processed, possibly omitting low-level details. Indeed, it
has been recently shown that for learning sets of images
(Aittala & Durand, 2018; Sridhar et al., 2019; Liu et al.,
2019), significant gain can be achieved with intermediate
information-sharing layers.

In this paper, we present a principled approach to learning
sets of symmetric elements. First, we describe the sym-
metry group of these sets, and then fully characterize the
space of linear layers that are equivariant to this group. No-
tably, this characterization implies that information between
set elements should be shared in all layers. For example,
Figure 1 illustrates a DSS layer for sets of images. DSS
layers provide a unified framework that generalizes several
previously-described architectures for a variety of data types.
In particular, it directly generalizes DeepSets (Zaheer et al.,
2017). Moreover, other recent works can also be viewed as
special cases of our approach (Hartford et al., 2018; Aittala
& Durand, 2018; Sridhar et al., 2019).

A potential concern with equivariant architectures is that
restricting layers to be equivariant to some group of symme-
tries may reduce the expressive power of the model (Maron
et al., 2019c; Morris et al., 2018; Xu et al., 2019). We
eliminate this potential limitation by proving two universal-
approximation theorems for invariant and equivariant DSS
networks. Simply put, these theorems state that if invariant
(equivariant) networks for the elements of interest are uni-
versal, then the corresponding invariant (equivariant) DSS
networks on sets of such elements are also universal.

To summarize, this paper has three main contributions: (1)
We characterize the space of linear equivariant layers for sets
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Figure 1. (a) A DSS layer for a set of images is composed of
Siamese layer (blue) and an aggregation module (orange). The
Siamese part is a convolutional layer (L1) that is applied to each
element independently. In the aggregation module, the sum of all
images is processed by a different convolutional layer (L2) and
is added to the output of the Siamese part. (b) An example of a
simple DSS-based invariant network.

of elements with symmetries. (2) We prove two universal
approximation theorems for networks that are composed
of DSS layers. (3) We demonstrate the empirical benefits
of the DSS layers in a series of tasks, from classification
through matching to selection, applied to diverse data from
images to graphs and 3D point-clouds. These experiments
show consistent improvement over previous approaches.

2. Previous work
Learning with sets. Several studies designed network ar-
chitectures for set-structured input. Vinyals et al. (2015)
suggested to extend the sequence-to-sequence framework
of Sutskever et al. (2014) to handle sets. The prominent
works of Ravanbakhsh et al. (2016); Edwards & Storkey
(2016); Zaheer et al. (2017); Qi et al. (2017) proposed to
use standard feed-forward neural networks whose layers are
constrained to be equivariant to permutations. These models,
when combined with a set-pooling layer, were also shown
to be universal approximators of continuous permutation-
invariant functions. Wagstaff et al. (2019) provided a the-
oretical study on the limitations of representing functions
on sets with such networks. In another related work, Mur-
phy et al. (2018) suggested to model permutation-invariant
functions as an average of permutation-sensitive functions.

The specific case of learning sets of images was explored in
several studies. Su et al. (2015); Kalogerakis et al. (2017)
targeted classification and segmentation of 3D models by
processing images rendered from several view points. These
methods use a Siamese convolutional neural network to pro-
cess the images, followed by view-pooling layer. Esteves
et al. (2019) recently considered the same setup and sug-

gested to perform convolutions on a subgroup of the rotation
group, which enables joint processing of all views. Sridhar
et al. (2019) tackled 3D shape reconstruction from multiple
view points and suggest using several equivariant mean-
removal layers in which the mean of all images is subtracted
from each image in the set. Aittala & Durand (2018) tar-
geted image burst deblurring and denoising, and suggested
to use set-pooling layers after convolutional blocks in which
for each pixel, the maximum over all images is concatenated
to all images. Liu et al. (2019) proposed to use an attention-
based information sharing block for face recognition tasks.
In Gordon et al. (2020) the authors modify neural processes
by adding a translation equivariance assumption, treating
the inputs as a set of translation equivariant objects.

