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Abstract
Adversarial Multi-task Representation Learning

(AMTRL) methods are capable of boosting the

performance of Multi-task Representation Learn-

ing (MTRL) models. However, the theoreti-

cal mechanism behind AMTRL has been only

minimally investigated. Accordingly, to fill this

gap, we study the generalization error bound of

AMTRL through the lens of Lagrangian duality.

Based on this duality, we propose a novel adaptive

AMTRL algorithm that improves the performance

of the original AMTRL methods. We further con-

duct extensive experiments to back up our theo-

retical analysis and validate the superiority of our

proposed algorithm.

1. Introduction
Multi-task Representation Learning (MTRL), which is an

influential line of research on Multi-task Learning, learns

related tasks simultaneously by sharing a common repre-

sentation. Compared with learning each task independently,

MTRL typically has a lower computational cost and better

prediction performance. It has achieved great success in

various applications ranging from computer vision (Kendall

et al., 2018) to natural language processing (Collobert &

Weston, 2008).

Recently, adversarial MTRL (AMTRL) methods (Liu et al.,

2017; Chen et al., 2018a; Shi et al., 2018; Yu et al., 2018;

Liu et al., 2018; Yadav et al., 2018) have been widely uti-

lized in a range of applications. AMTRL methods improve

the performance of original MTRL models by adding an

extra adversarial module, i.e., a task discriminator in the rep-

resentation space. Unfortunately, the theoretical mechanism

behind AMTRL methods is still not well understood.

The findings of this paper suggest that AMTRL methods

2School of Computer Science, Wuhan University, China.
1School of Computer Science and Engineering, University of New
South Wales, Australia. Correspondence to: Weiwei Liu <liuwei-
wei863@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

restrict the hypothesis class by enforcing all the tasks to

share an identical distribution in the representation space.

The identical distribution restriction provides further induc-

tive bias and tightens the task-averaged generalization error

bound for MTRL. Based on this restriction, we formulate

AMTRL as a constrained optimization problem and pro-

pose to solve the problem using the augmented Lagrangian

method.

To quantitatively measure how likely the tasks share an iden-

tical distribution in the representation space, we propose a

pairwise relatedness metric for AMTRL. Based on this met-

ric, a weight adaption strategy is proposed in order to accel-

erate the convergence of the adversarial module. Combining

the weight adaption strategy and the augmented Lagrangian

method, we present the adaptive AMTRL method.

This paper conducts experiments on two popular multi-task

learning applications: sentiment analysis and topic classifi-

cation. Experimental results verify our theoretical analysis

and validate that the proposed algorithm outperforms several

state-of-the-art methods.

2. Related Works
Adaptive weighting scalarization, which linearly scalar-

izes the tasks with adaptive weight assignment, is a typ-

ical MTRL method. Various adaptive weighting strategies

(Kendall et al., 2018; Chen et al., 2018b; Sener & Koltun,

2018; Lin et al., 2019; Mao et al., 2020) have been proposed

to balance the regularization between tasks and improve

the performance of original MTRL. By contrast, existing

AMTRL methods, for example (Liu et al., 2017; Chen et al.,

2018a), only adopts the naïve uniform scalarization. In this

paper, we propose a adaptive weighting strategy for AMTRL

based on the augmented Lagrangian (Hestenes, 1969) and a

novel task relatedness metric. The task relatedness metric

is proposed based on the representation similarity. Com-

paring with the typical representation-similarity-based task

relatedness metric (Kriegeskorte et al., 2008; McClure &

Kriegeskorte, 2016; Dwivedi & Roig, 2019), the proposed

task relatedness metric computes the representation similar-

ity with the output of the adversarial module and does not

require extra computation of correlation coefficients, which

is more efficient for AMTRL.
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3. Preliminaries
Consider a multi-task representation learning problem with

T tasks over an input space X and a collection of task spaces

{Y}Tt=1. We define the hypothesis class of the problem

as H and H = {F}Tt=1 ◦ G. G = {g : X → R
K} is

the set of representation functions (i.e. the representation

hypothesis class). K is the dimension of the representation

space. {F}Tt=1 = {f t : RK → Y}Tt=1 is a set of predictors

(i.e. the prediction hypothesis class) and f t is ρ-Lipschitz

for all t ∈ {1, ..., T}. g is used across different tasks, while

f t is task-specific. H = {h = {f t(g(·))}Tt=1 : X →
{Y}Tt=1}. Learning H is based on the data observed for

all the tasks. Without loss of generality, we assume that

each task has n samples. The data takes the form of a multi-

sample S = {St}Tt=1 with St = (Xt, Y t) and (Xt, Y t) =
{xt

i, y
t
i}ni=1 ∼ Dn

t . Dt is a probability distribution over

X × Y . After representation mapping, (g(Xt), Y t) ∼ μn
t

where μt is a distribution over RK .

