
Proving the Lottery Ticket Hypothesis: Pruning is All You Need

A. Proofs of Section 2
We prove the theorem in a general manner, where we assume that each vector w∗ is s-sparse, that is, it only has s non-zero
coordinates. To prove Thm. 2.3 we assign s = d.

We start by showing that the function x 7→ αxi can be approximated by prunning a two-layer network:

Lemma A.1. Let s ∈ [d], and fix some scalar α ∈ [− 1√
s
, 1√

s
], index i ∈ [d], and some ε, δ > 0. Let w(1), . . . , w(k) ∈ Rd

chosen randomly fromU([−1, 1]d), and u(1), . . . , u(k) ∈ [−1, 1] chosen randomly fromU([−1, 1]). Then, for k ≥ 4
ε2 log( 2

δ ),
w.p at least 1− δ there exists a binary mask b(1), . . . , b(k) ∈ {0, 1}d, such that g(x) =

∑
j u

(j)σ(〈w(j) � b(j), x〉) satisfies
|g(x)− αxi| ≤ 2ε, for ‖x‖∞ ≤ 1. Furthermore, we have

∑
j ‖b(j)‖0 ≤ 2 and maxj ‖b(j)‖0 ≤ 1.

Proof. If |α| ≤ ε then choosing b(1) = · · · = b(k) = (0, . . . , 0) gives the required. Assume |α| ≥ ε, and assume w.l.o.g that
α > 0. Fix some j ∈ [k′]. Note that:

P
[
|w(j)
i − α| ≤ ε ∧ |u(j) − 1| ≤ ε

]
= P

[
|w(j)
i − α| ≤ ε

]
P
[
|u(j) − 1| ≤ ε

]
=
ε

2
· ε

2
=
ε2

4
,

and similarly P
[
|w(j)
i + α| ≤ ε ∧ |u(j) + 1| ≤ ε

]
≤ ε2

4 . Therefore, we have:

P
[
@j ∈ [k] s.t |w(j)

i − α| ≤ ε ∧ |u(j) − 1| ≤ ε
]

=

(
1− ε2

4

)k
≤ exp

(
−kε

2

4

)
≤ δ

2
,

where we used the assumption that k ≥ 4
ε2 log( 2

δ ), and similarly:

P
[
@j ∈ [k′] s.t |w(j)

i + α| ≤ ε ∧ |u(j) + 1| ≤ ε
]
≤ δ

2
.

Therefore, using the union bound, w.p at least 1 − δ there exist j, j′ such that |w(j)
i − α| ≤ ε, |u(j) − 1| ≤ ε and

|w(j′)
i + α| ≤ ε, |u(j′) + 1| ≤ ε and since |α| ≥ ε we get j 6= j′. Now, setting b(j)i = 1, b

(j′)
i = 1, and the rest to zero, we

get that:
g(x) = u(j)σ(w

(j)
i xi) + u(j

′)σ(w
(j′)
i xi)

We will use the fact that σ(a)− σ(−a) = a for every a ∈ R. If xi ≥ 0, we get that g(x) = u(j)w
(j)
i xi and therefore:

|g(x)− αxi| = |xi||u(j)w(j)
i − α| ≤ |u(j)w

(j)
i − ujα|+ |u(j)α− α| ≤ |u(j)||w

(j)
i − α|+ |u(j) − 1||α| ≤ 2ε

In a similar fashion, we get that for xi < 0 we have |g(x) − αxi| = |xi||u(j
′)w

(j′)
i − α| ≤ 2ε, which gives the required.

Since we have ‖b(j)‖0 = 1, ‖b(j′)‖0 = 1 and ‖b(j′′)‖0 = 0 for every j′′ 6= j, j′, the mask achieves the required.

Using the previous result, we can show that a linear function x 7→ 〈w∗, x〉 can be implemented by pruning a two layer
network:

Lemma A.2. Let s ∈ [d], and fix some w∗ ∈ [− 1√
s
, 1√

s
]d with ‖w∗‖0 ≤ s, and some ε, δ > 0. Let w(1), . . . , w(k) ∈ Rd

chosen randomly from U([−1, 1]d), and u ∈ [−1, 1]k chosen randomly from U([−1, 1]k). Then, for k ≥ s ·
⌈
16s2

ε2 log( 2s
δ )
⌉

,

w.p at least 1− δ there exists a binary mask b(1), . . . , b(k) ∈ {0, 1}d, such that g(x) =
∑k
i=1 uiσ(〈w(i) � b(i), x〉) satisfies

|g(x)− 〈w∗, x〉| ≤ ε, for ‖x‖∞ ≤ 1. Furthermore, we have
∑
i ‖b(i)‖0 ≤ 2s and maxi ‖b(i)‖0 ≤ 1.

Proof. We assume k = s ·
⌈
16s2

ε2 log( 2s
δ )
⌉

(otherwise, mask excessive neurons), and let k′ := k
s . With slight abuse

of notation, we denote w(i,j) := w(j+k′i), u(i,j) := uj+k′i and b(i,j) := b(j+k
′i). Let I := {i ∈ [d] : w∗i 6= 0}.