Equivariance in deep learning. The prototypical exam-
ple for equivariance in learning is probably visual object
recognition, where the prevailing Convolutional Neural
Networks (CNNs) are constructed from convolution lay-
ers which are equivariant to image translations. In the past
few years, researchers have used invariance and equivari-
ance considerations to devise deep learning architectures
for other types of data. In addition to set-structured data dis-
cussed above, researchers suggested equivariant models for
interaction between sets (Hartford et al., 2018), graphs (Kon-
dor et al., 2018; Maron et al., 2019b;a; Chen et al., 2019;
Albooyeh et al., 2019) and relational databases (Graham
& Ravanbakhsh, 2019). Another successful line of work
took into account other image symmetries such as reflec-
tions and rotations (Dieleman et al., 2016; Cohen & Welling,
2016a;b; Worrall et al., 2017; Cheng et al., 2018), spherical
symmetries (Cohen et al., 2018; 2019b; Esteves et al., 2017),
or 3D symmetries (Weiler et al., 2018; Winkels & Cohen,
2018; Worrall & Brostow, 2018; Kondor, 2018; Thomas
et al., 2018; Weiler et al., 2018). From a theoretical point
of view, several papers studied the properties of equivariant
layers (Ravanbakhsh et al., 2017; Kondor & Trivedi, 2018;
Cohen et al., 2019a) and characterized the expressive power
of models that use such layers (Yarotsky, 2018; Maron et al.,
2019c; Keriven & Peyré, 2019; Maehara & NT, 2019; Segol
& Lipman, 2019).

3. Preliminaries
3.1. Notation and basic definitions

Let x ∈ R` represent an input that adheres to a group of
symmetries G ≤ S`, the symmetric group on ` elements.
G captures those transformations that our task-of-interest
is invariant (or equivariant) to. The action of G on R` is
defined by (g · x)i = xg−1(i). For example, when inputs are
images of size h×w, we have ` = hw andG can be a group
that applies cyclic translations, or left-right reflections to
an image. A function is called G-equivariant if f(g · x) =
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g · f(x) for all g ∈ G. Similarly, a function f is called
G-invariant if f(g · x) = f(x) for all g ∈ G.

3.2. G-invariant networks

G-equivariant networks are a popular way to model G-
equivariant functions. These networks are composed of
several linear G-equivariant layers, interleaved with activa-
tion functions like ReLU, and have the following form:

f = Lk ◦ σ ◦ Lk−1 · · · ◦ σ ◦ L1, (1)

Where Li : R`×di → R`×di+1 are linear G-equivariant
layers, di are the feature dimensions and σ is a point-wise
activation function. It is straightforward to show that this
architecture results in a G-equivariant function. G-invariant
networks are defined by adding an invariant layer on top of a
G-equivariant function followed by a multilayer Perceptron
(MLP), and have the form:

g = m ◦ σ ◦ h ◦ σ ◦ f , (2)

where h : R`×dk+1 → Rdk+2 is a linear G-invariant layer
andm : Rdk+2 → Rdk+3 is an MLP. It can be readily shown
that this architecture results in a G-invariant function.

3.3. Characterizing equivariant layers

The main building block of G-invariant/equivariant net-
works are linear G-invariant/equivariant layers. To imple-
ment these networks, one has to characterize the space of
linear G-invariant/equivariant layers, namely, Li, h in Equa-
tions (1-2). For example, it is well known that for images
with the group G of circular 2D translations, the space of
linear G-equivariant layers is simply the space of all 2D
convolutions operators (Puschel & Moura, 2008). Unfortu-
nately, such elegant characterizations are not available for
most permutation groups.

Characterizing linearG-equivariant layers can be reduced to
the task of solving a set of linear equations in the following
way: We are looking for a linear operator L : R` → R` that
commutes with all the elements in G, namely:

L(g · x) = g · L(x), x ∈ R`, g ∈ G. (3)

Note that L can be realized as a `× ` matrix (which will be
denoted in the same way), and as in Maron et al. (2019b),
Equation 3 is equivalent to the following linear system:

g · L = L, g ∈ G, (4)

where g acts on both dimensions of L. The solution space
of Equation 4 characterizes the space of all G-equivariant
linear layers, or equivalently, defines a parameter sharing
scheme on the layer parameters for the group G (Wood &
Shawe-Taylor, 1996; Ravanbakhsh et al., 2017). We will

denote the dimension of this space as E(G). We note that
in many important cases (e.g., (Zaheer et al., 2017; Hartford
et al., 2018; Maron et al., 2019b; Albooyeh et al., 2019))
|G| is exponential in ` so it is not possible to solve the linear
system naively, and one has to resort to other strategies.

