Proving the Lottery Ticket Hypothesis: Pruning is All You Need

Eran Malach“! Gilad Yehudai“? Shai Shalev-shwartz! Ohad Shamir 2

Abstract

The lottery ticket hypothesis (Frankle and Carbin,
2018), states that a randomly-initialized network
contains a small subnetwork such that, when
trained in isolation, can compete with the per-
formance of the original network. We prove
an even stronger hypothesis (as was also con-
jectured in Ramanujan et al., 2019), showing
that for every bounded distribution and every tar-
get network with bounded weights, a sufficiently
over-parameterized neural network with random
weights contains a subnetwork with roughly the
same accuracy as the target network, without any
further training.

1. Introduction

Neural network pruning is a popular method to reduce the
size of a trained model, allowing efficient computation dur-
ing inference time, with minimal loss in accuracy. However,
such a method still requires the process of training an over-
parameterized network, as training a pruned network from
scratch seems to fail (see (Frankle and Carbin, 2018)). Re-
cently, a work by Frankle and Carbin (2018) has presented
a surprising phenomenon: pruned neural networks can be
trained to achieve good performance, when resetting their
weights to their initial values. Hence, the authors state
the lottery ticket hypothesis: a randomly-initialized neural
network contains a subnetwork such that, when trained in
isolation, can match the performance of the original net-
work.

This observation has attracted great interest, with various
follow-up works trying to understand this intriguing phe-
nomenon. Specifically, very recent works by Zhou et al.
(2019); Ramanujan et al. (2019) presented algorithms to
find subnetworks that already achieve good performance,

“Equal contribution 'School of Computer Science, Hebrew
University *Weizmann Institute of Science. Correspondence to:
Eran Malach <eran.malach@mail.huji.ac.il>, Gilad Yehudai <gi-
lad.yehudai @weizmann.ac.il>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

without any training. (Ramanujan et al., 2019) stated the fol-
lowing conjecture: a sufficiently over-parameterized neural
network with random initialization contains a subnetwork
that achieves competitive accuracy (with respect to the large
trained network), without any training. This conjecture can
be viewed as a stronger version of the lottery ticket hypoth-
esis.

In this work, we prove this stronger conjecture, in the case
of over-parameterized neural networks. Moreover, we dif-
ferentiate between two types of subnetworks: subnetworks
where specific weights are removed (weight-subnetworks)
and subnetworks where entire neurons are removed (neuron-
subnetworks). First, we show that a ReLU network of ar-
bitrary depth [can be approximated by finding a weight-
subnetwork of a random network of depth 2/ and sufficient
width. Second, we show that depth-two (one hidden-layer)
networks have neuron-subnetworks that are competitive
with the best random-features classifier (i.e. the best clas-
sifier achieved when training only the second layer of the
network). Hence, we imply that for shallow networks, train-
ing the second layer of the network is equivalent to pruning
entire neurons of a sufficiently large random network. In all
our results, the size of initial network is polynomial in the
problem parameters. In the case of the weight-subnetwork,
we show that the number of parameters in the pruned net-
work is similar, up to a constant factor, to the number of
parameters in the target network.

As far as we are aware, this is the first work that gives
theoretical evidence to the existence of good subnetworks
within a randomly initialized neural network (i.e., proving
the strong lottery ticket hypothesis). Our results imply that
fundamentally, pruning a randomly initialized network is
as strong as optimizing the value of the weights. Hence,
while the common method for finding a good network is to
train its parameters, our work demonstrates that in fact, all
you need is a good pruning mechanism. This gives a strong
motivation to develop algorithms that focus on pruning the
weights rather than optimizing their values.

1.1. Related Work

Neural Network Pruning Pruning neural networks is a
popular method to compress large models, allowing them
to run on devices with limited resources. Over the years, a

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

variety of pruning methods were suggested, showing that
the number of parameters neural network models can be re-
duced by up to 90%, with minimal performance loss. These
methods differ in two aspects: how to prune (the pruning
criterion), and what to prune (specific weights vs. entire
neurons or convolutional channels). Works by LeCun et al.
(1990); Hassibi and Stork (1993); Dong et al. (2017) ex-
plored the efficiency of network pruning based on second
derivative conditions. Another popular method is pruning
based on the magnitude of the weights (Han et al., 2015).
Other pruning techniques remove neurons with zero activa-
tion (Hu et al., 2016) (i.e., neurons that are always output
zero), or other measures of redundancy (Mariet and Sra,
2015; Srinivas and Babu, 2015). While weight-based prun-
ing achieves the best results in terms of network compres-
sion, the gain in terms of inference time is not optimal, as it
cannot be efficiently utilized by modern hardware. To get
an effective gain in performance, recent works suggested
methods to prune entire neurons or convolutional channels
(Yang et al., 2017; Li et al., 2016; Molchanov et al., 2017;
Luo et al., 2017).