The loss function for task t is defined as lt : Y × Y →
[0, 1] and assumed to be 1-Lipschitz. We define the

true risk of a hypothesis f t ◦ g for task t as LDt
(f t ◦

g) = E(xt,yt)∼Dt
[lt(f t(g(xt)), yt)] and the task-averaged

generalization error as LD(h) = 1
T

∑T
t=1 LDt

(f t ◦ g).
Correspondingly, the empirical loss of the task t is de-

fined as LSt(f
t ◦ g) = 1

n

∑n
i=1 l

t(f t(g(xt
i)), y

t
i) and

the empirical task-averaged error is defined as LS(h) =
1
T

∑T
t=1 LSt

(f t ◦ g). We also denote the transpose of the

vector/matrix by superscript ′ , the logarithms to base 2 by

log.

Multi-task Representation Learning. Multi-task Repre-

sentation Learning (MTRL) learns multiple tasks jointly

by sharing representation across tasks. This representation

is typically produced using a representation map that has

the same parameters for each task. For example, in deep

neural networks, the common representation is obtained

by sharing hidden layers. The original MTRL module in

Figure 1 shows a deep MTRL network model utilizing a

hard parameter sharing strategy (Ruder, 2017). With the

Empirical Risk Minimization (ERM) paradigm, MTRL is

defined to minimize the task-averaged empirical error (1)

(Maurer et al., 2016).

min
g,f1,...,fT

1

T

T∑
t=1

L̂t(g, f t). (1)

Theorem 1 (Maurer et al., 2016; Ando & Zhang, 2005)

presents an upper bound for the task-averaged generalization

error of MTRL.

Theorem 1. For 0 < δ < 1, with probability at least 1− δ
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Figure 1. A deep adversarial MTRL Network model.

in S we have that

LD(h)− LS(h) ≤
c1L Ga(G(X))

nT
+

c2Qsupg∈G‖g(X)‖
n
√
T

+

√
9ln(2/δ)

2nT
(2)

where c1 and c2 are universal constants. G(G(X)) is the
Gaussian average defined in (3)

Ga(G(X)) = E

⎡
⎣sup
g∈G

∑
k,t,i

γktigk(x
t
i) | xt

i

⎤
⎦ , (3)

where γkti denote independent standard normal variables.
supg∈G‖g(X)‖ can be computed by (4)

supg∈G‖g(X)‖ = sup
g∈G

√∑
k,t,i

gk(xt
i)

2. (4)

Q is the quantity

Q ≡ sup
y �=y∗∈RKn

1

‖y − y∗‖E sup
f∈F

n∑
i=1

γi(f(yi)− f(y∗i )),

(5)

where γi are independent standard normal variables.

Adversarial Multi-task Representation Learning. Ad-

versarial MTRL (AMTRL) adds an extra task discriminator

to the original MTRL model shown in Figure 1. For each

training sample, the discriminator can recognize which task

the sample belongs to. The loss functions of existing adver-

sarial MTRL methods (Liu et al., 2017; Chen et al., 2018a;

Shi et al., 2018; Yu et al., 2018; Liu et al., 2018; Yadav et al.,

2018) have a common part

min
h

L(h, λ) = LS(h) + λLadv, (6)

where λ is a hyper parameter and the adversarial term Ladv

has the form

Ladv = max
Φ

1

nT

T∑
t=1

n∑
i=1

etΦ(g(x
t
i)). (7)
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Φ(·) : RK → [0, 1]T is a task discriminator that estimates

which task the sample belongs to. et is the vector with all

components equal to 0, except the t-th, which is 1.

(6) minimizes the task-averaged empirical risk and enforces

the representation of each task to share an identical distribu-

tion (μ1 = μ2, ...,= μT ). When all tasks have an identical

distribution in the representation space, Ladv = c where c
is a discriminator-depended constant. For the widely used

softmax function-based discriminator, where Φ(g(xt
n)) =

softmax(W ′g(xt
n)+b) and W ∈ R

K×T , c = 1
T . Without

loss of generality, we can set Ladv := Ladv − c.