3.4. Deep Sets

Since the current paper generalizes DeepSets (Zaheer et al.,
2017), we summarize their main results for completeness.
Let {x1, . . . xn} ⊂ R be a set, which we represent in arbi-
trary order as a vector x ∈ Rn. DeepSets characterized all
Sn-equivariant layers, namely, all matrices L ∈ Rn×n such
that g · L(x) = L(g · x) for any permutation g ∈ Sn and
have shown that these operators have the following struc-
ture: L = λIn + β11T . When considering sets with higher
dimensional features, i.e., xi ∈ Rd and X ∈ Rn×d, this
characterization takes the form:

L(X)i = L1(xi) + L2

 n∑
j 6=i

xj

 , (5)

where L1, L2 : Rd → Rd are general linear functions and
the subscript represents the i-th row of the output. The paper
then suggests to concatenate several such layers, yielding
a deep equivariant model (or an invariant model if a set
pooling layer is added on top). Zaheer et al. (2017); Qi et al.
(2017) established the universality of invariant networks
that are composed of DeepSets Layers and Segol & Lipman
(2019) extended this result to the equivariant case.

4. DSS layers
Our main goal is to design deep models for sets of elements
with non-trivial per-element symmetries. In this section, we
first formulate the symmetry groupG of such sets. The deep
models we advocate are composed of linear G-equivariant
layers (DSS layers), therefore, our next step is to find a
simple and practical characterization of the space of these
layers.

4.1. Sets with symmetric elements

Let {x1, . . . xn} ⊂ Rd be a set of elements with symmetry
group H ≤ Sd. We wish to characterize the space of lin-
ear maps L : Rn×d → Rn×d that are equivariant to both
the natural symmetries of the elements, represented by the
elements of the group H , as well as to the order of the n
elements, represented by Sn.

In our setup, H operates on all elements xi in the
same way. More formally, the symmetry group is
defined by G = Sn × H , where Sn is the symmet-
ric group on n elements. This group operates on
X ∈ Rn×d by applying the permutation q ∈ Sn to



On Learning Sets of Symmetric Elements

the first dimension and the same element h ∈ H
to the second dimension, namely ((q, h) ·X)ij =
Xq−1(i)h−1(j). Figure 2 illustrates this setup.

Figure 2. The input to a
DSS layer is an n × d
matrix, in which each row
holds a d-dimensional ele-
ment. G = Sn × H acts
on it by applying a permu-
tation to the columns and an
element h ∈ H to the rows.

Notably, this setup general-
izes several popular learning
setups: (1) DeepSets, where
H = {Id} is the trivial
group. (2) Tabular data (Hart-
ford et al., 2018), where H =
Sd. (3) Sets of images, where
H is the group of circular
translations (Aittala & Durand,
2018).

One can also consider another
setup, where the members of
H that are applied to each ele-
ment of the set may differ. Sec-
tion C of the supplementary
material formulates this setup
and characterizes the corresponding equivariant layers in
the common case where H acts transitively on {1, . . . , d}.
While this setup can be used to model several interesting
learning scenarios, it turns out that the corresponding equiv-
ariant networks are practically reduced to Siamese networks
that were suggested in previous works.

4.2. Characterization of equivariant layers

This subsection provides a practical characterization of lin-
ear G-equivariant layers for G = Sn × H . Our result
generalizes DeepSets (equation 5) whose layers are tailored
for H = {Id}, by replacing the linear operators L1, L2 with
linear H-equivariant operators. This result is summarized
in the following theorem:
Theorem 1. Any linear G−equivariant layer L : Rn×d →
Rn×d is of the form

L(X)i = LH1 (xi) + LH2

 n∑
j 6=i

xj

 ,

where LH1 , L
H
2 are linear H-equivariant functions

Note that this is equivalent to the following formula-
tions L(X)i = LH1 (xi) + LH2 (

∑n
j=1 xj) = LH1 (xi) +∑n

j=1 L
H
2 (xj) due to linearity, and we will use them in-

terchangeably throughout the paper. Figure 1 illustrates
Theorem 1 for sets of images. In this case, applying a DSS
layer amounts to: (i) Applying the same convolutional layer
L1 to all images in the set (blue); (ii) Applying another
convolutional layer L2 to the sum of all images (orange);
and (iii) summing the outputs of these two layers. We dis-
cuss this theorem in the context of other widely-used data
types such as point-clouds and graphs in section F of the
Supplementary material.