By the assumption on w∗ we have |I| ≤ s, and we assume w.l.o.g. that I ⊆ [s]. Fix some i ∈ [s], and denote
gi(x) =

∑
j u

(i,j)σ(〈w(i,j) � b(i,j), x〉). Let ε′ = ε
2s and δ′ = δ

s , then from Lemma A.1, with probability at least 1− δ′
there exists a binary mask b(i,1), . . . , b(i,k

′) ∈ {0, 1}d with
∑
j ‖b(i,j)‖0 ≤ 2 such that |gi(x)− w∗i xi| ≤ 2ε′ = ε

s for every
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x ∈ Rd with ‖x‖∞ ≤ 1. Now, using the union bound we get that with probability at least 1 − δ, the above holds for all
i ∈ [s], and so:

|g(x)− 〈w∗, x〉| = |
∑
i∈[s]

gi(x)−
∑
i∈[s]

w∗i xi| ≤
∑
i∈[s]

|gi(x)− w∗i xi| ≤ ε

Furthermore, we have
∑
i∈[s]

∑
j ‖b(i,j)‖0 ≤ 2s and maxi,j ‖b(i,j)‖0 ≤ 1, by the result of Lemma A.1.

Now, we can show that a network with a single neuron can be approximated by prunning a three-layer network:

Lemma A.3. Let s ∈ [d], and fix some w∗ ∈ [− 1√
s
, 1√

s
]d with ‖w∗‖0 ≤ s, some v∗ ∈ [−1, 1] and some ε, δ > 0. Let

w(1), . . . , w(k1) ∈ Rd chosen randomly from U([−1, 1]d), u(1), . . . , u(k2) ∈ [−1, 1]k1 chosen randomly from U([−1, 1]k1),

and v ∈ [−1, 1]k2 chosen randomly from U([−1, 1]k2). Then, for k1 ≥ s ·
⌈
64s2

ε2 log( 4s
δ )
⌉

, k2 ≥ 2
ε log( 2

δ ), w.p at least

1− δ there exists a binary mask b(1), . . . , b(k1) ∈ {0, 1}d, b̂ ∈ {0, 1}k2 , such that g(x) =
∑k2
i=1 b̂iviσ(

∑k1
j=1 u

(i)
j σ(〈w(j)�

b(j), x〉)) satisfies |g(x)−v∗σ(〈w∗, x〉)| ≤ ε, for ‖x‖2 ≤ 1. Furthermore, we have
∑
j ‖b(j)‖0 ≤ 2s and maxj ‖b(j)‖0 ≤ 1.

Proof. Let ε′ = ε
2 , and note that for every i ∈ [k2] we have P [|vi − v∗| ≤ ε′] ≥ ε′. Therefore, the probability that for

some i ∈ [k2] it holds that |vi − v∗| ≤ ε′ is at least 1 − (1 − ε′)k2 ≥ 1 − e−k2ε′ ≥ 1 − δ
2 , where we use the fact that

k2 ≥ 1
ε′ log( 2

δ ). Now, assume this holds for i ∈ [k2]. Let b̂j = 1{j = i}, and so:

g(x) = viσ(

k1∑
j=1

u
(i)
j σ(〈w(j) ◦ b(j), x〉)

Then, from Lemma A.2, with probability at least 1− δ
2 there exists b(1), . . . , b(k1) s.t. for every ‖x‖∞ ≤ 1:∣∣∣∣∣∣

k1∑
j=1

u
(i)
j σ(〈w(j) ◦ b(j), x〉 − 〈w∗, x〉)

∣∣∣∣∣∣ ≤ ε′
And therefore, for every ‖x‖2 ≤ 1:

|g(x)− v∗σ(〈w∗, x〉)|

≤ |vi|

∣∣∣∣∣∣σ(

k1∑
j=1

u
(i)
j σ(〈w(j) ◦ b(j), x〉)− σ(〈w∗, x〉))

∣∣∣∣∣∣+ |vi − v∗| |σ(〈w∗, x〉)|

≤ |vi|

∣∣∣∣∣∣
k1∑
j=1

u
(i)
j σ(〈w(j) ◦ b(j), x〉 − 〈w∗, x〉)

∣∣∣∣∣∣+ |vi − v∗| ‖w∗‖‖x‖ ≤ 2ε′ = ε

Finally, we show that pruning a three-layer network can approximate a network with n neurons, since it is only a sum of
networks with 1 neuron, as analyzed in the previous lemma:

Lemma A.4. Let s ∈ [d], and fix some w(1)∗, . . . , w(n)∗ ∈ [−1, 1]d with ‖w(i)∗‖0 ≤ s, v∗ ∈ [−1, 1]n and let f(x) =∑n
i=1 v

∗
i σ(〈w(i)∗, x〉). Fix some ε, δ > 0. Let w(1), . . . , w(k1) ∈ Rd chosen randomly from U([−1, 1]d), u(1), . . . , u(k2) ∈

[−1, 1]k1 chosen randomly from U([−1, 1]k1), and v ∈ [−1, 1]k2 chosen randomly from U([−1, 1]k2). Then, for k1 ≥ ns ·⌈
64s2n2

ε2 log( 4ns
δ )
⌉

, k2 ≥ 2n
ε log( 2n

δ ), w.p at least 1−δ there exists a binary mask b(1), . . . , b(k1) ∈ {0, 1}d, b̃(1), . . . , b̃(k2) ∈
{0, 1}k1 , b̂ ∈ {0, 1}k2 , such that g(x) =

∑k2
i=1 b̂iviσ(

∑k1
j=1 b̃

(i)
j u

(i)
j σ(〈w(j) � b(j), x〉)) satisfies |g(x) − f(x)| ≤ ε, for

‖x‖2 ≤ 1. Furthermore, we have
∑
j ‖b(j)‖0 ≤ 2s and maxj ‖b(j)‖0 ≤ 1.