4. Proposed Methods
4.1. Task-averaged Generalization Error Bound

Assuming the representation of each task shares an iden-

tical distribution, Corollary 1 outlines the task-averaged

generalization error bound for AMTRL.

Corollary 1. Assume μ1 = μ2, ...,= μT . For 0 < δ < 1,
with probability at least 1− δ in S we have that

LD(h)− LS(h) ≤
c1ρ Ga(G∗(X1))

n
+

c2Qsupg∈G∗‖g(X1)‖√
n

+

√
9ln(2/δ)

2nT
(8)

where c1 and c2 are universal constants, while G∗ = {g ∈
G : μ1 = μ2 =, ..., μT }. G(G∗(X1)) is the Gaussian
average of task 1 defined in (9)

Ga(G∗(X1)) = E

⎡
⎣ sup
g∈G∗

∑
k,i

γkigk(x
1
i ) | x1

i

⎤
⎦ , (9)

where γki are independent standard normal variables.
supg∈G∗‖g(X1)‖ can be computed by (10):

supg∈G∗‖g(X1)‖ = sup
g∈G∗

√∑
k,i

gk(x1
i )

2. (10)

Q is the quantity

Q ≡ sup
y �=y′∈RKn

1

‖y − y′‖E sup
f∈F

n∑
i=1

γi(f(yi)− f(y′i)),

(11)

where γi denote independent standard normal variables.

Proof. For μ1 = μ2, ...,= μT ,

Ga(G∗(X)) = E

⎡
⎣ sup
g∈G∗

∑
k,t,i

γktigk(x
t
i) | xt

i

⎤
⎦

= TE

⎡
⎣ sup
g∈G∗

∑
k,i

γkigk(x
1
i ) | x1

i

⎤
⎦ = TGa(G∗(X1)).

(12)

supg∈G∗‖g(X)‖ =
√
Tsupg∈G∗‖g(X1)‖. (13)

By combining (12) and (13) with Theorem 1, we conclude

our proof.

Remarks:

• The first term of the bound, which can be interpreted

as the cost of estimating the representation g, is typ-

ically of order 1
n . Moreover, the second term, which

corresponds to the cost of estimating task-specific pre-

dictors, is typically of order 1√
n

. The last term contains

the confidence parameter. According to Theorem 3 in

(Maurer, 2014), c1, c2 are rather large; the last term

typically makes only a small contribution.

• From the property of the Gaussian average,

TGa(G∗(X1)) ≤ Ga(G(X)) for G∗ ⊆ G.

Furthermore, we have
√
Tsupg∈G∗‖g(X1)‖ ≤

supg∈G‖g(X)‖. The generalization error bound for

AMTRL is tighter than that for MTRL.

• In AMTRL, the number of tasks has little to do with

the generalization error bound.

4.2. Task Relatedness in Representation Space

The above analysis shows that the similarity of distributions

between tasks in the representation space determines the

performance of AMTRL. The similarity is a data-dependent

between-task relatedness. This paper proposes a novel relat-

edness metric for AMTRL based on the task discriminator

to quantitatively measure the similarity. Based on the metric,

we are able to visualize the relatedness between tasks during

training.

Assume that the discriminator Φ(·) is the Bayes optimal

classifer. We propose to measure the relatedness between

task i and task j as follows:

Rij =
Φj(g(x

i)) + Φi(g(x
j))

Φi(g(xi)) + Φj(g(xj))
, (14)

where xi and xj are sampled from Di and Dj respectively,

g(xi) ∼ μi and g(xj) ∼ μj . Φi(·), Φj(·) represent the

probability that Φ(·) classify the input into tasks i, j respec-

tively. Rij ∈ [0, 1] reflects the similarity between μi and μj .

Rij is equal to 1 when μi is the same as μj and equals to 0

when μi and μj are totally different.

In the Empirical Risk Minimization (ERM) setting, we ap-

proximate Rij with (15), as follows:

Rij = min{
∑N

n=1 ejΦ(g(x
i
n)) + eiΦ(g(x

j
n))∑N

n=1 eiΦ(g(x
i
n)) + ejΦ(g(x

j
n))

, 1}, (15)



Submission and Formatting Instructions for ICML 2020

(a) Three 2-D Gaussian distributions. (b) Discriminator. (c) Relatedness change curve.