We begin the proof by stating a useful lemma, that pro-
vides a formula for the dimension of the space of linear
G-equivariant maps:

Lemma 1. Let G ≤ S`, then the dimension of the space of
G-equivariant linear functions L : R` → R` is

E(G) =
1

|G|
∑
g∈G

tr(P (g))2,

where P (g) is the permutation matrix that corresponds to
the permutation g.

The proof is given in the supplementary material. Given this
lemma we can now prove Theorem 1:

Proof of Theorem 1. We wish to prove that all linear G-
equivariant layers L : Rn×k → Rn×k are of the form
L(X)i = LH1 (xi) + LH2 (

∑n
j 6=i xj). Clearly, layers of this

form are linear and equivariant. Moreover, the dimension
of the space of these operators is exactly 2E(H) since we
need to account for two linearly independent H-equivariant
operators. The linear independence follows from the fact
that their support in the matrix representation of L is disjoint.
On the other hand, using Lemma 1 we have:

E(G) =
1

|G|
∑
g∈G

tr(P (g))2 =

=
1

|H|
1

n!

∑
q∈Sn

∑
h∈H

tr(P (q)⊗ P (h))2

=
1

|H|
1

n!

∑
q∈Sn

∑
h∈H

tr(P (q))2tr(P (h))2

=

(
1

|H|
∑
h∈H

tr(P (h))2
)
·

 1

n!

∑
q∈Sn

tr(P (q))2


= E(H)E(Sn) = 2E(H).

Here we used the fact that the trace is multiplicative with
respect to the Kronecker product as well as the fact that
E(Sn) = 2 (see (Zaheer et al., 2017) or Appendix 2 in
(Maron et al., 2019b) for a generalization of this result).

To conclude, we have a linear subspace{
L | L(X)i = LH1 (xi) + LH2 (

∑n
j 6=i xj)

}
, which is a

subspace of the space of all linear G-equivariant operators,
but has the same dimension, which implies that both spaces
are equal.

Relation to (Aittala & Durand, 2018; Sridhar et al.,
2019). In the specific case of a set of images and transla-
tion equivariance, LHi are convolutions. In this setting, (Ait-
tala & Durand, 2018; Sridhar et al., 2019) have previously
proposed using set-aggregation layers after convolutional
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blocks. The main differences between these studies and the
current paper are: (1) Our work applies to all types of sym-
metric elements and not just images; (2) We derive these
layers from first principles; (3) We provide a theoretical
analysis (Section 5); (4) We apply an aggregation step at
each layer instead of only after convolutional blocks.

Generalizations. Section A of the supplementary ma-
terial generalizes Theorem 1 to equivariant linear layers
with multiple features. It also generalizes to several ad-
ditional types of equivariant layers: L : Rn×d → R,
L : Rn×d → Rn and L : Rn×d → Rd. In addition, see Sec-
tion B of the supplementary material for further discussion
and characterization of the space of equivariant maps for a
product of arbitrary permutation groups.

5. A universal approximation theorem
When restricting a network to be invariant (equivariant) to
some group action, one may worry that these restrictions
could reduce the network expressive power (see Maron et al.
(2019c) or Xu et al. (2019) for concrete examples). We now
show that networks that are constructed from DSS layers do
not suffer from loss of expressivity. Specifically, we show
that for any group H that induces a universal H-invariant
(equivariant) network, its corresponding G-invariant (equiv-
ariant) network is universal as well.

We first state a lemma, which we later use for proving our
universal-approximation theorems. The lemma shows that
one can uniquely encode orbits of a group H in an invariant
way by using a polynomial function. The full proof is given
in Section D of the supplementary material.

Lemma 2. Let H ≤ Sd then there exists a polynomial
function u : Rd → Rl, for some l ∈ N, for which u(x) =
u(y) if and only if x = h · y for some h ∈ H .