In our work, we show that surprisingly, pruning a random
network achieves results that are competitive with optimiz-
ing the weights. Furthermore, we compare neuron-based
pruning to weight-based pruning, and show that the latter
can achieve strictly stronger performance. We are unaware
of any theoretical work studying the power and limitation
of such pruning methods.

Lottery Ticket Hypothesis In (Frankle and Carbin,
2018), Frankle and Carbin stated the original lottery ticket
hypothesis: A randomly-initialized, dense neural network
contains a subnetwork that is initialized such that — when
trained in isolation — it can match the test accuracy of the
original network after training for at most the same number
of iterations. This conjecture, if it is true, has rather promis-
ing practical implications - it suggests that the inefficient
process of training a large network is in fact unnecessary,
as one only needs to find a good small subnetwork, and
then train it separately. While finding a good subnetwork
is not trivial, it might still be simpler than training a neural
network with millions of parameters.

A follow up work by Zhou et al. (2019) claims that the
“winning-tickets”, i.e., the good initial subnetwork, already
has better-than-random performance on the data, without
any training. With this in mind, they suggest an algorithm
to find a good subnetwork within a randomly initialized
network that achieves good accuracy. Building upon this
work, another work by Ramanujan et al. (2019) suggests an
improved algorithm which finds an untrained subnetwork
that approaches state-of-the-art performance, for various
architectures and datasets. Following these observations,
(Ramanujan et al., 2019) suggested a complementary con-

jeeture to the original lottery ticket hypothesis: within a
sufficiently overparameterized neural network with random
weights (e.g. at initialization), there exists a subnetwork
that achieves competitive accuracy.

While these results raise very intriguing claims, they are all
based on empirical observations alone. Our work aims to
give theoretical evidence to these empirical results. We
prove the latter conjecture, stated in (Ramanujan et al.,
2019), in the case of deep and shallow neural networks.
To the best of our knowledge, this is the first theoretical
work aiming to explain the strong lottery ticket conjecture,
as stated in (Ramanujan et al., 2019).

Over-parameterization and random features A popu-
lar recent line of works showed how gradient methods over
highly over-parameterized neural networks can learn various
target functions in polynomial time (e.g. (Allen-Zhu et al.,
2019),(Daniely, 2017),(Arora et al., 2019),(Cao and Gu,
2019)). However, recent works (e.g. (Yehudai and Shamir,
2019), (Ghorbani et al., 2019), (Ghorbani et al., 2019)) show
the limitations of the analysis in the above approach, and
compare the power of the analysis to that of random fea-
tures. In particular, (Yehudai and Shamir, 2019) show that
this approach cannot efficiently approximate a single ReLU
neuron, even if the distribution is standard Gaussian. In this
work we show that finding a shallow neuron-subnetwork is
equivalent to learning with random features, and that weight-
subnetworks is a strictly stronger model in the sense that
it can efficiently approximate ReL.U neurons, under mild
assumptions on the distribution (namely, that it is bounded).

1.2. Notations

We introduce some notations that will be used in the sequel.
We denote by X = {z € R? : ||z||z < 1} ! our instance
space. For a distribution D over X x), we denote the
squared-loss of a hypothesis h : X — R by:

Lp(h) = E(a:,y)ND [(h(l') - y)2] .

For two matrices A, B € R™*", we denote by A ® B
the m x n matrix which its ¢, j-th coordinate is equal to
[4; ;B; ;] the Hadamard (element-wise) product between
A and B. We use U([—c, c]¥) to denote the uniform distri-
bution on some cube around zero, and by N'(0,) a normal
distribution with mean zero and covariance matrix . For
a matrix H we denote by A, (H) its minimal eigenvalue.
For a matrix A, we denote by || A||2 the Lo operator norm
of A, namely ||Al|2 := Amax(A) where Apax is the largest
singular value of A. We denote by || A||max the max norm
of A, namely ||A||max = max; ; |A4; ;|-

'The assumption that ||z|| < 1 is made for simplicity. It can
be readily extended to ||z|| < r for any r at the cost of having the
network size depend polynomially on 7.

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

@,
W

AN
(CEK
AN

(a) Full Network

(b) Weight Subnetwork

(c) Neuron Subnetwork

Figure 1. Different types of pruned subnetworks (weight/neuron subnetwork).

2. Approximating ReLLU Networks by
Pruning Weights

In this section we provide our main result, showing that
a network of depth [can be approximated by pruning a
random network of depth 2I. We show this for a setting
where we are allowed to prune specific weights, and are
not limited to removing entire neurons (i.e. finding weight-
subnetworks). Neuron-subnetworks are discussed in the
next section. We further focus on networks with the ReLU
activation, o(z) = max{z,0}. We define a network G :
R? — R of depth ! and width? n in the following way:

G(z) = GWOo...0 G(l)(x)