Figure 2. Performance of the proposed relatedness measure Rij across three two-dimensional Gaussian distributions. (a) Illustration of

three tasks with 2-D Gaussian distributions over their representation space. A total of 3000 samples are used in this case. The mean

of the Gaussian distributions corresponding to task 1, 2 and 3 are [0.2α, 0], [−0.2α, 0], [0, 0.2α] respectively, and all of them have the

same variance-covariance matrix
∑

= IT , where I is the T × T identity matrix. (b) Discriminator constructed using a two-layers fully

connected network ending with a softmax function. (c) Illustration of relatedness Rij between tasks decreases as α increases.

where et is the vector with all components equal to 0, except

the t-th, which is 1.

Figure 2 presents the performance of the proposed related-

ness metric in a two-dimensional Gaussian distribution case.

It verifies that the metric is sensitive to the variation of the

similarity between distributions.

We then propose a relatedness matrix R, where

R =

⎡
⎢⎢⎢⎣
R11 R12 · · · R1T

R21 R22 · · · R2T

...
...

. . .
...

RT1 RT2 · · · RTT

⎤
⎥⎥⎥⎦ . (16)

4.3. Adaptive Adversarial MTRL

Motivated by considering the task relatedness and duality,

we present an adaptive AMTRL algorithm with an novel

weighting strategy in §4.3.1 and optimize it with the aug-

mented Lagrangian method in §4.3.2.

4.3.1. WEIGHT ADAPTATION

Based on the relatedness matrix, we propose a weight-

ing strategy designed to accelerate the convergence of

the adversarial module for AMTRL models. Let w =
(w1, w2, ..., wT )

′ and 1 = (1, 1, ..., 1) be a T -dimension

vector with all components being 1. The weighting strategy

is used in formulating the empirical loss of the proposed

adaptive AMTRL method (17).

LS(h) =
1

T

T∑
t=1

wtLSt(f
t ◦ g), (17)

where

w =
1

1R1′ 1R . (18)

Tasks that have a closer relationship with other tasks in the

representation space have a larger weight. This has an intu-

itive interpretation: that is, the weighting strategy motivates

tasks to be more similar in the representation space, which

meets the constraint of AMTRL. The experimental result in

Section 5.2.1 verifies this intuition.

4.3.2. AUGMENTED LAGRANGIAN

(6) can be regard as the Lagrangian dual function of the fol-

lowing equality-constrained optimization problem (Problem

1).

Problem 1.

min
h

LS(h)

s.t. Ladv = 0,

In existing adversarial MTRL works, λ is manually tuned;

this process is highly time-consuming and makes it almost

impossible to achieve the optimal Lagrange multiplier. As a

result, an adaptive method that can choose λ automatically

is desired. Moreover, an MTL Problem like Problem 1 is

usually non-convex, such that the solution obtained from the

Lagrangian duality is in fact not optimal due to the duality

gap (Rockafellar, 1974; Hager, 1987).

Accordingly, we propose an Augmented Lagrangian-based

Algorithm to dynamically tune λ and reduce the duality

gap. The basic idea behind augmented Lagrangian involves

augmenting the ordinary Lagrangian with a penalty term,

which usually has a quadratic form. Combining the pro-

posed weighting strategy with the augmented Lagrangian
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Algorithm 1 Adaptive Adversarial MTRL

Input: S

Initialize λ0, r0, R
0.

for q = 0 to N do
wq = 1

IRqI′ IRq

Train the AMTRL model with loss (19)

Update Rq+1 using (15) with Φq(·)
if λq+1 > 0 then

Update Lagrange multipliers using (20) to obtain

λq+1

else
λq+1 = λq

end if
Choose new penalty parameter rq+1 > rq

end for

method, the optimization objective of our adaptive AMTRL

method is given in (19).

min
h

1

T

T∑
t=1

wtLSt
(f t ◦ g) + λLadv +

r

2
Ladv2, (19)

where λ is the Lagrangian multiplier, while r is the the

penalty parameter with r > 0. As r increases, the gap

between the value of the primal problem and the value of

the dual problem decreases.

Based on the typical augmented Lagrangian algorithmic

framework, λk is updated as follows:

λq+1 = λq − rqLadv, (20)

with rq increasing linearly. The specific procedure of the

algorithm is shown in Algorithm 1.

The adaptive AMTRL algorithm is shown in Algorithm 1.