Proof. Denote k′1 = k1
n , k

′
2 = k2

n and assume k′1, k
′
2 ∈ N (otherwise mask exceeding neurons). With slight abuse of

notation, we denotew(i,j) := w(j+k′1i), u(i,j) :=
(
u
(j+ik′2)

ik′1
, . . . , u

(j+ik′2)

(i+1)k′1

)
, v(i,j) := vj+ik′2 and similarly b(i,j) := b(j+k

′
1i),
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b̃(i,j) =
(
b̃
(j+ik′2)

ik′1
, . . . , b̃

(j+ik′2)

(i+1)k′1

)
and b̂(i,j) = b̂j+ik′2 . Define for every i ∈ [n]:

gi(x) =
∑
j

b̂(i,j)v(i,j)σ(
∑
l

b̃
(i,j)
l u

(i,j)
l σ(〈b(i,l) ◦ w(i,l), x〉))

Now, by setting b̃(j+k
′
1i)

l = 1{ik′1 ≤ l < (i+ 1)k′1} we get that g(x) =
∑n
i=1 gi(x). Now, from Lemma A.3 we get that

with probability at least 1− δ
n we have

∣∣gi(x)− v∗i σ(〈w(i)∗, x〉)
∣∣ ≤ ε

n for every ‖x‖2 ≤ 1. Using the union bound, we get
that with probability at least 1− δ, for ‖x‖2 ≤ 1 we have |g(x)− f(x)| ≤∑n

i=1

∣∣gi(x)− v∗i σ(〈w(i)∗, x〉)
∣∣ ≤ ε.

Proof. of Theorem 2.3.

From Lemma A.4 with s = d.

In a similar fashion, we can prove a result for deep networks. We start by showing that a single layer can be approximated
by pruning:

Lemma A.5. Let s ∈ [d], and fix some w(1)∗, . . . , w(n)∗ ∈ [− 1√
s
, 1√

s
]d with ‖w(i)∗‖0 ≤ s and let F : Rd → Rn

such that F (x)i = σ(〈w(i)∗, x〉). Fix some ε, δ > 0. Let w(1), . . . , w(k) ∈ Rd chosen randomly from U([−1, 1]d) and

u(1), . . . , u(n) ∈ [−1, 1]k chosen randomly from U([−1, 1]k). Then, for k ≥ ns ·
⌈
16s2n
ε2 log( 2ns

δ )
⌉

, w.p at least 1 − δ
there exists a binary mask b(1), . . . , b(k) ∈ {0, 1}d, b̃(1), . . . , b̃(n) ∈ {0, 1}k1 , b̂ ∈ {0, 1}k, such that for G : Rd → Rn

with G(x)i = σ(
∑k
j=1 b̃

(i)
j u

(i)
j σ(〈w(j) � b(j), x〉)) we have ‖G(x)− F (x)‖2 ≤ ε, for ‖x‖∞ ≤ 1. Furthermore, we have∑

j ‖b(j)‖0 ≤ 2sn and
∑
i ‖b̃(i)‖0 ≤ 2sn.

Proof. Denote k′ = k
n and assume k′ ∈ N (otherwise mask exceeding neurons). With slight abuse of notation, we denote

w(i,j) := w(j+k′i), b(i,j) := b(j+k
′i) and we denote ũ(i) :=

(
u
(i)
ik′ , . . . , u

(i)
(i+1)k′

)
. Define for every i ∈ [n]:

gi(x) =
∑
j

ũ
(i)
j σ(〈b(i,j) ◦ w(i,j), x〉)

Now, by setting b̃(j+k
′
1i)

l = 1{ik′1 ≤ l < (i+ 1)k′1} we get that G(x)i = σ(gi(x)). Now, from Lemma A.2 with ε′ = ε√
n

and δ′ = δ
n , since k ≥ s ·

⌈
16s2

(ε′)2 log( 2s
δ′ )
⌉

we get that with probability at least 1− δ
n we have

∣∣gi(x)− 〈w(i)∗, x〉
∣∣ ≤ ε√

n
for

every ‖x‖∞ ≤ 1. Using the union bound, we get that with probability at least 1− δ, for ‖x‖∞ ≤ 1 we have:

‖G(x)− F (x)‖22 =
∑
i

(σ(gi(x))− σ(〈w(i)∗, x〉))2 ≤
∑
i

(gi(x)− 〈w(i)∗, x〉)2 ≤ ε2

Notice that Lemma A.2 also gives
∑
j ‖b(i,j)‖0 ≤ 2s and so

∑n
i=1

∑
j ‖b(i,j)‖0 ≤ 2sn. Since we can set b̃(i)j = 0 for every

i, j with b(i,j) = 0, we get the same bound on
∑
i ‖b̃(i)‖0.

Using the above, we can show that a deep network can be approximated by pruning. We show this result with the assumption
that each neuron in the network has only s non-zero weights. To get a similar result without this assumption, as is stated in
Thm. 2.1, we can simply choose s to be its maximal value - either d for the first layer of n for intermediate layers.

