1. Supplementary Material

1.1. Empirical manifold capacity and theoretical
manifold capacity

1.1.1. EMPIRICAL MANIFOLD CAPACITY

In this section, we provide detailed description about how
to find empirical manifold capacity. Given P object man-
ifolds, V., the critical number of feature dimensions, is
defined as the necessary number of feature dimensions so
that P object manifolds, with randomly assigned +/— la-
bels for each manifold, can be linearly separated half the
time on average (see (Stephenson et al., 2019)). The empiri-
cal manifold capacity is defined as P/N,, which is the ratio
between number of object manifold and the critical num-
ber of feature dimensions. To find N., a bisection search
is performed until either the linearly separated fraction is
within an error tolerance range € = 0.05 or the number of
iteration exceeds 100. If the number of feature dimensions
N is larger than V., then the fraction of linearly separable
dichotomies is close to 1, and the data is in the linearly
separable regime. Conversely, if the number of feature di-
mensions N is smaller than ., then the fraction of linearly
separable dichotomies is close to 0, and the data is in the
linearly inseparable regime.

In our experiments, we first randomly sample 20 instances
for each manifold to perform the analysis. Then, for each
candidate feature dimension in the bisection search, we sam-
ple 51 randomly assigned dichotomies to compute the lin-
early separable fraction. We use features extracted from pre-
trained bert-base-cased model. Note that we exclude
the embedding layers in this analysis due to the overlapping
data point between manifolds as reported in Section 1.3.

1.1.2. THEORETICAL MANIFOLD CAPACITY

Theoretical capacity used here is Mean-Field Theoretical
Manifold Capacity described in Section 2 of the main text.
We use k = 107® and n; = 300, in which « is the margin
size and n; is the number of Gaussian vectors to sample per
manifold (see (Chung et al., 2018)). We also use the same
randomly chosen 20 instances from the simulation capacity
analysis for each manifold.

Figure 1 shows a close match between simulation ca-
pacity and the MFT manifold capacity observed in var-
ious linguistic tasks, measured across the hierarchy of
bert-base-cased model.

1.2. Model architecture details
1.2.1. PRE-TRAINED MODELS DETAILS

We present briefly the pre-trained models that we used for
the experiments.
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Figure 1. Simulation capacity vs. MFT capacity in

bert-base—-cased model.

e BERT bert-base-cased. 12-layer, 768-hidden,
12-heads, 110M parameters.

e RoBERTa roberta-base. 12-layer, 768-hidden,
12-heads, 125M parameters.

e ALBERT albert-base-v1l. 12 repeating layers,
128 embedding, 768-hidden, 12-heads, 11M parame-
ters.

e DistilBERT distilbert-uncased. 6-layer, 768-
hidden, 12-heads, 66M parameters. The model dis-
tilled from the BERT model bert-base—uncased
checkpoint.

e OpenAl-GPT openai-gpt. 12-layer, 768-hidden,
12-heads, 110M parameters.

For each pre-trained model, input text is tokenized using its
default tokenizer and features are extracted at token level.

1.2.2. FINE-TUNED MODEL DETAILS

We fine-tuned BERT bert-base-cased model on POS
downstream task with the following hyper-parameters:

e Epsilon for Adam optimizer: le—S8.



o Initial learning rate for Adam: 5e—5.
e Max gradient norm: 1.

e Maximum total input sequence length after tokeniza-
tion: 128. Longer sequences are truncated and shorter
sequences are padded.

1.3. Datasets and Manifolds Details

In this section, we provide some information about the labels
defining the manifolds for each task with some additional
details (e.g., overlapping).

1.3.1. WORD

Labels are the following: the, of, to, in,
for, that, is, it, said, on, at, by,
as, from, with, million, was, be, are,
its, he, but, has, an, will, have, new,
or, company, they, this, year, which,
would, about, says, market, more,
his, billion, had, their, up, one,
than, some, who, been, stock, also,
other, share, not, we, when, last, if,
years, shares, all, president, first,
two, sales, after, inc., because,
could, out, trading, there, only,
business, do, such, most, into

and,

were,

can,

Note that, by definition, there is no overlapping between the
manifolds.

1.3.2. PART-OF-SPEECH

Labels are the following: NN, IN, NNP, DT, JJ,
NNS, CD, RB, VBD, VB, CC, TO, VBZ, VBN,
PRP, VBG, VBP, MD, POS, PRP$, WDT, JJR,
NNPS, RP, WP, WRB, JJS, RBR, EX, RBS,
PDT, FW, WPS.