5. Experiments
In this section, we perform experimental studies on senti-

ment analysis and topic classification in order to evaluate

the performance of our proposed method and verify our the-

oretical analysis respectively. The implementation is based

on PyTorch (Paszke et al., 2019). The code can be found in

the Supplementary Materials.

5.1. Experimental Setup

5.1.1. DATASETS

Sentiment Analysis 1. We evaluated our algorithm on prod-

uct reviews from Amazon. The dataset (Blitzer et al., 2007)

contains product reviews from 14 domains, including books,

1https://www.cs.jhu.edu/~mdredze/
datasets/sentiment/

Table 1. Data Allocation for Topic Classification Tasks.

TASKS NEWSGROUPS

COMP
OS.MS-WINDOWS.MISC, SYS.MAC.HARDWARE,
GRAPHICS, WINDOWS.X

REC
SPORT.BASEBALL, SPORT.HOCKEY

AUTOS, MOTORCYCLES

SCI
CRYPT, ELECTRONICS,
MED, SPACE

TALK
POLITICS.MIDEAST, RELIGION.MISC,
POLITICS.MISC, POLITICS.GUNS

DVDs, electronics, kitchen appliances, etc. We consider

each domain as a binary classification task. Reviews with

ratings > 3 were labeled positive, while those with ratings

< 3 were labeled negative, reviews with rating = 3 are

discarded, as the sentiments were ambiguous and difficult to

predict. The training/testing/validation partition is randomly

split into 70% training, 10% testing and 20% validation.

Topic Classification 2. We select 16 newsgroups from

the 20 Newsgroup dataset, which is a collection of ap-

proximately 20,000 newsgroup documents and partitioned

(nearly) evenly across 20 different newsgroups, and formu-

late them into four 4-class classification tasks (shown in

Table 1) to evaluate the performance of our algorithm on

topic classification. The training/testing/validation partition

is randomly split into 60% training, 20% testing and 20%

validation.

5.1.2. NETWORK MODEL

We implement our adaptive AMTRL algorithm on the most

prevalent deep multi-task representation learning network

model (i.e. hard parameter sharing network model (Caruana,

1997)). As shown in Figure 1, all tasks have task-specific

output layers and share the representation extraction layers

in the model.

The shared representation extraction layers are typically

built with a feature extraction structure such as Convolu-

tional Neural Networks (CNN) or Recurrent Neural Net-

work (RNN), and the task-specific output layers are typically

formulated using fully connected layers. In our experiments,

either TextCNN (Kim, 2014) or BiLSTM (Hochreiter &

Schmidhuber, 1997) is used to build the shared representa-

tion extraction layers. The TextCNN module is structured

with three parallel convolutional layers with kernel sizes of

3, 5, and 7 respectively. The BiLSTM module is structured

with two bi-directional hidden layers with size 32. The ex-

tracted feature representations are then concatenated and

classified using the task-specific output module, which has

one fully connected layer.

2http://qwone.com/~jason/20Newsgroups/
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(a) Rmean changes in the training process. (b) Rvar changes in the training process.

Figure 3. Evolution of relatedness between tasks during training for sentiment analysis. (a) presents the change in Rmean for the original

MTRL (Orig MTRL), AAMTRL without the weighting strategy (Uniform AAMTRL) and AAMTRL respectively. (b) presents the change

in Rvar for Orig MTRL, Uniform AAMTRL and AAMTRL respectively.

(a) Rmean changes in the training process. (b) Rvar changes in the training process.

Figure 4. Evolution of relatedness between tasks during training for topic classification. (a) presents the change in Rmean for the original

MTRL (Orig MTRL), AAMTRL without the weighting strategy (Uniform AAMTRL) and AAMTRL respectively. (b) presents the change

in Rvar for Orig MTRL, Uniform AAMTRL and AAMTRL respectively.

The adversarial module is built with one fully connected

layer, the output size of which is equal to the number of

tasks. It is noteworthy that the adversarial module connects

to the shared layers via a gradient reversal layer (Ganin

& Lempitsky, 2015). This gradient reversal layer multi-

plies the gradient by −1 during the backpropagation, which

optimizes the adversarial loss function (7).

5.1.3. TRAINING PARAMETERS

We train the deep AAMTRL network model with Algorithm

1 settings λ0 = 1, r0 = 10 and rk+1 = rk + 2; here, R0

is a matrix of ones. We use the Adam optimizer (Kingma

& Ba, 2015) and train 600 epochs for sentiment analysis

and 1200 epochs for topic classification, The batch size

is 256 for both sentiment analysis and topic classification.