Theorem A.6. (formal statement of Thm. 2.1, when s = max{n, d}). Let s, n ∈ N, and fix some W (1)∗, . . . ,W (l)∗ such
that W (1)∗ ∈ [− 1√

s
, 1√

s
]d×n, W (2)∗, . . . ,W (l−1)∗ ∈ [− 1√

n
, 1√

n
]n×n and W (l)∗ ∈ [− 1√

n
, 1√

n
]n×1. Assume that for every

i ∈ [l] we have ‖W (i)∗‖2 ≤ 1 and maxj ‖W (i)
j ‖0 ≤ s. Denote F (i)(x) = σ(W (i)∗x) for i < l and F (l)(x) = W (l)∗x,

and let F (x) := F (l) ◦ · · · ◦ F (1)(x). Fix some ε, δ ∈ (0, 1). Let W (1), . . . ,W (l), U (1), . . . , U (l) such that W (1) is chosen
randomly from U([−1, 1]d×k), W (2), . . . ,W (l) is chosen randomly from U([−1, 1]n×k), U (1), . . . , U (l−1) chosen from

U([−1, 1]k×n) and U (l) chosen from U([−1, 1]k). Then, for k ≥ ns ·
⌈
64s2l2n
ε2 log( 2nsl

δ )
⌉

, w.p. at least 1− δ there exist

B(i) a binary mask for W (i) with matching dimensions, and B̃(i) a binary mask for U (i) with matching dimensions, s.t.:

|G(x)− F (x)| ≤ ε for ‖x‖2 ≤ 1
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Where we denote G = G(l) ◦ · · · ◦ G(1), with G(i)(x) := σ(B̃(i) ◦ U (i)σ(B(i) ◦W (i)x)) for every i < l and G(l)(x) :=
B̃(l) ◦ U (l)σ(B(l) ◦W (l)x). Furthermore, we have ‖B(i)‖0 ≤ 2sn and ‖B̃(i)‖0 ≤ 2sn.

Proof. Fix some i < l. From A.5, with probability at least 1 − δ
l there exists a choice for B̃(i), B(i) such that for every

‖x‖∞ ≤ 1 we have ‖F (i)(x)−G(i)(x)‖2 ≤ ε
2l . Note that we want to show that every layer is well approximated given the

output of the previous layer, which can slightly deviate from the output of the original network. So, we need to relax the
condition of Lemma A.5 to ‖x‖∞ ≤ 2 in order to allow these small deviations from the target network.

Notice that if ‖x‖∞ ≤ 2, from homogeneity of G(i), F (i) to positive scalars we get that:

‖G(i)(x)− F (i)(x)‖2 = 2‖G(i)(
1

2
x)− F (i)(

1

2
x)‖2 ≤

ε

l

Similarly, from Lemma A.2, with probability at least 1− δ
l it holds that

∣∣F (l)(x)−G(l)(x)
∣∣ ≤ ε

l for every x with ‖x‖∞ ≤ 2.
Assume that all the above holds, and using the union bound this happens with probability at least 1−δ. Notice that for every x
we have ‖F (i)(x)‖2 ≤ ‖W (i)∗x‖2 ≤ ‖W (i)∗‖2‖x‖2 ≤ ‖x‖2, and so ‖F (i)◦· · ·◦F (1)(x)‖2 ≤ ‖F (i−1)◦· · ·◦F (1)(x)‖2 ≤
· · · ≤ ‖x‖2. Fix some x with ‖x‖2 ≤ 1 and denote x(i) = F (i) ◦ · · · ◦ F (1)(x) and x̂(i) = G(i) ◦ · · · ◦G(1)(x). Now, we
will show that ‖x(i) − x̂(i)‖2 ≤ iε

l for every i ≤ l, by induction on i. The case i = 0 is trivial, and assume the above holds
for i− 1. Notice that in this case we have ‖x̂(i−1)‖∞ ≤ ‖x̂(i−1)‖2 ≤ ‖x(i−1)‖2 + ‖x(i−1) − x̂(i−1)‖2 ≤ 2. Therefore:

‖x(i) − x̂(i)‖2 = ‖G(i)(x̂(i−1))− F (i)(x(i−1))‖2
≤ ‖G(i)(x̂(i−1))− F (i)(x̂(i−1))‖2 + ‖F (i)(x̂(i−1))− F (i)(x(i−1))‖2

≤ ε

l
+ ‖W (i)∗(x̂(i−1) − x(i−1))‖2 ≤

ε

l
+ ‖W (i)∗‖2‖x̂(i−1) − x(i−1)‖2 ≤

iε

l

From the above, we get that |F (x)−G(x)| = ‖x(l) − x̂(l)‖2 ≤ ε.

B. Proofs of Section 3
First we will need the following lemma, which intuitively shows a generalization bound over linear predictors, where each
coordinate of each sample is pruned with equal probability and independently.

Lemma B.1. Let k > 0, and v(1), . . . , v(k) ∈ [−1, 1]d. Let v̂(j) be Bernoulli random variables such that for each j, with
probability ε we have v̂(j) = 1

ε v
(j), and with probability 1− ε we have v̂(j) = 0. Then we have w.p > 1− δ that:

sup
z:‖z‖≤L

∣∣∣∣∣∣1k
k∑
j=1

〈v̂(j), z〉 − 1

k

k∑
j=1

〈v(j), z〉

∣∣∣∣∣∣ ≤ L

ε
√
k

(
3
√
d+ log

(
1

δ

))

Proof. Note that for each j ∈ [k] we have that E
[
v̂(j)
]

= v(j), thus for every vector z ∈ Rd, also E
[
1
k

∑k
j=1〈v̂(j), z〉

]
=

1
k

∑k
j=1〈v(j), z〉. Hence, using a standard argument about Rademacher complexity (see (29) Lemma 26.2) we have that:

Ev̂(1),...,v̂(k)

 sup
z:‖z‖≤L

∣∣∣∣∣∣1k
k∑
j=1

〈v̂(j), z〉 − 1

k

k∑
j=1

〈v(j), z〉

∣∣∣∣∣∣


≤2

k
Ev̂(1),...,v̂(k)Eξ1,...,ξk

 sup
z:‖z‖≤L

k∑
j=1

ξj〈v̂(j) − v(j), z〉

 (3)

where ξ1, . . . , ξk are standard Rademacher random variables. Set ṽ(j) = v̂(j) − v(j) ,using Cauchy-Schwartz we can bound
Eq. (3) by:

2

k
Eṽ(1),...,ṽ(k)Eξ1,...,ξk

 sup
z:‖z‖≤L

‖z‖ ·

∥∥∥∥∥∥
k∑
j=1

ξj ṽ
(j)

∥∥∥∥∥∥
 ≤ 2L

k
Eṽ(1),...,ṽ(k)Eξ1,...,ξk

∥∥∥∥∥∥
k∑
j=1

ξj ṽ
(j)

∥∥∥∥∥∥
 . (4)
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Next, we can use Jensen’s inequality on Eq. (4) to bound it

2L

k
Eṽ(1),...,ṽ(k)Eξ1,...,ξk

∥∥∥∥∥∥
k∑
j=1

ξj ṽ
(j)

∥∥∥∥∥∥
 ≤ 2L

k

√√√√√√Eṽ(1),...,ṽ(k)Eξ1,...,ξk


∥∥∥∥∥∥
k∑
j=1

ξj ṽ(j)

∥∥∥∥∥∥
2


≤2L

k

√√√√√Eṽ(1),...,ṽ(k)Eξ1,...,ξk

 k∑
i=1

k∑
j=1

ξiξj ṽ(i)
> ṽ(j)

 =
2L

k

√√√√√Eṽ(1),...,ṽ(k)

 k∑
j=1

‖ṽ(j)‖2
 .

Finally, using the fact that ‖ṽ(j)‖2 ≤ ‖v̂(j)‖2 + ‖v(j)‖2 ≤ 1
ε2 ‖v(j)‖2 + ‖v(j)‖2 ≤ 2d

ε2 we have that:

2L

k

√√√√√Eṽ(1),...,ṽ(k)

 k∑
j=1

‖ṽ(j)‖2
 ≤ 3L

√
d

ε
√
k

In order to prove the lemma we will use McDiarmid’s inequality to get guarantees with high probability. Note that for every
l ∈ [k], by taking ˜̂v(l) instead of v̂(l) we have for every z with ‖z‖ ≤ L that:∣∣∣∣∣∣1k

k∑
j=1

〈v̂(j), z〉 − 1

k

∑
j 6=l

〈v̂(j), z〉 − 〈˜̂v(l), z〉

∣∣∣∣∣∣ ≤ 1

k

∣∣∣〈v̂(l), z〉 − 〈˜̂v(l), z〉∣∣∣ ≤ L

εk

By using Mcdiarmid’s theorem we get

P

 sup
z:‖z‖≤L

∣∣∣∣∣∣1k
k∑
j=1

〈v̂(j), z〉 − 1

k

k∑
j=1

〈v(j), z〉

∣∣∣∣∣∣ ≥ 3L
√
d

εk
+ t

 ≤ exp

(
−−2t2ε2k

L2

)
,

setting the r.h.s to δ, and t =

√
log( 1

δ )L
ε
√
k

we have w.p > 1− δ that:

sup
z:‖z‖≤L

∣∣∣∣∣∣1k
k∑
j=1

〈v̂(j), z〉 − 1

k

k∑
j=1

〈v(j), z〉

∣∣∣∣∣∣ ≤ L

ε
√
k

(
3
√
d+

√
log

(
1

δ

))
.

Next, we show the main argument, which states that by pruning a neurons from a large enough 2-layer neural network, it
can approximate any other 2-layer neural network for which the weights in the first layer are the same, and the weights in
the second layer are bounded.

Lemma B.2. Let k1 ∈ N and ε, δ,M > 0 and assume that σ is L-Lipschitz with σ(0) ≤ L. Let k2 >
256 log( 2k1

δ )k41L
4

ε4 , and
for every i ∈ [k1], j ∈ [k2] initialize w(j)

i ∼ D for any distribution D with P (‖wi‖ ≤ 1) = 1 and u(j)i ∼ U([−1, 1]). Let

v(1), . . . , v(k2) ∈ Rk1 with ‖v(j)‖∞ ≤ M for every j ∈ [k2], and define f (j)(x) =
∑k1
i=1 v

(j)
i σ

(
〈w(j)

i , x〉
)

. Then there

exist b(1), . . . , b(k2) ∈ {0, 1}k1 such that for the functions g̃(j)(x) =
∑k1
i=1 b

(j)
i · u

(j)
i σ

(
〈w(j)

i , x〉
)

w.p > 1− δ we have:

sup
x:‖x‖≤1

∣∣∣∣∣∣ c1k2
k2∑
j=1

g̃(j)(x)− 1

k2M

k2∑
j=1

f (j)(x)

∣∣∣∣∣∣ ≤ ε
where c1 = 8k1L

ε
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Proof. Denote ε′ = ε
4k1L

, and for j ∈ [k2] denote v̄(j) = 1
M v(j), so we have ‖v̄(j)‖∞ ≤ 1. Let b(j)i =

1

{∣∣∣u(j)i − v̄(j)i ∣∣∣ ≤ ε′}, note that the b(j)i -s are i.i.d Bernoulli random variables with P
[
b
(j)
i = 1

]
= ε′

2 .