Where we have:

e GW(z) = o(WEMg) for WEN) ¢ RIx7,

o GW(z) = o(WEWg) for WEE € R™ ™ for every
1<i<l

e GV (x) = WDz for WEW ¢ Rx1

where W& () are the weights in the i-th layer. A weight-
subnetwork G of G is a network of width n and depth
1, with weights W& .= B®) o WG for some mask
B® ¢ {0,1}%in*"out (where N, Noy: denote the in-
put/output dimension of each layer, respectively). Our main
theorem in this section shows that for every target network
of depth | with bounded weights, a random network of
depth 2/ and polynomial width contains with high probabil-
ity (over the randomness of the weights) a subnetwork that
approximates the target network:

Theorem 2.1. Fix some €,§ € (0,1). Let F be some tar-
get network of depth 1 such that for every i € [l] we have

2We consider all layers of the network to be of the same width
for convenience of notations. Our results can easily be extended to
cases where the size of the layers differ.

|\WF(i)|\2 < 1,||VVF(Z')||max < ﬁ (where n;, = d for
i = 1and n;y, = nfori > 1). Let G be a network of
width poly(d, n, 1, %, log %) and depth 21, where we initial-
ize WG from U([—1,1]). Then, w.p at least 1 — & over
the initialization of G there exists a weight-subnetwork G
of G such that:

sup |G(z) — F(z)| <e

reEX

Furthermore, the number of active (non-zero) weights in G
is O(dn + n?l).

Remark 2.2. We note that the initialization scheme of the
network considered in Thm. 2.1 is not standard Xavier ini-
tialization. The reason is that in standard Xavier initial-
ization the weights are normalized such that the gradient’s
variance at initialization will not depend on the network’s
size. Here we don’t calculate the gradient but only prune
some of the neurons. Thus, the magnitude of the weights
does not depend on the width of the network. That said, the
theorem can be easily extended to any initialization which
is a uniform distribution on some interval around zero, by
correctly scaling the network’s output.

Since the number of parameters in the function F' is
dn + n?(l — 2) + n, the above shows that the number of
active weights in the pruned network is similar, up to a
constant factor, to the number of parameters in F'. Note
that the width of the random network has polynomial de-
pendence on the input dimension d, the width of the target
network n and its depth [. While the dependence on the
width and depth of the target network is unavoidable, the
dependence on the input dimension may seem to somewhat
weaken the result. Since neural networks are often used
on high-dimensional inputs, such dependence on the input
dimension might make our result problematic for practical
settings in the high-dimension regimes. However, we note
that such dependence could be avoided, when making some
additional assumptions on the target network. Specifically,

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

if we assume that the target network has sparse weights in
the first layer, i.e. - each neuron in the first layer has at
most s non-zero weights, then we get dependence on the
sparsity s, rather than on the input dimension d. This is
shown formally in the appendix.

We can derive a slightly stronger result in the case where
the target network is a depth-two network. Specifically, we
can show that a depth-two network can be approximated by
pruning a depth-three random network (rather than pruning
a depth-four network, as implied from Thm. 2.1):

Theorem 2.3. Fix some target two-layer neural network F'
of width n, and fix €,§ € (0,1). Let G be a random three-
layer neural network of width poly (d, n, %, log (%)) with
weights initialized from U ([—1, 1]). Then, with probability
at least 1 — 6 over ~the initialization of G, there exists a
weight-subnetwork G of G, such that:

sup |F(x) — é(x)‘ <e

reX

Furthermore, the number of active (non-zero) weights in G

is O(dn).

2.1. Proof intuition

The full proof of Thm. 2.1 and Thm. 2.3 can be found
in Appendix A. We start by giving a sketch of the main
argument.

The basic building block of the proof is showing how
to approximate a single ReLU neuron of the form = —
o({w*,x)) by a two layer network. Using the equality
a = o(a) — o(—a), we can write the neuron as:

Now, consider a two layer network of width & and a single
output neuron, with a pruning matrix B for the first layer. It
can be written as

k d
Tr+— 0o Z'LLJ'U (Z Bj,th,t$t>
j=1

t=1

Suppose we pick, for every ¢, two indexes 71 (4), j2(7), and
set the matrix B s.t. Bj, (3,i, Bj,(i),s = 1 and all the rest
of the elements of B are zero. It follows that the pruned

network can be rewritten as

d d
T o <Z w0 (Wi, iy i) +) uaa(i)U(Waa(i),ﬂi))
=1

=1

d
=0 (Z Sign(uj1 (l))O'(‘UJI (z) ‘ le (i),ixi)+
i=1

d
+) sign(ug, () o (g,)| sz(i),ﬂi))
=1

2
Comparing the right-hand sides of Equations 1 and 2, we
observe that they will be at most € away from each other
provided that for every ¢:
o sign(uy, () # sign(uj,(i))
<e¢/2d

o [wjiiiy| Wiy — sign(uy, iy)wy

o ||wjnii| Wisay,e — sign(ug, @) wi| < e/2d

Finally, fixing ¢ and picking w;, (s}, Uj,(i)s Wi, (5,65 Wia(3) i
at random, the requirements would be fulfilled with proba-
bility of Q2(e/d). Hence, if k > d/e, for every ¢ we would
be able to find an appropriate j; (), j2(¢) with high prob-
ability. Note that the number of weights we are actually
using is 2d, which is only factor of 2 larger than the number
of original weights required to express a single neuron.