We use dropout with probability of 0.5 for all task-specific

output modules. For all experiments, we search over the set

{1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2} of learning rates

and choose the model with the highest validation accuracy.

5.2. Results and Analysis

5.2.1. RELATEDNESS EVOLUTION

To evaluate the performance of the adversarial module for

AAMTRL, we record the change in the relatedness matrix

during training. In this experiment, the text CNN module is

used to extract representation.

The relatedness matrix is summarized by the mean and vari-

ance of {R1, R2, ..., RT }, where Rt for t ∈ {1, ..., T} is

defined in (21). Let Rmean, Rvar be the mean and the vari-

ance respectively. The results for sentiment analysis and

topic classification are shown in Fig. 3 and Fig.4 respec-

tively.

Rt =
1

T

T∑
k=0

Rtk. (21)

The results show the following:

• The proposed AAMTRL is able to enforce the tasks
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(a) text-CNN. (b) BiLSTM.

Figure 5. Radar chart of the error rate for each task in sentiment analysis. (a) shows the results for MTRL models with text CNN-based

representation extraction layers. (b) shows the results for MTRL models with BiLSTM-based representation extraction layers.

(a) text-CNN. (b) BiLSTM.

Figure 6. Radar chart of the error rate for each task in topic classification. (a) shows the results for MTRL models with text CNN-based

representation extraction layers. (b) shows the results for MTRL models with BiLSTM-based representation extraction layers

to share an identical distribution in the representation

space.

• The weighting strategy can accelerate and smooth the

convergence process of the adversarial module during

training.

• The tasks in sentiment analysis initially have a much

closer relationship than those in topic classification.

5.2.2. CLASSIFICATION ACCURACY

We compare our proposed methods with two baselines — (i)

Single Task, which solves tasks independently, and (ii) Uni-

form Scaling, which minimizes a uniformly weighted sum

of loss functions—as well as two state-of-the-art methods:

(i) MGDA , which uses the MGDA-UB method proposed

by (Sener & Koltun, 2018). (ii) Adversarial MTRL, which

uses the original adversarial MTL framework proposed by

(Liu et al., 2017).

We report the error rate of each task for sentiment analysis

and topic classification in Figure 5 and Figure 6 respectively.

The exact results can be referred to in the supplementary

materials. The results shows the following:

• The proposed AAMTRL outperforms the state-of-the-
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Figure 7. Change of the relative task-averaged risk along the number of tasks.

Figure 8. variety of the test error for task (Appeal) according to learning with different tasks.

art methods on sentiment analysis and achieves similar

performance for topic classification.

• For topic classification, in which the tasks are not

closely related (as shown in Figure 4 (a)), MTL strate-

gies do not outperform single-task learning. This

shows that the performance of MTL is dependent on

the initial relatedness between tasks.

5.2.3. INFLUENCE OF THE NUMBER OF TASKS

In this section, we investigate the influence of the number

of tasks on the task-averaged risk. We define a relative task-

averaged risk with respect to single-task learning (STL) in

(22).

errel =
erMTL

1
T

∑T
1 ertSTL

, (22)

where erMTL is the task-averaged test error of a MTL

model, while ertSTL is the test error of the STL model t. The

MTL model and the STL models are the best-performing

models generated from our experimental setting. The MTL

model is trained using our AAMTRL algorithm.

We also carry out an experiment on sentiment analysis. In

this experiment, the text CNN module is used to extract

representation. Figure 7 presents the change in the relative

task-averaged risk depending on the number of tasks. Figure

8 presents the variety of the test error for task (Appeal)

according to learning with different tasks.

The results show the following:

• In AMTRL, an increase in task numbers does not de-

crease the task-averaged error.

• For a specific task in AMTRL, learning with more

tasks does not guarantee better performance.

The results verify our analysis in Section 4.1.

6. Conclusion
While performance of AMTRL is attractive, the theoreti-

cal mechanism is unexplored. To fill this gap, we analyze

the task-averaged generalization error bound for AMTRL.

Based on the analysis, we propose a novel AMTRL method,

named Adaptive AMTRL, that is designed to improve the

performance of existing AMTRL methods. Numerical ex-

periments support our theoretical results and demonstrate

the effectiveness of our proposed approach.
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