Proof idea. This lemma is a generalization of Proposition
1 in (Maron et al., 2019a) and we follow their proof. The
main idea is that for any such group H there exists a finite
set of invariant polynomials whose values on Rd uniquely
define each orbit of H in Rd.

5.1. Invariant functions

We are now ready to state and prove our first universal
approximation theorem. As before, the full proof can be
found in the supplementary material (Section D).

Theorem 2. Let K ⊂ Rn×d be a compact domain such
that K = ∪g∈GgK. G-invariant networks are universal
approximators (in ‖ · ‖∞ sense) of continuous G-invariant
functions on K if and only if H-invariant networks are
universal1.

1We assume that there is a universal approximation theorem

Proof idea. The ”only if” part is straightforward. For
the ”if” part, let f : K → R be a continuous G-
invariant function we wish to approximate. The idea
of the proof is as follows: (1) we encode each ele-
ment xi with a unique H-invariant polynomial descriptor
uH(xi) ∈ RlH (2) we encode the resulting set of descrip-
tors with a unique Sn-invariant polynomial set descriptor
uSn

(
{uH(xi)}i∈[n]

)
∈ RlSn (3) we map the unique set de-

scriptor uSn

(
{u(xi)}i∈[n]

)
to the appropriate value defined

by f (4) we use the classic universal approximation theorem
(Cybenko, 1989; Hornik et al., 1989) and our assumption
on the universality of H-invariant networks to conclude that
there exists aG-invariant network that can approximate each
one of the previous stages to arbitrary precision on K.

Siamese networks. The proof of Theorem 1 implies that
a simple Siamese architecture that applies an H-invariant
network to each element in the set followed by a sum ag-
gregation and finally an MLP is also universal. In section 6,
we compare this architecture to our DSS networks and show
that DSS-based architectures perform better in practice.

Relation to (Maron et al., 2019c). The authors proved
that for any permutation group G, G-invariant networks
have a universal approximation property, if the networks
are allowed to use high-order tensors as intermediate rep-
resentations (i.e., X ∈ Rdl for 2 ≤ l ≤ n2), which are
computationally prohibitive. We strengthen this result by
proving that if first-order2 H-invariant networks are univer-
sal, so are first-order G-invariant networks.

5.2. Equivariant functions

Three possible types of equivariant functions can be con-
sidered. First, functions of the form f : Rn×d → Rn.
For example, such a function can model a selection task
in which we are given a set {x1, . . . , xn} and we wish to
select a specific element from that set. Second, functions
of the form f : Rn×d → Rd. An example for this type of
functions would be an image-deblurring task in which we
are given several noisy measurements of the same scene
and we wish to generate a single high quality image (e.g.,
(Aittala & Durand, 2018)). Finally, functions of the form
f : Rn×d → Rn×d. This type of functions can be used to
model tasks such as image co-segmentation where the input
consists of several images and the task is to predict a joint
segmentation map.

In this subsection we will prove a universality result for
the third type of G-equivariant functions that were men-
tioned above, namely f : Rn×d → Rn×d. We note that
the equivariance of the first and second types can be easily

for the activation functions, e.g., ReLU.
2First-order networks use only first-order tensors.
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deduced from this case. One can transform, for example, an
Rn×d → Rd G-equivariant function into a Rn×d → Rn×d
function by repeating the Rd vector n times and use our
general approximation theorem on this function. We can
get back a Rn×d → Rd function by averaging over the first
dimension.

Theorem 3. LetK ⊂ Rn×d be a compact domain such that
K = ∪g∈GgK. G-equivariant networks are universal ap-
proximators (in ‖ · ‖∞ sense) of continuous Rn×d → Rn×d
G-equivariant functions on K if and only if H-equivariant
networks are universal.

Proof idea. The proof follows a similar line to the univer-
sality proof in (Segol & Lipman, 2019): First, we use the
fact that equivariant polynomials are dense in the space of
continuous equivariant functions. This enables us to assume
that the function we wish to approximate is a G-equivariant
polynomial. Next we show that for every output element,
the mapping Rn×d → Rd can be written as a sum of H-
equivariant base polynomials with invariant coefficients.
The base polynomials can be approximated by our assump-
tion on H and the invariant mappings can be approximated
by leveraging a slight modification of theorem 2. Finally
we show how we can combine all the parts and approximate
the full function with a G-equivariant network.