Labels are described in https://www.ling.upenn.

edu/courses/Fall_2003/1ing001/penn_
treebank_pos.html.

There is 0.032% of overlapping pairs of words in the
embedding layer due to the occurrence of a same word at
the same position in multiple sentences with a different
POS label. However, as expected, there is no overlapping
for higher layers.

For the POS open-word class and closed-word class
analysis, we used the following assignment of POS tags:

e Open-word class: JJ, JJR, JJS, RB, REBR,
RBS, NN, NNS, NNP, NNPS, VB, VBD,
VBG, VBN, VBP, VBZ, FW

e Closed-word class: IN, DT, CD, CC, TO,
PRP, MD, POS, PRPS$, WDT, RP, WP,
WRB, EX, PDT, FW, WPS$

For the ambiguous words analysis, we used the fol-
lowing words with associated POS tags: back (RP,
RB, JJ, NN), cut (VBN, VBD, NN, VB),
set (VBD, VB, NN, VBN), close (NN, RB,
JJ, VB), lower (RBR, VB, JJR), closed
(VBD, VBN, JJ), estimated (JJ, VBD,
VBN), call (NN, VB, VBP), come (VB,
VBN, VBP), earlier (JJR, RBR, RB), pay
(vB, VBP, NN), up (RP, RB, IN), over
(IN, RB, RP), proposed (JJ, VBN, VBD),
face (VBP, VB, NN), continued (JJ, VBD,
VBN), down (IN, RB, RP), show (VB, VBP,
NN), off (RP, RB, IN), better (JJR,

RBR, RB), longer (RBR, RB, JJR), half
(NN, PDT, DT), expected (VBN, JJ, VBD),
buy (VB, NN, VBP), look (VB, NN, VBP)

1.3.3. SEMANTIC TAGS

Labels are the following:
LOC, PST, ORG, PER,
PRO, HAS, AND, EXG,
ENT, TIM, COO, APP,
NOT, MOR, MOY, ENG,
ETV, POS, PRX, BUT,
NEC, EPG, IMP, ART,
SCO, REF, COM, DEC,
EFS.

Labels are described by Abzianidze & Bos (2017).

CON, REL,
DIS, SUB,
EXV, QUA,
EPS, YOC,
INT, TOP,
EPT, UOM,
HAP, ETG,
EXC, NAT,

IST,
EXS,
GPE,
FUT,
ALT,
DST,
ROL,
RLI,

DEF,
NOW,
EXT,
DOM,
ENS,
QUE,
DOW,
LES,

Note that there is no overlapping between the manifolds.

1.3.4. NAMED-ENTITY RECOGNITION

The NER dataset includes 18 Ilabels described by
Weischedel et al. (2011), consisting of 11 types
(GPE, LOCATION, WORK_OF_ART, EVENT, LAW,
PRODUCT, LANGUAGE, PERSON, ORG, NORP,
FAC) and 7 values (DATE, PERCENT, CARDINAL,
TIME, QUANTITY, ORDINAL, MONEY). With BIO
tagging scheme, each label can occur either with B-
(beginning) prefix or with I- (inside) prefix; there is
an additional O (outside) label for words that are not
named-entities.

There is 0.014% of overlapping pairs of words in the em-
bedding layer due to the occurrence of a same word at the
same position in multiple sentences with a different NER
label. However, as expected, there is no overlapping for
higher layers.


https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

1.3.5. DEPENDENCY DEPTH

We select dependency depths from O to 21. From depth 18
to 21, we have respectively 12, 12, 5, 4 samples occurring
in the corpus (instead of 50 for other depths).

Note that there is no overlapping between the manifolds.

1.4. Additional Experiments

1.4.1. RANDOM BASELINE CONTROL FOR MANIFOLD
CAPACITY

We compare in Figure 2 the manifold capacity to three
different manifold capacity baselines:

e Lower bound. The lower bound capacity LB is de-
fined as the classification capacity of unstructured man-
ifolds and only depends on the number of samples in
each manifold.

1
1 U
HZz‘:1§l

where LB is lower bound capacity, n is the number of
manifolds, /; is the number of samples in manifold ¢
(see (Stephenson et al., 2019)).

LB = (1)

¢ Randomly initialized (untrained) model. All model
weights are set to a random number. Note that this ran-
dom initialization has also an impact on the embedding
layer.

e Shuffled label manifolds. The manifolds are shuffled
without repetition and the number of samples for each
manifold are preserved.

