Optimal transport mapping via input convex neural networks

A. Proof of Theorem 3.3

Define V;(g) £ Eq[(Y, Vg(Y)) — f(Vg(Y))]. The main step of the proof is to show that supgecvx() Vi(9) = Eq[f*(Y)].
Then the conclusion follows from (4). To prove this, note that for all g € CVX(Q), we have

. Vay)) — f(Vg() < . V() = F(V W) = (),

for all y € R? such that g and f* are differentiable at y. We now claim that both g and f* are differentiable -almost
everywhere (a.e). If the claim is true, upon taking the expectation w.r.t Q:

Vig) < Vi(f") = Eqlf*(Y)], Vg € CVX(Q)

and the inequality is achieved with ¢ = f*. Now we prove the claim as follows: Since f gdQ@ < oo, wehave Q(g = 00) = 0.
Thus Q(Dom(g)) = 1, where Dom(g) is the domain of the function g. Moreover, Q(Int(Dom(g)) = 1, where Int(-) denotes
the interior, because the boundary has Q-measure zero (Q) has a density). Since g is convex, it is differentiable on Int(Dom(g))
except at points of Lebesgue measure zero which have (Q-measure zero too. Therefore, g is Q-a.e differentiable. Similar
arguments hold for f*.

B. Proof of Theorem 3.6
The proof follows from the bounds

||V9—Vf*||%2(g) —€1, (10a)

[V f* — Vgo||L2 *62, (10b)

and using the triangle inequality. The proof for the first bound is as follows. If f is a-strongly convex, then f* is é smooth.
By definition of smoothness,

) S F W)+ VS W)z~ o)+ gelle—yl? £ hy(2), Vo2 € RS

where hy(z) is defined to be the quadratic function of z that appears on the right-hand side of the inequality. From
J*(2) < hy(2), it follows that the convex conjugate f(z) > hy(z). As aresult,

F(@) = hyf) = —f*(4) + (y.2) + Sl = VI Q)2 Va,y € R an
We use this inequality to control the optimality gap ¢ (f, g):
a(f,9) =V(f.9) —fV(f.9)
=V(f,9) =V, [")
=Eolf*(Y) — (¥, Vg(Y)) + f(Vg(Y))]
> SEo[IVe(Y) = V()|

where the last step follows from (??), with z = Vg(y). This concludes the proof of the bound (??). It remains to prove (??).
To this end, note that the optimality gap e2(f) is given by

e2(f) = V(fo,90) — i%fV(f, 9)

V(fo, fo) = V(. [7)
—(Ep[fo(X)] +Eqlfo (V)]) + (Ep[f(X)] + Eq[f*(Y)])
= —EQ[fo(Vig(Y) + o (M +Eqlf (Vg (V) + f*(Y)]
= —E[(Y, Vg (YD + EQf (V5 (V) + f*(Y)]
Using the inequality (??) with z = V f§ (y) yields:

e(f) 2 SEQIV(Y) = V()P

concluding (??) noting that f5 = go.

Optimal transport mapping via input convex neural networks

C. Experimental set-up
C.1. Two-dimensional experiments

Datasets. We use the following synthetic datasets: (i) Checkerboard, and (ii) Mixture of eight Gaussians. For
the Checkerboard dataset, the source distribution () is the law of the random variable ¥ = X + Z, where
X ~ Unif({(0,0),(1,1),(1,-1),(-1,1),(-1,-1)}) and Z ~ Unif([-0.5,0.5] x [-0.5,0.5]). Similarly, P is
the distribution of random variable ¥ = X + Z, where X ~ Unif({(0,1),(0,-1),(1,0),(—=1,0)}) and Z ~
Unif([—0.5,0.5] x [—0.5,0.5]). Note that Unif(B) denotes the uniform distribution over any set B. For the mixture
of eight Gaussians dataset, we have Q = N (0,I5) and P is the law of random variable Y, where Y = X + Z with

X ~Unif({(1,0), (75, 5)} (0,1),(55, 75), (=1,0),(F5, 73), (0, =1), (5, 75)}) and Z ~ N(0,0.51).

Architecture details. For our Algorithm 1, we parametrize both the convex functions f and g by ICNNs. Both these ICNN
networks have equal number of nodes for all the hidden layers followed by a final output layer. We choose a square of leaky
ReLU function, i.e oo (z) = (max(Sz, x))? with a small positive constant 3 as the convex activation function for the first
layer 0. For the remaining layers, we use the leaky ReLU function, i.e o;(x) = max(Sx,z) forl =1,...,L — 1, as the
monotonically non-decreasing and convex activation function. Note that the assumptions (ii)-(iii) of the ICNN are satisfied.
In all of our experiments, we set the parameter 8 = 0.2. In some of the experiments as explained below, we chose the SELU
activation function which also obeys the convexity assumptions.