The full proof is given in Section D of the supplementary
material. Similarly to the invariance case, using a Siamese
network on each element separately followed by one DSS
layer is sufficient for proving universality.

5.3. Examples

We can use Theorems (2-3) to show that DSS-based net-
works are universal in two important cases. For tabular
data, which was considered by Hartford et al. (2018), the
symmetries are G = Sn × Sd. From the universality of
Sn-invariant and equivariant networks (Zaheer et al., 2017;
Segol & Lipman, 2019) we get thatG-invariant (equivariant)
networks are universal as well3. For sets of images, when
H is the group of circular translations, it was shown in
Yarotsky (2018) that H-invariant/equivariant networks are
universal4, which implies universality of our DSS models.

6. Experiments
In this section we investigate the effectiveness of DSS lay-
ers in practice, by comparing them to previously suggested
architectures and different aggregation schemes. We use the

3 Hartford et al. (2018) also considered interactions between
more than two sets with G = Sn×Sd1×· · ·×Sdk . Our theorems
can be extended to that case by induction on k.

4We note that this paper considers convolutional layers with
full size kernels and no pooling layers

experiments to answer two basic questions: (1) Early or late
aggregation? Can early aggregation architectures like DSS
and its variants improve learning compared to Late aggrega-
tion architectures, which fuse the set information at the end
of the data processing pipeline? and (2) How to aggregate?
What is the preferred early aggregation scheme?

Tasks. We evaluated DSS in a series of six experi-
ments spanning a wide range of tasks: from classification
(Rn×d → R), through selection (Rn×d → Rn) and burst
image deblurring (Rn×d → Rd) to general equivariant tasks
(Rn×d → Rn×d). The experiments also demonstrate the
applicability of DSS to a range of data types, including
point-clouds, images and graphs. Figure 3 illustrates the
various types of tasks evaluated. A detailed description of
all tasks, architectures and datasets is given in the supple-
mentary material (Section E).

Competing methods. We compare DSS to four other
models: (1) MLP; (2) DeepSets (DS) (Zaheer et al., 2017);
(3) Siamese network; (4) Siamese network followed by
DeepSets (Siamese+DS).

We also compare several variants of our DSS layers:
(1) DSS(sum): our basic DSS layer from Theorem 1
(2) DSS(max): DSS with max-aggregation instead of
sum-aggregation (3) DSS(Aittala): DSS with the aggre-
gation proposed in (Aittala & Durand, 2018), namely,
L(x)i 7→ [LH(xi),maxnj=1 L

H(xj)] where [] denotes fea-
ture concatenation and LH is a linear H-equivariant layer
(4) DSS(Sridhar): DSS layers with the aggregation pro-
posed in (Sridhar et al., 2019) ,i.e., L(x)i 7→ LH(xi) −
1
n

∑n
j=1 L

H(xj).

Evaluation protocol. For a fair comparison, for each par-
ticular task, all models have roughly the same number of
parameters. In all experiments, we report the mean and stan-
dard deviation over 5 random initializations. Experiments
were conducted using NVIDIA DGX with V100 GPUs.

6.1. Classification with multiple measurements

To illustrate the benefits of DSS, we first evaluate it in a
signal-classification task using a synthetic dataset that we
generated. Each sample consists of a set of n = 25 noisy
measurements of the same 1D periodic signal sampled at
100 time-steps (see Figure 3). The clean signals are sam-
pled uniformly from three signal types - sine, saw-tooth
and square waves - with varying amplitude, DC compo-
nent, phase-shift and frequency. The task is to predict the
signal type given the set of noisy measurements. Figure 4
depicts the classification accuracy as a function of varying
training set sizes, showing that DSS(sum) outperforms all
other methods. Notably, DSS(sum) layers achieve signifi-
cantly higher accuracy then the DeepSets architecture which
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Dataset Data type Late Aggregation Early Aggregation Random choiceSiamese+DS DSS (sum) DSS (max) DSS (Sridhar) DSS (Aittala)
UCF101 Images 36.41%± 1.43 76.6%± 1.51 76.39%± 1.01 60.15%± 0.76 77.96%± 1.69 12.5%
Dynamic Faust Point-clouds 22.26%± 0.64 42.45%± 1.32 28.71%± 0.64 54.26%± 1.66 26.43%± 3.92 14.28%
Dynamic Faust Graphs 26.53%± 1.99 44.24%± 1.28 30.54%± 1.27 53.16%± 1.47 26.66%± 4.25 14.28%

Table 1. Frame selection tasks for images, point-clouds and graphs. Numbers represent average classification accuracy.