The construction above can be easily extended to show how
a depth two ReLU network can approximate a single ReLU
layer (simply apply the construction for every neuron). By
stacking the approximations, we obtain an approximation
of a full network. Since every layer in the original network
requires two layers in the newly constructed pruned network,
we require a twice deeper network than the original one.

2.2. Proof of Thm. 2.3

Now, we go over the details of the proof of Thm. 2.3. The
proof of Thm. 2.1 is a slightly more involved version of this
proof. The proofs of the lemmas are given in the appendix.
Note that in the appendix the proofs are given in a more
general manner, where we consider a sparsity parameter
s < d such that every neuron in first layer of the target
network has at most s non-zero weights. Here we show the
proof for the simpler case of s = d.

First we show that it is possible to approximate the function
x — w; x;, that is, approximating a projection on a single
coordinate:

Lemma 2.4. Fix some scalar o € [—%, ﬁ] index
i € [d), and some ¢,6 > 0. Let wV ... w® ¢ R?

chosen randomly from U([—1,1]%), and u™V, ..., u®) ¢

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

[-1,1] chosen randomly from U([—1,1]). Then, for
k>0 (E%,log (%)) w.p at least 1 — 0 there exists a
binary mask bV, ... b € {0,1}%, such that g(z) =
2 uDo((w) @b, x)) satisfies |g(x) — az;| < 2¢, for
[2lloc < 1. Furthermore, we have 16Dl < 2 and
max; [[b9[|o < 1.

The binary mask b\) zeroes out all the weights, except
for two single weights which are close to w; and —w;.
By initializing the network with sufficient width we are
guaranteed to have such weights w.h.p.

The next step is to approximate the linear function z +—
(w*,z) = Z,‘ii:l wj x;. This can be done by approximating
the projection on the i-th coordinate d times:

Lemma 2.5. Fix some w* €& [—ﬁ,ﬁ]d

€6 > 0. Let w®, ..., w® e R? chosen randomly
from U([—1,1]%), and u € [—1,1]* chosen randomly from
U([—1,1]%). Then, for k = O (d®, %, log (%)) w.p at least
1 — § there exists a binary mask bV, ... b*) € {0,1}7,
such that g(x) = Ele wio((w® © b9, 2)) satisfies
lg(x) — (w*,z)| < ¢ for ||z]|lo < 1. Furthermore, we
have 3, [|b®]o < 2d and max; [[p]|g < 1.

and some

As in the previous lemma, for each coordinate the binary
mask zeroes out every weight except two specifically chosen
weights. In total we have only 2d non-zero weights.

Finally, we can approximate a single neuron =
o({w*, x)) using a three layer network:

: e 1 1714 .
Lemma 2.6. Fix some w* € | Nk \/E] , some v* €

[-1,1] and €,6 > 0. Let w(l),...,w(kl) € R?
chosen randomly from U([—1,1]%), sosutke) e
[—1,1]% chosen randomly from U (|- } 1), and v €
[~1,1]%2 chosen randomly from U ([1]%2). Then,
for ki = O(@, Llog (L), ke = O(Llog(})),
wp at least 1 — § there exists a binary mask

b b) € {0,134, b e {0,1}%, such that g(x) =
S22y bivio (5L) o (W) @b, 2))) satisfies g)
v*o((w*,x))| < ¢ for ||zl < 1. Furthermore, we have
> 169 |o < 2d and max; [|bW) ||y < 1.

The idea here is that we can use the third layer to initialize
ko networks, each of width k;. By choosing k; and k&, large
enough, w.h.p. we initialized a network of width k; such
that its weight in the third layer is close the coefficient mul-
tiplying the target neuron. Then the binary mask zeroes out
all other weights in the network such that the only weights
remaining approximate our target neuron.

Using the above lemmas, we can prove Thm. 2.3. Note that
the key argument here is simple: if a weight-subnetwork can
approximate a single neuron with probability at least 1 — £
then using the union bound, stacking n such subnetworks
approximates all neurons with probability at least 1 — 4.

Proof. of Thm. 2.3.
1]d, = [_171]71

L w™r e [—\% 7
and let f(z) = >0, vio((w®* z)). Fix some ¢, >
0. Let wM, ... wk) e R4 Chosen randomly from
U([—1,1%), ™M, ... u®*2) € [~1,1]* chosen randomly
from U([—1,1]%), and v € [~1,1]*2 chosen randomly
from U([—1, 1]*2). So, our pruned network is defined by:

val Zb g

@ € {0,1}*1,b € {0,1}F=,

Denote k| = % k) = % and assume k{,k) € N
(otherwise mask exceeding neurons). With slight abuse
of notation, we denote w9 = Tk 405 .=

Fix some w(1*,

w? @ b(j)7$>))

With masks b € {0,1}%,b

(u%?bké),,ugi_;?’%i), p(Bd) = Vj ik, and similarly
65 . pGAkL) TG 7tk) (j+iks)
plid) . pUHRLD) flid) — (bm; b(z+1)k’) and

bid) = BJ—H%. Define for every i € [n]:

gi(x) =

Z p(6:3) 4y (0:9) (Z l;l(i,j)ul(z',j)g (<b(i,l) 0w x)))
j l

BT Z 1if ik} <1 < (i+ 1)k, and

= 0 otherwise, we get that g(z) = Y., g:(x).