For the three baselines, Barycentric-OT, W1-LP, and W2GAN, we use the implementations of Leygonie et al. (2019), made
publicly available at https://github.com/jshe/wasserstein-2. For all these methods, we use the default
settings of hyperparameters which were fixed to be the best values from the respective papers. Further, for a fair comparison
we allow the number of parameters in each of these baselines to be larger than ours; in fact, for W2GAN and Barycentric-OT,
the default number of neural network parameters is much larger than ours.

Hyperparameters. For reproducibility, we provide the details of the numerical experiments for each of the figures. For
the Checkerboard dataset in Figure 3 (same as Figure 1), we run Algorithm 1 with the following parameters: For both the
ICNNs f and g, we set the hidden size m = 64, number of layers L = 4, regularization constant A = 1.0, Leaky ReL.U
activation and for training we use batch size M = 1024, learning rate 1074, generator iterations K = 10, total number of
iterations 7' = 10°, and the Adam optimizer with 5, = 0.5, and B3 = 0.9. For each of the baselines, the following are the
values of the parameters: (a) Barycentric-OT: 3 (1 corresponding to the dual stage and the rest for the map step) neural
networks each with m = 128, L = 3, M = 512,T = 2 x 10° and l5-entropy penalty, (b) W1-LP: Both the discriminator
and the generator neural networks with m = 128, L = 3, K = 5and M = 512, T = 2 x 10°, and (c) W2GAN: 3 neural
networks (1 corresponding to the generator whereas the remaining are for two functions in the dual formulation (3)) each
withm = 128,L = 3, K = 5, M = 512, T = 2 x 10°. W2GAN also uses six additional regularization terms which
set to default values as provided in the code. Also, all these baselines use ReLLU activation and Adam optimizer with
B1 = 0.9 and By = 0.990 and the learning rate for generator parameters being 0.0001 and 0.0005 for the rest. For the
mixture of eight Gaussians dataset, we use the same parameters except batch-size M = 256, whereas all the baselines use
the same parameters as the above setting. Also, for the multiple trials in Figure 4 for W1-LP and W2GAN, we use the above
parameters but with a different random initialization of the neural network weights and biases.

Remark C.1. Algorithm performance is not very sensitive to regularization constant, but the total iterations (50k-100k),
batch-size(128, 256), and inner loop iterations are crucial.

C.2. High dimensional experiments

Gaussian to Gaussian. Source distribution Q) = N(0, 1) and target distribution P = N (u, I), for some fixed 1 € R¢
and d = 784. The mean vector y = (1,...,1) " with o € {1,5,10}. For both the ICNNs f and g, we have d = 784, m =
1024, L = 3, Leaky ReLU activation, batch size M = 60, K = 16, A = 0.1, T' = 40, 000, Adam optimizer with §; = 0.5
and B2 = 0.99, learning rate decay by a factor of 0.5 for every 2, 000 iterations. Note that in Figure Sa, 1 epoch corresponds
to 1000 iterations.

High-dim. Gaussian to low-dim. mixture. Source distribution Q@ = N(0,1;) with d = 784. The target dis-
tribution is a mixture of four Gaussians P = Z?:l AN (i,), where p; = (+1.4,£1.4,0,...,0) € R™* and
¥ = diag(0.2,0.2,0,...,0). For both the ICNNs f and g, we have d = 784, m = 1024, L = 3, Leaky ReLU acti-
vation, batch size M = 60, K = 25, A = 0.01, Adam optimizer with §; = 0.5 and B2 = 0.99, learning rate decay by

a factor of 0.5 for every two epochs. The algorithm is simulated for 30 epochs, where each epoch corresponds to 1000

Optimal transport mapping via input convex neural networks

iterations.

MNIST {0,1,2,3,4} to MNIST {5,6,7,8,9}. To obtain the latent embeddings of the MNIST dataset, we first train a
VAE with both the encoder and decoder having 3 hidden layers with 256 neurons and the size of latent vector being 16
dimensional. We then use ICNNSs f and g to learn the optimal transport between the embeddings of digits {0, 1,2, 3,4}
to that of {5,6,7,8,9}. For both these ICNNs we have d = 16, m = 1024, L = 3, CELU activation, batch size = 128,
K =16, A =1,T = 100,000, Adam optimizer with 3; = 0.9 and 2 = 0.99, learning rate decay by a factor of 0.5 for
every 4, 000 iterations.