Figure 3. We consider all possible types of invariant and equiv-
ariant learning tasks in our settings: classification (Rn×d → R),
selection (Rn×d → Rn), merging (Rn×d → Rd) and general
equivariant tasks (Rn×d → Rn×d).

takes into account the set structure but not within-element
symmetry. DSS(sum) also outperforms the the Siamese
and Siamese+DS architectures, which do not employ early
aggregation. DSS(Sridhar) fails, presumably because it em-
ploys a mean removal aggregation scheme which is not
appropriate for this task (removes the signal and leaves the
noise).

6.2. Selection tasks

We next test DSS layers on selection tasks. In these tasks, we
are given a set and wish to choose one element of the set that
obeys a predefined property. Formally, each task is modelled
as a G-equivariant function f : Rn×d → Rn, where the
output vector represents the probability of selecting each
element. The architecture comprises of three convolutional
blocks employing Siamese or DSS variants, followed by a
DeepSets block. We note that the Siamese+DS model was
suggested for similar selection tasks in (Zaheer et al., 2017).

Frame selection in images and shapes. The first selec-
tion task is to find a particular frame within an unordered
set of frames extracted from a video/shape sequence. For
videos, we used the UCF101 dataset (Soomro et al., 2012).
Each set contains n = 8 frames that were generated by
randomly drawing a video, a starting position and frame
ordering. The task is to select the ”first” frame, namely, the
one that appeared earliest in the video. Table 1 details the

Figure 4. Comparison of set learning methods on the signal classi-
fication task. Shaded area represents standard deviation.

accuracy of all compared methods in this task, showing that
DSS(sum) and DSS(Aittala) outperform Siamese+DS and
DSS(Sridhar) by a large margin.

In a second selection task, we demonstrate that DSS can
handle multiple data types. Specifically, we showcase how
DSS operates on point-clouds and graphs. Given a short se-
quences of 3D human shapes preforming various activities,
the task is to identify which frame was the center frame in
the original non-shuffled sequence. These human shapes
are represented as point-clouds in the first experiment and
as graphs (point-clouds + connectivity) in the second.

Figure 5. Shape-selection task on human shape sequences. Shapes
are represented as graphs or as point-clouds. The task is to select
the central frame (red). Numbers indicate frame order.

To generate the data, we cropped 7-frame-long sequences
from the Dynamic Faust dataset (Bogo et al., 2017) in which
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Noise type and strength Late Aggregation Early Aggregation Random choiceSiamese+DS DSS (sum) DSS (max) DSS (Sridahr) DSS (Aittala)
Gaussian σ = 10 77.2%± 0.37 78.48%± 0.48 77.99%± 1.1 76.8%± 0.25 78.34%± 0.49 5%
Gaussian σ = 30 65.89%± 0.66 68.35%± 0.55 67.85%± 0.40 61.52%± 0.54 66.89%± 0.58 5%
Gaussian σ = 50 59.24%± 0.51 62.6%± 0.45 61.59%± 1.00 55.25%± 0.40 62.02%± 1.03 5%
Occlusion 10% 82.15%± 0.45 83.13%± 1.00 83.27± 0.51 83.21%± 0.338 83.19%± 0.67 5%
Occlusion 30% 77.47%± 0.37 78%± 0.89 78.69%± 0.32 78.71%± 0.26 78.27%± 0.67 5%
Occlusion 50% 76.2%± 0.82 77.29%± 0.40 76.64%± 0.45 77.04%± 0.75 77.03%± 0.58 5%

Table 2. Highest-quality image selection. Values indicate the mean accuracy.