From Lemma 2.6 we get that for k| = O (d3, ”—22 log (ﬂ))

and k5 = O (2,log (%)) with probability at least 1 — 2 we
have |g;(z) — vio((w®*, z))| < £ for every ||z S 1.
Using the union bound, we get that with probability at least
1 =9, for ||z||2 < 1 we have:

Now, by setting
Bl(j +kii)

n

f@) <Y

=1

l9(x) - gi(x) —vio((w®*)| < e

Finally, the number of active weights in the first layer is sim-
ply: >0, Z?l:l 6¢)]|¢ < 2nd. The number of weights in
the final layer is at most the same as the first layer, and hence
we get that the number of non-zero weights is O(nd). 0O

2.3. Universality and Computational Efficiency of
Pruning

We showed that in terms of expressive power, pruning
weights in a randomly initialized over-parameterized net-
work can approximate a target ReLU network of any depth.
Using well-known results in the literature of neural net-
works, this result implies two interesting corollaries:

Universal Approximation Using Weight Pruning It has
been long known that neural networks are universal approx-

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

imators: they are able to approximate any continuous func-
tion up to arbitrary accuracy (for example, see (Stinchcombe
and White, 1989; Scarselli and Tsoi, 1998)). Since we show
that pruning a network with random weights can approxi-
mate any target network, this implies that pruning a random
network is also a universal approximation scheme. That is,
for every smooth function f, a large enough random net-
work contains with high probability (over the randomness
of the weights) a subnetwork that approximates f up to
accuracy €.

Pruning Weights is Computationally Hard It is well
known in the literature of neural networks that learning
even a depth-two ReLU network is computationally hard
in the general case (see (Livni et al., 2014; Manurangsi
and Reichman, 2018; Boob et al., 2018)). Such results
show cases where it is computationally hard to find any
hypothesis that is competitive with the best neural-network
on the given data. From these results, it is immediate that
weight-pruning of random ReLU networks, deep or shallow,
is computationally hard as well. That is, no polynomial-time
algorithm can find the optimal subnetwork of some given
neural network Indeed, if we had an efficient algorithm
that finds an optimal weight-subnetwork of a three-layer
network, from Thm. 2.3 this algorithm approximates the
best depth-two network (for some fixed width). But in
general, approximating the best depth-two network on an
arbitrary distribution is computationally hard (under certain
hardness assumptions), which leads to a contradiction. So,
there is no efficient algorithm that is guaranteed to return an
optimal weight-subnetwork for any input distribution.

3. Equivalence Between Pruning Neurons and
Random Features

In this section we analyze the power of pruning entire neu-
rons in a depth-two network. The main result of this sec-
tion is that pruning entire neurons is equivalent to the well
known random features model (e.g. (Rahimi and Recht,
2008), (Rahimi and Recht, 2008)). Intuitively, we show
that whenever training only the last layer of the network
suffices, it is also possible to construct a good sub-network
by pruning entire neurons. By recent results regarding the
limitations of the random features model, we establish that
neuron pruning is also a very limited model, in comparison
to the model of weight pruning discussed in the previous
section.

Formally, consider a width &k two-layer neural network de-
fined by g : RY — R as follows:

k
g(z) =uTo(Wa) = Z uio ((wi,))

where u; is the ¢-th coordinate of u and w; is the i-th row

of W. A network g is a neuron-subnetwork of g if there
exists a vector b € {0, 1}* such that:

k

@)= (uob) To(Wa) = (u; - b)o({wi, z)).

i=1

So, g is also a 2-layer neural network, which contains a
subset of the neuron of g. Next, we define the random
features model:

Definition 3.1. Suppose we sample wq,...,wp ~ D
Jfrom some distribution D, a random features model over
wy, ..., Wy and activation o is any function of the form:

k
HOEDITICIE)

Joruy, ... ur € R

Training a 2-layer random features model is done by train-
ing only the second layer, i.e. training only the weights
Uu1,...,Uuk. This is equivalent to training a linear model
over the features o ((w;, x)), which are chosen randomly.
We show that neuron-subnetworks are competitive with ran-
dom features:

Theorem 3.2. Let D be any distribution over X x [—1,+1],
and let 0 : R — R be L-Lipschitz with 0(0) < L. Let
€,0 > 0, n € Nand D* a distribution over {w : ||w|| < 1}
such that for wy,...,w, ~ D* wp > 1 — § there ex-
ist uy, ..., u, € R such that |u;| < C and the function
f(z) =37 wio({w;, x)) satisfies that Lp(f) < €. Let
k > poly (C’,n, L, %, %) and suppose we initialize a 2-
layer neural network g with width k where w; ~ D*, and
u; ~ U([—1,1]). Then there exists a neuron-subnetwork §
of g and constant ¢ > 0 such that Lp(cg) < e.