For both masked and unmasked data from
bert-base-cased model, the capacity of shuf-
fled label manifolds matches closely with the lower bound
capacity, suggesting that randomly assigned manifold in
different layers and linguistic tasks follow closely with the
lower bound capacity.

Concerning the untrained model with random weights, in
unmasked data, the capacities in the embedding layer are
higher than lower bound and lower than the capacities in the
pre-trained model. This reflects the fact that word vectors
are already somewhat separated in the embedding layer, and
the random weights don’t improve or decrease the capacity.
For the masked data with untrained model, the manifold
capacity decreases across layers. The trends observed here
are similar to prior work by Jawahar et al. (2019). Note that
as observed by Gaier & Ha (2019), structured manifolds
could emerge even in untrained models.

1.4.2. ANALYSIS OF RAW SVM FIELDS DISTRIBUTION
OF POS MANIFOLD

We report in Figure 3 the raw SVM fields distribution of
POS manifold with bert-base-cased model. The raw
SVM fields distribution, despite of having a different dis-
tribution shape, shows similar trend across layers with the
normalized SVM fields distribution described in the main
text for both masked and unmasked dataset. The accuracy
for raw SVM field distribution matches exactly the accuracy
for normalized SVM fields distribution because normaliza-
tion doesn’t change sign of the fields. For unmasked data,
the peak of the field distribution and the right tail moves
slightly to the negative direction in all different train/test
splits. For masked data, although the peak shifts to the neg-
ative direction, the right tail of the distribution extends to
the positive direction in all different train/test splits, repre-
senting an increase in accuracy across layers.

1.4.3. GEOMETRIC PROPERTIES EVOLUTION THROUGH
SEQUENTIAL LAYERS ACROSS LINGUISTIC
TASKS AND MODELS (ADDITIONAL FIGURES)

We report geometric properties (manifold capacity, radius,
dimension and center correlation) for word, semantic tags,
NER and dependency depth manifolds for the different mod-
els.

Word For word manifolds, as reported in Figure 4, simi-
larly to POS manifold, the capacity increases for unmasked
data and decreases for masked data in all the different mod-
els. In both masked and unmasked cases, the trend is clear
and steep. In the masked case, the inputs are masked and
feature vectors values only depend on the positional em-
bedding and are not related to the word strings; since the
model is trained to predict the masked word token, the word
manifolds emerge across layers. In the unmasked case, the
inputs are context-free embedding word vectors and are
well separated; since the model tries to contextualize the
word using its neighbor words, the word manifolds get en-
tangled and lead to a decrease in word manifold capacity.
The radius, dimension and center correlation measures also
reflect the observed trend in the capacity. In the unmasked
data, the radius, the dimension and center correlation of
word manifolds increase across layers, representing mani-
fold entangling. In the masked data, the dimension, radius
and center correlation decrease across layers, suggesting
manifold untangling.

Semantic Tags For semantic tag manifolds, as reported
in Figure 5, similarly to word manifolds and POS mani-
folds, the capacity decreases in the unmasked dataset and
increases in the masked dataset. Similarly to POS tags,
semantic tags also have high correlation with context-free
word; as reported by Bjerva et al. (2016), the per-word most



06 word s pos sem-tag . ner 0.080 dep-depth
A S
0.5 0.14 0.09 0.075
ho] 0.12
[ 0.4 0.12 \ 0.08 | s e 0.070
é 0.10 — N
0.065
© 503 = So0.10 5007 §
E 008 0.08 0.06 0.060
c 0.2
) ~—" 0.06 0.06 e 0.055 et
0.1 . L NS,
0.050 \\—V*"
0.04 — - 0.04 0.04 LT ———— — — .
12345678 9101112 12345678 9101112 12345678 9101112 12345678 9101112 123456789101112
Layer Layer Layer Layer Layer
—e— Trained Model Untrained Model Shuffled Labels Lower Bound
B_ word pos sem-tag o0 ner . dep-depth
0.10
0.10 = >
0.08 / ,,k//\ 0.09 0.075
0.00 e 0.09 s
o
[ 0.08 0.07 0.08 0.08 0.070
=< /‘\/\ 0.065 \
N Soor = =0.07 5 0.07 5
© S S 06 53 S // 5
0.060
> 0.06 0.06 0.06
0.05 L 0.055 A~
. 0.05 005 ~—
g
0.04 | zoooeommeeneeee -ronzmaenensrsnsnenans 0.04 . . T el I — e 0050 | @ e o
0.04
12345678 9101112 1234567 89101112 12345678 9101112 1234567809101112 1234567809101112
Layer Layer Layer Layer Layer