Set the following vectors: v̂(j) = 2
ε′


b
(j)
1 v̄

(j)
1

...
b
(j)
k1
v̄
(j)
k1

 , û(j) = 2
ε′


b
(j)
1 u

(j)
1

...
b
(j)
k1
ū
(j)
k1

, and denote the function z(j) : Rd → Rk1 with

z
(j)
i (x) = σ

(
〈w(j)

i , x〉
)

. Now, the functions f (j)(x) can be written as f (j)(x) = 〈v(j), z(j)(x)〉, we denote

g̃(x) =

k2∑
j=1

k1∑
i=1

b
(j)
i u

(j)
i σ

(
〈w(j)

i , x〉
)

=

k2∑
j=1

〈b(j) � u(j), z(j)(x)〉

ĝ(x) =
2

ε′

k2∑
j=1

k1∑
i=1

b
(j)
i u

(j)
i σ

(
〈w(j)

i , x〉
)

=

k2∑
j=1

〈û(j), z(j)(x)〉.

Our goal is to bound the following, when the supremum is taken over ‖x‖ ≤ 1:

sup
x

∣∣∣∣∣∣ c1k2 g̃(x)− 1

k2M

k2∑
j=1

f (j)(x)

∣∣∣∣∣∣ = sup
x

∣∣∣∣∣∣ 1

k2
ĝ(x)− 1

k2M

k2∑
j=1

f (j)(x)

∣∣∣∣∣∣
= sup

x

∣∣∣∣∣∣ 1

k2

k2∑
j=1

〈û(j), z(j)(x)〉 − 1

k2

k2∑
j=1

〈v̄(j), z(j)(x)〉

∣∣∣∣∣∣
≤ sup

x

∣∣∣∣∣∣ 1

k2

k2∑
j=1

〈û(j), z(j)(x)〉 − 1

k2

k2∑
j=1

〈v̂(j), z(j)(x)〉

∣∣∣∣∣∣+ sup
x

∣∣∣∣∣∣ 1

k2

k2∑
j=1

〈v̂(j), z(j)(x)〉 − 1

k2

k2∑
j=1

〈v̄(j), z(j)(x)〉

∣∣∣∣∣∣
(5)

where c1 = 2
ε′ = 8k1L

ε . We will now bound each expression in Eq. (5) with high probability. For the first expression, we
first bound:

sup
x

∣∣∣∣∣∣ 1

k2

k2∑
j=1

〈û(j), z(j)(x)〉 − 1

k2

k2∑
j=1

〈v̂(j), z(j)(x)〉

∣∣∣∣∣∣ = sup
x

∣∣∣∣∣∣ 1

k2

k2∑
j=1

〈û(j) − v̂(j), z(j)(x)〉

∣∣∣∣∣∣
≤ 1

k2

k2∑
j=1

sup
x

∣∣∣〈û(j) − v̂(j), z(j)(x)〉
∣∣∣ .

Fix i ∈ [k1] and set X(j)
i := supx

∣∣∣(û(j)i − v̂(j)i ) · z(j)i (x)
∣∣∣ and note that for every x with ‖x‖ ≤ 1 we have that

supx

∣∣∣z(j)i (x)
∣∣∣ ≤ 2L. For the random variables X(j)

i we get:

• X(j)
i ≤

∣∣∣û(j)i − v̂(j)i ∣∣∣ · supx

∣∣∣z(j)i (x)
∣∣∣ ≤ 4L

• E
[
X

(j)
i

]
≤ 2ε′L

We now use Hoeffding’s inequality to get that:

P

 1

k2

k2∑
j=1

X
(j)
i ≥ 2ε′L+ t

 ≤ exp

(
− t

2k2
8L2

)
.
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Replacing the r.h.s with δ1 and setting t = ε′L, we get that if k2 ≥
8 log

(
1
δ1

)
ε′2 then w.p 1− δ1:

1

k2
sup
x

∣∣∣(û(j)i − v̂(j)i ) · z(j)i (x)
∣∣∣ ≤ 3ε′L.

Setting δ1 = δ
2k1

, and applying union bound for i = 1, . . . , k1 we get that w.p > 1− δ
2 we have:

1

k2

k2∑
j=1

sup
x

∣∣∣〈û(j) − v̂(j), z(j)(x)〉
∣∣∣ ≤ 3k1ε

′L. (6)

For the second expression in Eq. (5) we first note that for all j ∈ [k2] we have maxx:‖x‖≤1 ‖z(j)(x)‖ ≤ 2L
√
k1. Hence we

can bound the second expression

sup
x

∣∣∣∣∣∣ 1

k2

k2∑
j=1

〈v̂(j), z(j)(x)〉 − 1

k2

k2∑
j=1

〈v̄(j), z(j)(x)〉

∣∣∣∣∣∣
≤

∑
z∈Rk1 :‖z‖≤2L

√
k1

∣∣∣∣∣∣ 1

k2

k2∑
j=1

〈v̂(j), z〉 − 1

k2

k2∑
j=1

〈v̄(j), z〉

∣∣∣∣∣∣ .
Using Lemma B.1 on the above term, w.p > 1− δ

2 we have that:

∑
z∈Rk1 :‖z‖≤2L

√
k1

∣∣∣∣∣∣ 1

k2

k2∑
j=1

〈v̂(j), z〉 − 1

k2

k2∑
j=1

〈v̄(j), z〉

∣∣∣∣∣∣ ≤ 2L
√
k1

ε′
√
k2

(
3
√
k1 +

√
log

(
2

δ

))
(7)

Combining Eq. (6) with Eq. (7), applying union bound and taking k2 ≥
256L4k41 log( 2

δ )
ε4 , we can now use the bound in Eq. (5)

to get w.p > 1− δ:

sup
x

∣∣∣∣∣∣ 1

k2
ĝ(x)− 1

k2M

k2∑
j=1

f (j)(x)

∣∣∣∣∣∣ ≤ ε .