The full proof can be found in Appendix B. Thm. 3.2 shows
that for any distribution over the data, if a random features
model can achieve small loss, then it is also possible to find a
neuron-subnetwork of a randomly initialized network (with
enough width) that achieves the same loss. This means that
pruning neurons is competitive with the random features
model. On the other hand, if for some distribution over the
data it is possible to find a neuron-subnetwork of a randomly
initialized network that achieves small loss, then clearly it
is possible to find a random features model that achieves the
same loss. Indeed, we can set the weights of the random
features model to be the same as in the neuron-subnetwork,
where pruned weights are equal to zero.

To summarize, Thm. 3.2 and the argument above shows
an equivalence between random features and neuron-
subnetworks: For a distribution D, there is a random fea-
tures model f with k features such that Lp(f) < e if-
and-only-if for a randomly initialized network with width

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

polynomial in %, % and %, w.p > 1 — ¢ there exists a neuron-

subnetwork ¢ such that Lp(g) < e.

A few recent works (e.g. (Yehudai and Shamir, 2019),
(Ghorbani et al., 2019), (Ghorbani et al., 2019)) studied
the limitations of random features. In particular, (Yehu-
dai and Shamir, 2019) show that a random features model
cannot approximate a single ReLU neuron even under stan-
dard Gaussian distribution, unless the amount of features
or the magnitude of the weights (or both) are exponential
in the input dimension. Thus, the above equivalence also
shows a limitation of neuron-subnetworks - they cannot
efficiently approximate a single ReLU neuron, just as ran-
dom features can’t. This means that the weight-subnetwork
model shown in Sec. 2 is significantly stronger than the
neuron-subnetwork model.

The intuition behind the proof of Thm. 3.2 is the following:
Assume we initialize a 2-layer neural network of width
n = k - m where k is as in the theorem, and m is some
large number (that depends on 1, 1). We think of it as
initializing m different 2-layer networks of width k. From
the assumption of the theorem, for most of these networks
there exists a random features model that achieves small
loss. For each of these networks we prune a neuron if its
randomly initialized weight in the second layer is far from
its corresponding random features model’s weight. Note
that since we initialize the weights i.i.d., then we prune each
neuron with the same probability and independently of the

other neurons.

The main lemma in the proof of Thm. 3.2 is the following:

Lemma 33. Let k1 € N, ¢ > 0 and assume
that o is L-Lipschitz with ¢(0) < L. Let ky >
O(k‘f,L{i,log(%)), and for every i € [ki], j €
[k2] initialize ng) ~ D for any distribution D with
P(|w|<1) = 1 and v ~ U(-1,1]). Let
oW o) € RF with |09 || o < 1 for every j € [ka),

and define fU)(x) = zkl v ((wf”,x}) Then there

=1 "1
exist bV ... b*2) € {0,1}* such that for the functions
gV (z) = Zf;l bl(-j) ~u§j)a ((ng),@) wp >1—4§we

have:

where ¢1 > 0

Intuitively, we are given ko neural networks, each of width
k1. The lemma shows that if we randomly initialize the
second layer of each of the ko networks, and zero out the
relevant neuron if it is too far away from the target neuron,
then by averaging over these ks networks, we have a good
approximation of the target network. In the proof we use

a concentration of measure argument and the fact that we
zero out each neuron i.i.d, because we initialize the weights
iid.

3.1. Learning Finite Datasets and RKHS Functions via
Neuron-Subnetworks

In this subsection we show that pruning entire neurons may
prove beneficial, despite the inherent limitations discussed
previously. We focus on two popular families of problems,
which are known to be solvable by training depth-two net-
works:

1. Opverfitting a finite sample:

S={(z1,91),--, (@m,ym) € X x [-1,1]}.

This is equivalent to finding a neuron-subnetwork
which minimizes the empirical risk on the sample S.
This setting is considered in various recent works (for
example in (Du et al., 2018), (Du et al., 2018), (Allen-
Zhu et al., 2018)).

2. Learning RKHS: given an activation function o : R —
R we consider a target function from the set of func-
tions F¢ which consists of functions of the form

et

1
Vd’Vd

h(w)o ({w, z))dw

d
where sup,, |h(w)| < C, and ¢4 = (@)

is a nor-
malization term. The set F, is actually the RKHS of
the kernel

K(x,y) =E a\ [c((w,x)) - olw, .
(z,y)]>[(<) - o(w,y)]

1 1
“’EUQ‘WW

In particular, for o which is not a polynomial, the set
Foo contains all continuous functions (see (Leshno
et al., 1993)). This setting is considered in (Cao and
Gu, 2019), (Sun et al., 2018).