Gaussian to MNIST. To obtain the latent embeddings for the MNIST, we use the same pre-trained VAE models as above.
Also we use the same hyperparameter settings as that of the “MNIST {0, 1,2, 3,4} to MNIST {5,6,7,8,9}" experiment
with the only change of batch size being 64.

D. Further discussion of related work

The idea of solving the semi-dual optimization problem (4) is classically considered in (Chartrand et al., 2009), where the
authors derive a formula for the functional derivative of the objective function with respect to f and propose to solve the
optimization problem with the gradient descent method. Their approach is based on the discretization of the space and
knowledge of the explicit form of the probability density functions, that is not applicable to real-world high dimensional
problems.

More recently, the authors in (Lei et al., 2017; Guo et al., 2019) propose to learn the function f in a semi-discrete setting,
where one of the marginals is assumed to be a discrete distribution supported on a set of N points {y1,...,yx} C R%, and
the other marginal is assumed to have a continuous density with compact convex support C R¢. They show that the
problem of learning the function f is similar to the variational formulation of the Alexandrov problem: constructing a convex
polytope with prescribed face normals and volumes. Moreover, they show that, in the semi-distrete setting, the optimal
f is of the form f(z) = maxi<;<1{(z,y:) + b;} and simplify the problem of learning f to the problem learning N real
numbers b; € R. However, the objective function involves computing polygonal partition of €2 into N convex cells, induced
by the function f, which is computationally challenging. Moreover, the learned optimal transport map V f, transports the
probability distribution from each convex cell to a single point y;, which results in generalization issues. Additionally, the
proposed approach is semi-discrete, and as a result, does not scale with the number of samples.

Statistical analysis of learning the optimal transport map through the semi-dual optimization problem (4) is studied in
(Hiitter & Rigollet, 2019; Rigollet & Weed, 2018), where the authors establish a minimax convergence rate with respect to
number of samples for certain classes of regular probability distributions. They also propose a procedure that achieves the
optimal convergence rate, that involves representing the function f with span of wavelet basis functions up to a certain order,
and also requiring the function f to be convex. However, they do not provide a computational algorithm to implement the
procedure.

There are also other alternative approaches to approximate the optimal transport map that are not based on solving the
semi-dual optimization problem (4). In (Leygonie et al., 2019), the authors propose to approximate the optimal transport
map, through an adversarial computational procedure, by considering the dual optimization problem (3), and replacing the
constraint with a quadratic penalty term. However, in contrast to the other regularization-based approaches such as (Seguy
et al., 2017), they consider a GAN architecture, and propose to take the generator, after the training is finished, as the optimal
transport map. They also provide a theoretical justification for their proposal, however the theoretical justification is valid in
an ideal setting where the generator has infinite capacity, the discriminator is optimal at each update step, and the cost is
equal to the exact Wasserstein distance. These ideal conditions are far from being true in a practical setting.

Two important related works are (Chen et al., 2019; Liu et al., 2018). Both aim to train a generative model to learn a
distribution. They only use Wasserstein distance as a cost function to train the generator and do not aim to learn the optimal
transport map. Moreover, they do not guarantee that the learned generator is the optimal transport map and they both involve
intermediate steps (solving a LP/semi-discrete OT) that scales super-linearly in the number of samples.

Another approach, proposed in (Xie et al., 2019), is to learn the optimal coupling from primal formulation (2), instead of
solving the dual problem (3). The approach involves representing the coupling with two generators that map a Gaussian
random variable to R, and two discriminators to ensure the coupling satisfies the marginal constraints. Although, the
proposed approach is attractive when an optimal transport map does not exists, it is computationally expensive because it

Optimal transport mapping via input convex neural networks

involves learning four deep neural networks. Finally, a procedure is recently proposed to approximate the optimal transport
map that is optimal only on a subspace projection instead of the entire space (Muzellec & Cuturi, 2019). This approach is
inspired by the sliced Wasserstein distance method to approximate the Wasserstein distance (Rabin et al., 2011; Deshpande
et al., 2018). However, selection of the subspace to project on is a non-trivial task, and optimally selecting the projection is
an optimization over the Grassmann manifold which is computationally challenging.

In a recent work, Korotin et al. (2019) too model the convex conjugate function f* with an ICNN, denoted here by g, and a
penalty term of the form ||V f(Vg(y)) — y||? is added to the semi-dual optimization (4). The penalty term serves to ensure
that Vg is inverse of V f and hence g = f*. The additional penalty term makes the problem non-convex, even in the infinite
capacity case, where the function representation is not restricted.