We are now ready to prove the main theorem:

Proof of Thm. 3.2. Set m =
256 log( 2n

δ )C4n4L4

ε4 · log(
1
δ )

2δ3 and initialize a 2-layer neural network with width k := m · n and
initialization as described in the theorem, denote g(x) =

∑m
j=1

∑n
i=1 u

(j)
i σ(〈w(j)

i , x〉) as this network. By the assumption
of the theorem, for each j ∈ [m] w.p > 1 − δ there exists a vector v(j) with ‖v(j)‖∞ ≤ C such that the function
f (j)(x) =

∑n
i=1 v

(j)
i σ(〈w(j)

i , x〉) satisfy that LD
(
f (j)

)
≤ ε. Let Zj be the random variable such that Zj = 0 if there exists

a vector v(j) that satisfies the above, and Zj = 1 otherwise. the random variables Zj are i.i.d since we initialize each w(j)
i

i.i.d, and P(Zj = 1) = δ, E[Zj ] = δ. Denote Z =
∑m
j=1 Zj , then E[Z] = mδ. We use Hoeffding’s inequality on Z to get

that:

P
(

1

m
Z ≥ δ + t

)
≤ exp(−2mt2) .

Replacing the r.h.s with δ and setting t = δ we get that if m >
log( 1

δ )
2δ2 then w.p > 1− δ we have that Z ≤ 2δ. In particular,

there are at least m0 =
256 log( 2n

δ )C4n4L4

ε4 indices (denote them w.l.o.g j = 1, . . . ,m0) such that for every j ∈ [m0] there
exists a vector v(j) with ‖v(j)‖∞ ≤ C such that the function f (j)(x) =

∑n
i=1 v

(j)
i σ(〈w(j)

i , x〉) satisfy that LD
(
f (j)

)
≤ ε.
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We now use Lemma B.2 with δ, εC and v(1), . . . , v(m0) to get that w.p > 1− δ that there exists a neuron-subnetwork g̃(x)
and constant c′ > 0 such that:

sup
x:‖x‖≤1

∣∣∣∣∣∣c′g̃(x)− 1

m0C

m0∑
j=1

f (j)(x)

∣∣∣∣∣∣ ≤ ε

C
(8)

Set c = C · c′, the loss of cg̃(x) can be bounded by:

LD(cg̃) =E(x,y)∼D
[
(cg̃(x)− y)2

]
≤ 2E(x,y)∼D


cg̃(x)− 1

m0

m0∑
j=1

f (j)(x)

2
+ 2E(x,y)∼D


 1

m0

m0∑
j=1

f (j)(x)− y

2
 (9)

We will bound each term of the above expression. Using Eq. (8) we have:

E(x,y)∼D


cg̃(x)− 1

m

m∑
j=1

f (j)(x)

2
 ≤ sup

x:‖x‖≤1

cg̃(x)− 1

m

m∑
j=1

f (j)(x)

2

≤ C · sup
x:‖x‖≤1

c′g̃(x)− 1

mC

m∑
j=1

f (j)(x)

2

≤ C · ε
C

= ε (10)

For the second term in Eq. (9) we have that:

E(x,y)∼D


 1

m

m∑
j=1

f (j)(x)− y

2
 ≤ 1

m

m∑
j=1

E(x,y)∼D

[(
f (j)(x)− y

)2]

≤ 1

m

m∑
j=1

LD

(
f (j)

)
≤ ε (11)

re-scaling ε finishes the proof.

C. Proofs of section 3.1
We first show that a finite dataset, under mild assumptions on the data, can be approximated using a random features model.
The proof of the following lemma is exactly the same as the proof of Lemma 3.1 in (9).

Lemma C.1. Let δ > 0, x1, . . . , xm ∈ Rd, and let H be the m×m matrix with:

Hi,j = Ew [σ(〈w, xi〉)σ(〈w, xj〉)]

Assume that λmin(H) = λ > 0, then for k >
64m2 log2(mδ )

λ2 , w.p > 1 − δ over sampling of w1, . . . , wk we have that
λmin(H̃) ≥ 3

4λ where:

H̃i,j =

k∑
l=1

σ(〈wl, xi〉)σ(〈wl, xj〉)

Using the lemma above, and under the assumptions made on the data, w.h.p a two-layer network of size Õ
(
m2

λ2

)
can overfit

the data:

Proposition C.2. Let δ > 0, x1, . . . , xm ∈ Rd and y1, . . . , ym ∈ {±1}. Assume that λmin(H) = λ > 0, and σ is

L-Lipschitz then for k >
64m2 log2(mδ )

λ2 w.p 1 − δ over sampling of w1, . . . , wk there is u ∈ Rk with ‖u‖∞ ≤ 4Lm
3λ such

that for every j = 1, . . . ,m we have
∑k
i=1 uiσ(〈wi, xj〉) = yj
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Proof. Set X to be the k ×m matrix defined by Xi,j = σ(〈wi, xj〉). By our assumption and the choice of k, w.p > 1− δ
we have that H̃ = X>X is invertible, and has a minimal eigenvalue of at least 3