The main theorem of this section is the following:

Theorem 3.4. Let ¢,§ > 0 and let 0 : R — R be L-
Lipschitz with 0(0) < L. Let g be a randomly initial-
ized 2-layer neural network of width k such that w; ~

d
U ({_\}&’ %}), and u; ~ U([—1,1]).
1. (Finite dataset) Let

S = {(x17y1)7"'7(mmaym) e X x [—1,+1]}7

and let H be the m x m matrix defined by

H;; = Ey [o((w,z;))o((w,z;))] and assume that

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

() = 3> 0.1k > poly (m. 4. Lulog (3) .
then w.p > 1 — § there exists a neuron-subnetwork §

and a constant ¢ > 0 such that:

sup |eg(zi) — il <€
i=1

2. (RKHS function) Let f € Fc. If £ >
poly (C’, L,log (%) , %) then w.p > 1 —§ there exists a
neuron-subnetwork g and a constant ¢ > 0 such that:

sup [cg(z) — f(z)] < €

reX
Remark 3.5. For the finite dataset case, the assumption on
the minimal eigenvalue \ of the matrix H is standard and
assumed in similar forms in other works which approximate

a finite dataset using random features approach (see (Du
etal., 2018), (Du et al., 2018), (Panigrahi et al., 2019)).

In both versions of the theorem, the network’s width does
not depend on the dimension of the input data. It does
depend on the “complexity” of the target distribution. In
the finite dataset case the network’s width depends on the
number of examples m and on the value of % In the RKHS
function case, it depends on the constant C' which defines
the size of the function class F¢ from which the target
function is taken.

Note that in a binary classification task (where that labels
are 1) over a finite dataset, Thm. 3.4 shows that we can
achieve zero loss (with respect to the 0 — 1 loss), even if
we don’t scale g(z) by a constant c. To show this, we use
Thm. 3.4 with e = 1/2 to get that for every pair (z,y) in
the finite dataset we have |cg(z) — y| < 1/2, since ¢ > 0
andy € {1, —1} we get that sign(g(z)) = sign(y).

We give a short proof intuition for Thm. 3.4, the full proof
is in appendix C. We initialize a 2-layer neural network
of width k = ky - ko, this can be thought as initializing
ko different networks, each of width k;. The idea is to
choose k; large enough so that w.h.p. a random features
model with k; features would be able to approximate the
target (either finite dataset or RKHS function). Next, for
each network of size k1 we prune a neuron if it is far from
its corresponding random features model. We finish by
using a concentration of measure argument to conclude that
averaging over ko such networks (for a large enough k2)
yields a good approximation of the target.

Remark 3.6. The proof of Thm. 3.4 actually provides an
algorithm for pruning 2-layer neural networks:

e Randomly initialize a 2-layer neural network of width
k= kq - ko.

e For each subnetwork of width k, - optimize a linear
predictor over the random weights from the first layer.

e Let € be a confidence parameter, prune each neuron
if its distance from the corresponding weight of the
trained linear predictor is more than e.

This algorithm runs in polynomial time, but it is obviously
very naive. However, it does demonstrate that there exists a
polynomial time algorithm for pruning neurons in shallow
networks. We leave a study of more efficient algorithms for
future work.

4. Discussion/Future Work

We have shown strong positive results on the expressive
power of pruned random networks. However, as we men-
tioned previously, our results imply that there is no efficient
algorithm for weight-pruning of a random network, by re-
duction from hardness results on learning neural networks.
Hence, weight-pruning is similar to weight-optimization in
the following sense: in both methods there exists a good
solution, but finding it is computationally hard in the worst
case. That said, similarly to weight optimization, heuris-
tic algorithms for pruning might work well in practice,
as shown in (Zhou et al., 2019; Ramanujan et al., 2019).
Furthermore, pruning algorithms may enjoy some advan-
tages over standard weight-optimization algorithms. First,
while weight-optimization requires training very large net-
works and results in large models and inefficient inference,
weight-pruning by design achieves networks with preferable
inference-time performance. Second, weight-optimization
is largely done with gradient-based algorithms, which have
been shown to be suboptimal in various cases (see (Shalev-
Shwartz et al., 2017; Shamir, 2018)). Pruning algorithms,
on the other hand, can possibly rely on very different algo-
rithmic techniques, that might avoid the pitfalls of gradient-
descent.

To conclude, in this work we showed some initial motiva-
tions for studying algorithms for pruning random networks,
which we believe set the ground for numerous future direc-
tions. An immediate future research direction is to come
up with a heuristic pruning algorithm that works well in
practice, and provide provable guarantees under mild dis-
tributional assumptions. Other interesting questions for
future research include understanding to what extent the
polynomial dependencies of the size of the neural network
before pruning can be improved, and generalizing the re-
sults to other architectures such as convolutional layers and
ResNets.

Acknowledgements: This research is supported by the
European Research Council (TheoryDL project), and by
European Research Council (ERC) grant 754705.

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence
theory for deep learning via over-parameterization.
arXiv preprint arXiv:1811.03962, 2018.

Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and gener-
alization in overparameterized neural networks, going
beyond two layers. In Advances in Neural Information
Processing Systems, 2019.