Figure 2. Randomly controls for manifold capacity in bert-base-cased model.

frequent class baseline for semantic tags has an accuracy of
77.39%. Therefore, in the masked case, since the model is
trained to predict the word tokens which share information
with the semantic tags, the manifold capacity increases. In
the unmasked case, the inputs are word embedding vectors,
which carry information about semantic tags, and the model
tries to contextualize the inputs by their neighboring words.
Contextualization can both entangle semantic tags manifold
by decreasing the correlation between word tokens and their
semantic tags and untangle semantic tags manifold by gain-
ing information from neighbor words. These two competing
effects lead to an overall decrease in manifold capacity, but
this decrease has a much less magnitude than the decrease in
word manifold capacity (—0.6 vs. —0.06). Manifold radius,
dimension and center correlation also have similar trend as
POS and word manifolds.

Named-entity Recognition For NER manifolds, as re-
ported in Figure 6, the different models express similar trend
for both masked and unmasked data. For the unmasked data,
the manifold capacity remains mostly unchanged across
layers. This trend suggests a balance between losing in-
formation from correlation between words and NER label,
and gaining information from contextualization by neighbor
words. The geometric properties also show a competing
effect between decreasing radius and increasing dimension
and center correlation. For the masked data, the manifold
capacity increases across layers (similar trend as word, POS
and sem-tag). This trend is expected because the input to-
kens are masked and the model objective is to predict the
masked word, which can carry some information about NER.
Geometric properties show decreasing radius and center cor-
relation, suggesting manifold untangling.

Dependency Depth For dependency depth manifolds, as
reported in Figure 7, similar trend is observed for the dif-
ferent models in both masked and unmasked dataset. For
unmasked data, the manifold capacity remains mostly un-
changed. Manifold radius and dimension do not change
significantly, while center correlation peaks at the interme-
diate layers. Since dependency depths are numerical values,
higher center correlation may suggest a structured geometry
relationship between different dependency depth clusters.
Hewitt & Liang (2019) also reports similar results about
syntactic parse tree peaks at the intermediate layers. For
masked data, manifold capacity, radius and center corre-
lation decreases across layers, while dimension increases.
Generally, the manifold capacity and geometry measures for
dependency depth manifolds are quite different from other
manifolds. While other manifolds are categorical values,
dependency depths are numerical values. A large capacity
implies that category manifolds are well-separated for a clas-
sification task; however, since dependency depth manifolds
have a numerical and transitive property, its geometry may
not be optimized for classification capacity. Instead, de-
pendency depth task may be explained better by a task that
reflects such numerical and transitive properties such as a
regression task, and the relation between the representation
geometry and the regression performance will be explored
as future work.

1.4.4. CORRELATION OF MANIFOLD CAPACITY AND
TASK PERFORMANCE IN POS FINE-TUNED
MODEL

When fine-tuning pre-trained bert-base-cased model
for POS task, a strong correlation is observed between the
POS manifold capacity and F1 score across update steps for
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Figure 3. Raw SVM fields of POS manifold with bert-base-cased model.
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Figure 4. Geometric properties of word manifold in different models.

update step | raw capacity | Fl
1 0.0903 0.04
5 0.0915 0.11
10 0.0998 0.34
20 0.1362 0.55
50 0.2361 0.87

Pearson correlation | 0.9334

Table 1. Correlation of raw manifold capacity and F1 in POS fine-
tuned model, unmasked data.

update step | norm. capacity | F1
1 0.6111 0.04
5 0.6209 0.11
10 0.6839 0.34
20 0.9623 0.55
50 1.6274 0.87

Pearson correlation ‘ 0.9417

Table 2. Correlation of manifold capacity (normalized by embed-
ding layer) and F1 in POS fine-tuned model, unmasked data.

unmasked data, as reported in Table 1 and Table 2. Specifi-
cally, Pearson correlation for raw capacity and F1 score and
for normalized capacity and F1 score are 0.9334 and 0.9417
respectively. This result suggests that manifold capacity can
capture task performance (F1 score) in POS task. Note that
asked data is not shown because masked token is never seen
during fine-tuning.
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Figure 6. Geometric properties of NER manifold in different models.

Geometric properties of semantic tags manifold in different models.
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