4λ. Define u = y(X>X)−1X>, it is easy
to see that uX = y, furthermore:

‖u‖∞ = ‖y(X>X)−1X>‖∞ ≤
4

3λ
‖Xy‖∞

≤ 4

3λ
mmax

w,x
σ(〈w, x〉) ≤ 4Lm

3λ

For the second variation of Thm. 3.4 we consider functions from the class of functions FC . Here we use Theorem 3.3 from
(36):

Theorem C.3. Let f(x) = cd
∫
w∈
[
−1√
d
, 1√
d

]d g(w)σ(〈w, x〉)dw where σ : R→ R is L-Lipschitz on [−1, 1] with σ(0) ≤ L,

and cd =
(√

d
2

)d
a normalization term. Assume that max‖w‖≤1|g(w)| ≤ C for a constant C. Then for every δ > 0 if

w1, . . . , wk are drawn i.i.d from the uniform distribution on
[
−1√
d
, 1√

d

]d
, w.p > 1− δ there is a function of the form

f̂(x) =

k∑
i=1

uiσ(〈wi, x〉)

where |ui| ≤ C
k for every 1 ≤ i ≤ k, such that:

sup
x

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ LC√

k

(
4 +

√
2 log

(
1

δ

))

To prove the main theorem, we use the same argument as in the proof of Thm. 3.2, that pruning neurons can approximate
random features models. Here the size of the target random features model depends on the complexity of the target (either a
finite dataset or RKHS function).

Proof of Thm. 3.4. Although the proof for the two variations of the theorem are similar, for clarity and ease of notations we
will prove them separately.

1. (Finite dataset) Let ε, δ > 0. Fix δ1 = δ
2k2

, and fix some j ∈ [k2]. Take k1 ≥
64m2 log2

(
m
δ1

)
λ2 , from Proposition C.2

w.p > 1 − δ1 we get the following: There exists some v(j) ∈ Rk1 with ‖v(j)‖∞ ≤ 4Lm
3λ such that for the function

f (j)(x) :=
∑k1
i=1 v

(j)
i σ

(
〈w(j)

i , x〉
)

, and for every l = 1, . . . ,m, we have f (j)(xl) = yl. Using union bound over all

choices of j, we get that w.p > 1− δ
2 the above hold for every j ∈ [k2].

Denote M := 4Lm
3λ , ε′ = ε

M = 3λε
4Lm and let k2 >

810L8m4k41 log( 2k1
δ )

λ4ε4 . Using Lemma B.2 with v(1), . . . , v(k2) and ε′

we have that there exist b(1), . . . , b(k2) such that for the functions g̃(j)(x) =
∑k1
i=1 b

(j)
i · u

(j)
i σ

(
〈w(j)

i , x〉
)

we get:

sup
x:‖x‖≤1

∣∣∣∣∣∣ c1k2
k2∑
j=1

g̃(j)(x)− 1

k2M

k2∑
j=1

f (j)(x)

∣∣∣∣∣∣ ≤ ε′ (12)

where c1 = 8k1L
ε . Denote g̃(x) =

∑k2
j=1 g

(j)(x) and set c = c1M
k2

= 32k1Lm
3λεk2

. Using Eq. (12) we have that for every
l = 1, . . . ,m:

|cg̃(xl)− yl| =

∣∣∣∣∣∣c1Mk2 g̃(xl)−
1

k2

k2∑
j=1

f (j)(xl)

∣∣∣∣∣∣ ≤Mε′ ≤ ε
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2. Let ε, δ > 0. Fix δ1 = δ
2k2

, and fix some j ∈ [k2]. Take k1 ≥
128L2C2 log2

(
m
δ1

)
ε2 , from Thm. C.3 w.p > 1 − δ1

we get the following: There exists some v(j) ∈ Rk1 with ‖v(j)‖∞ ≤ C
k1
≤ 1 such that for the function f (j)(x) :=∑k1

i=1 v
(j)
i σ

(
〈w(j)

i , x〉
)

we have supx:‖x‖≤1
∣∣f (j)(x)− f(x)

∣∣ ≤ ε
2 . Using union bound over all choices of j, we get

that w.p > 1− δ
2 the above hold for every j ∈ [k2].

Let k2 >
4010L4k41 log( 2k1

δ )
ε4 , using Lemma B.2 with v(1), . . . , v(k2) and ε

2 we have that there exist b(1), . . . , b(k2) such

that for the functions g̃(j)(x) =
∑k1
i=1 b

(j)
i · u

(j)
i σ

(
〈w(j)

i , x〉
)

we get:

sup
x:‖x‖≤1

∣∣∣∣∣∣ c1k2
k2∑
j=1

g̃(j)(x)− 1

k2M

k2∑
j=1

f (j)(x)

∣∣∣∣∣∣ ≤ ε

2
(13)

where c1 = 8k1L
ε . Denote g̃(x) =

∑k2
j=1 g

(j)(x) and set c = c1
k2

= 8k1L
εk2

. Using Eq. (13) we have that:

sup
x:‖x‖≤1

|cg̃(x)− f(x)|

≤ sup
x:‖x‖≤1

∣∣∣∣∣∣ c1k2 g̃(x)− 1

k2

k2∑
j=1

f (j)(x)

∣∣∣∣∣∣+ sup
x:‖x‖≤1

∣∣∣∣∣∣ 1

k2

k2∑
j=1

f (j)(x)− f(x)

∣∣∣∣∣∣ ≤ ε

2
+
ε

2
= ε