S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang. Fine-
grained analysis of optimization and generalization for
overparameterized two-layer neural networks. arXiv
preprint arXiv:1901.08584, 2019.

D. Boob, S. S. Dey, and G. Lan. Complexity of training
relu neural network. arXiv preprint arXiv:1809.10787,
2018.

Y. Cao and Q. Gu. A generalization theory of gradient
descent for learning over-parameterized deep ReLU
networks. arXiv preprint arXiv:1902.01384, 2019.

A. Daniely. SGD learns the conjugate kernel class
of the network. In Advances in Neural Information
Processing Systems, pages 2422-2430, 2017.

X. Dong, S. Chen, and S. Pan. Learning to prune
deep neural networks via layer-wise optimal brain sur-
geon. In Advances in Neural Information Processing
Systems, pages 4857-4867, 2017.

S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai.
Gradient descent finds global minima of deep neural
networks. arXiv preprint arXiv:1811.03804, 2018.

S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient
descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054, 2018.

J. Frankle and M. Carbin. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018.

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Monta-
nari. Limitations of lazy training of two-layers neural
networks. arXiv preprint arXiv:1906.08899, 2019.

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Monta-
nari. Linearized two-layers neural networks in high
dimension. arXiv preprint arXiv:1904.12191, 2019.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both
weights and connections for efficient neural network.
In Advances in neural information processing systems,
pages 1135-1143, 2015.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Hassibi and D. G. Stork. Second order deriva-
tives for network pruning: Optimal brain surgeon. In

Advances in neural information processing systems,
pages 164—-171, 1993.

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network
trimming: A data-driven neuron pruning approach
towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain
damage. In Advances in neural information processing
systems, pages 598—605, 1990.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken.
Multilayer feedforward networks with a nonpolyno-
mial activation function can approximate any function.
Neural networks, 6(6):861-867, 1993.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016.

R. Livni, S. Shalev-Shwartz, and O. Shamir. On the
computational efficiency of training neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 855-863, 2014.

J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level
pruning method for deep neural network compression.
In Proceedings of the IEEE international conference
on computer vision, pages 5058-5066, 2017.

P. Manurangsi and D. Reichman. The computa-
tional complexity of training relu (s). arXiv preprint
arXiv:1810.04207, 2018.

Z. Mariet and S. Sra. Diversity networks: Neural net-
work compression using determinantal point processes.
arXiv preprint arXiv:1511.05077, 2015.

D. Molchanov, A. Ashukha, and D. Vetrov. Variational
dropout sparsifies deep neural networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 2498-2507. JMLR. org,
2017.

A. Panigrahi, A. Shetty, and N. Goyal. Effect of acti-
vation functions on the training of overparametrized
neural nets. arXiv preprint arXiv:1908.05660, 2019.

A. Rahimi and B. Recht. Random features for large-
scale kernel machines. In Advances in neural informa-
tion processing systems, pages 1177-1184, 2008.

A. Rahimi and B. Recht. Uniform approximation of
functions with random bases. In 2008 46th Annual
Allerton Conference on Communication, Control, and
Computing, pages 555-561. IEEE, 2008.

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

[27] V. Ramanujan, M. Wortsman, A. Kembhavi,
A. Farhadi, and M. Rastegari. What’s hidden in a
randomly weighted neural network? arXiv preprint
arXiv:1911.13299, 2019.

[28] F. Scarselli and A. C. Tsoi. Universal approximation
using feedforward neural networks: A survey of some
existing methods, and some new results. Neural net-
works, 11(1):15-37, 1998.

[29] S. Shalev-Shwartz and S. Ben-David. Understanding
machine learning: From theory to algorithms. Cam-
bridge university press, 2014.

[30] S. Shalev-Shwartz, O. Shamir, and S. Shammah. Fail-
ures of gradient-based deep learning. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 3067-3075. JMLR. org,
2017.

[31] O. Shamir. Distribution-specific hardness of learning
neural networks. The Journal of Machine Learning
Research, 19(1):1135-1163, 2018.

[32] S. Srinivas and R. V. Babu. Data-free parameter
pruning for deep neural networks. arXiv preprint
arXiv:1507.06149, 2015.

[33] M. Stinchcombe and H. White. Universal approxi-
mation using feedforward networks with non-sigmoid
hidden layer activation functions. In I/JCNN Interna-
tional Joint Conference on Neural Networks, 1989.

[34] Y. Sun, A. Gilbert, and A. Tewari. Random ReLU fea-
tures: Universality, approximation, and composition.
arXiv preprint arXiv:1810.04374, 2018.

[35] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-
efficient convolutional neural networks using energy-
aware pruning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages

5687-5695, 2017.

[36] G. Yehudai and O. Shamir. On the power and limi-
tations of random features for understanding neural
networks. In Advances in Neural Information Process-
ing Systems, 2019.

[37] H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask.
arXiv preprint arXiv:1905.01067, 2019.