Task Late Aggregation Early Aggregation TPSiamese+DS DSS (sum) DSS (max) DSS (Sridahr) DSS (Aittala)
Color matching (places) 8.06± 0.06 1.78± 0.03 1.92± 0.07 1.97± 0.02 1.67± 0.06 14.68
Color matching (CelebA) 6± 0.13 1.27± 0.07 1.34± 0.07 1.35± 0.03 1.17± 0.04 18.72
Burst deblurring (Imagenet) 6.15± 0.05 6.11± 0.08 5.87± 0.05 21.01± 0.08 5.7± 0.13 16.75

Table 3. Color-channel matching and burst deblurring tasks. Values indicate mean absolute error per pixel over the test set where the pixel
values are in [0, 255]. TP stands for the trivial grey-scale predictor.

the shapes are given as triangular meshes. To generate point-
clouds, we simply use the mesh vertices. To generate graphs,
we use the graph defined by the triangular mesh 5. See
Figure 5 for an illustration of this task.

Results are summarized in Table 1, comparing DSS vari-
ants to a late-aggregation baseline (Siamese +DS) and to
random choice. We further compared to a simple yet strong
baseline. Using the mapping between points across shapes,
we computed the mean of each point, and searched for the
shape that was closest to that mean in L1 sense. Frames
in the sequence are 80msec apart, which limits the devia-
tions around the mean, making it a strong baseline. Indeed,
it achieved an accuracy of 34.47, which outperforms both
late aggregation, DSS(max) and DSS(Aitalla). In contrast,
sum-based early aggregation methods reach significantly
higher accuracy. Interestingly, using a graph representation
provided a small improvement over point-clouds for almost
all methods .

Highest quality image selection. Given a set of n = 20
degraded images of the same scene, the task is to select the
highest-quality image. We generate data for this task from
the Places dataset (Zhou et al., 2017), by adding noise and
Gaussian blur to each image. The target image is defined to
be the image that is the most similar in L1 norm sense to the
original image (see Figure 3 for an illustration). Notably,
DSS consistently improves over Siamese+DS with a margin
of 1% to 3%. See Table 2.

6.3. Color-channel matching

To illustrate the limitation of late-aggregation, we designed
a very simple image-to-image task that highlights why early
aggregation can be critical: learning to combine color chan-

5In (Bogo et al., 2017) the points of each mesh are ordered con-
sistently, providing point-to-point correspondence across frames.
When this correspondence is not available, a shape matching al-
gorithm like (Litany et al., 2017; Maron & Lipman, 2018) can be
used as preprocessing.

nels into full images. Here, each sample consists of six
images, generated from two randomly selected color im-
ages, by separating each image into three color channels.
In each mono-chromatic image two channels were set to
zero, yielding a d = 64 × 64 × 3 image. The task is to
predict the fully colored image (i.e., imputing the missing
color channels) for each of the set element. This can be
formulated as a Rn×d → Rn×d G-equivariant task. See
Figure 3 for an example.

We use a U-net architecture (Ronneberger et al., 2015),
where convolutions and deconvolutions are replaced with
Siamese layers or DSS variants. A DeepSets block is
placed between the encoder and the decoder. Table 3 shows
that layers with early aggregation significantly outperform
DS+Siamese. For context, we add the error value of a triv-
ial predictor which imputes the zeroed color channels by
replicating the input color channel, resulting in a gray-scale
image. This experiment was conducted on two datasets:
CelebA (Liu et al., 2018), and Places (Zhou et al., 2017).

6.4. Burst image deblurring

Finally, we test DSS layers in a task of deblurring image
bursts as in (Aittala & Durand, 2018). In this task, we are
given a set of n = 5 blurred and noisy images of the same
scene and aim to generate a single high quality image. This
can be formulated as a Rn×d → Rd G-equivariant task. See
results in Table 3, where we also added the mean absolute
error of a trivial predictor that outputs the median pixel of
the images in the burst at each pixel. More details can be
found in the supplementary material.

6.5. Summary of experiments

The above experiments demonstrate that applying early ag-
gregation using DSS layers improves learning in various
tasks and data types, compared with earlier architectures
like Siamese+DS. More specifically, the basic DSS layer,
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DSS(sum), performs well on all tasks, and DSS(Aittala) has
also yielded strong results. DSS(Sridhar) performs well
on some tasks but fails on others. See Section G of the
supplementary materials for additional experiments on a
multi-view reconstruction task.
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