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1. Additional definitions
The following definitions will be useful to prove our main
statements.

Definition A1. [Restated from Shawe-Taylor & Williamson
(1999)] We say that a function class F is sturdy if it maps
X of size n to a compact subset of Rn for any n ∈ N.

Definition A2. Let (X, l∞) be a pseudo-metric space de-
fined with respect to the l∞ norm, and let A be a subset of
X and ε > 0. A set U ⊆ X is an ε-cover for A if for every
a ∈ A, there exists u ∈ U such that ||a− u||l∞ ≤ ε. The ε-
covering number ofA,N (ε, A, d) is the minimal cardinality
of the ε-cover for A.

Definition A3. [Restated from (Bartlett & Shawe-Taylor,
1999)] For γ ∈ [0,∞], and F ∈ R, we say that a
set of points {xi}ni=1 is γ−shattered by F if there exists
{si}ni=1 ∈ R such that for all binary vectors {σi}ni=1, there
is a function f ∈ F satisfying:

f(xi) ≥ si + γ if σi = 1

f(xi) ≤ si − γ otherwise

The fat-shattering dimension can be thought of as a function
from the positive reals to the set of positive integers which
maps γ to the largest γ−shattered set or∞.

We define the empirical proportion overestimated as:

Definition A4. For f ∈ F , γ > 0, a sample z = {xi, yi}ni
drawn from a fixed but unknown distribution pt, known
weights w, we define the empirical risk when the distribu-
tion with respect to p:

εwf (z, γ) =
∑
i

w(x)1{rf (x, y) < γ}.

2. Proof of theorem 1
To construct the proof, we will first study the overestimation
risk when there are no training set violations (Lemma A3).
To extend our results to cases where there are training set
violations, we rely on a technique, presented in (Shawe-
Taylor & Cristianini, 2002) and used in (Schölkopf et al.,
2001), which allows us to ignore small violations in the

training data at the cost of a more complex function space.
This function space (formally defined in definition A5) is
constructed by creating an “auxiliary function” that picks
specific points to have a non-zero violation. Its complexity
depends on the allowable violations. By augmenting the
result from lemma A3 with the auxiliary function space, we
get theorem A1, a general version of theorem 1, which gives
a bound on the overestimation risk for general sturdy func-
tion spaces. Finally, we give the proof for linear function
spaces, which is presented in theorem 1 in the main text.

To build up to lemma A3, we restate the following two
previously established results.

Lemma A1. Due to Shawe-Taylor & Williamson (1999):
Let F be a sturdy function class, then for each N ∈ N+ and
any fixed sequence X ∈ Xn the infimum

inf{γ : N (γ,F , X) < N}

is attained

We assume that f1l , f0l , f0l and f0u belong to a sturdy func-
tion class, as defined in definition A1.

The following lemma due to Cortes et al. (2010) bounds the
second moment of the weighted loss.

Lemma A2. Due to Cortes et al. (2010). For x ∈ X , a
weighting function wt on X , a loss function `, and some
function f ∈ F , the second moment of the importance
weighted loss can be bounded as follows:

EX|T
[
w2
t (X)`2f (X) | T = t

]
≤ d2(p||pt)

We now study the overestimation error when there are no
training set violations, i.e., when D = 0. A direct analogy
can be drawn between the following lemma (lemma A3)
and hard margin one-class SVMs studied in Schölkopf et al.
(2001), whereas theorem 1 is analogous to the soft margin
case.

Lemma A3. Let F be the class of linear functions in a
kernel defined feature space, z = {xi, yi}i:ti=t, where
xi, yi ∼ pt(X,Y ), and Ct be as defined in (1). For f tl ∈ F ,
and any γ > 0, let the associated Dwt(z, f1t , γ) = 0. With
a probability 1 − δ over the draw of random samples, we
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have that:

Rf lt (γ) ≤ 4Ct(kt + log 1
δ )

3nt
+

√
8d2(p||pt)(kt + log 1

δ )

nt
.

(8)
where, for t ∈ {0, 1},

kt =

⌈
logN (γ,F , 2nt)

⌉
.

Proof. For a given f1l ∈ F :

P
(
Rf1

l
(γ)− εwf1

l
(z, γ) > ε

)
= P

(
Rf1

l
(γ) > ε

)
≤ 2P

(
εw

′

f1
l

(z′, γ) >
ε

2

)
,

where the equality follows from the fact that the empirical
error on the estimation data will always be 0 by definition
of γ. And the inequality follows from applying the double
(ghost) sample trick. Suppose that such an f1l exists. Pick a
fixed k such that

γk = inf{γ : N (γ,F , 2n1) ≤ 2k} ≤ γ .
By Lemma A1, and assumption of sturdiness, we have that
this γk exists. Consider the γk-covering, U . There exists
another f• ∈ U such that the distance between f1l and f• is
≤ γk ≤ γ, meaning f• satisfies:

P
(
εw

′

f1
l

(z′, γ) >
ε

2

)
= P

(
εw

′

f• (z′, 0) >
ε

2

)
This limits the complexity of the function class from infi-
nite to having a covering number = CγF . Swapping sam-
ples between the estimation and the ghost sample, this
will create a random variable S′ = 1

M (ε
w′

1

f• (z′1, 0) + . . . +

ε
w′
m

f• (z′m, 0),+ . . .+ ε
w′
M

f• (z′M , 0)) for M = 2n1 , where the
subscripts of w′ and z′ denote the sample index. Note that
Ex∼pt [S′] = Rf•(0) and let S denote S′−Ex∼pt [S′], with
Ex∼pt [S] = 0. Let σ2(S) = E[S2] = E[(S′−Ex∼pt [S′])2].
By Lemma A2, we have that σ2(S′) ≤ d2(p||p1)−Rf•(0)2.
By Bernstein’s inequality:

P
(
Rf•(0)− εw′

f• (z
′, 0) >

ε

2

)
≤ exp

( −3n1ε
2

24σ2(S) + 4C1ε

)
,

and a union bound over the function space:

P
(
Rf•(0)− εw′

f• (z
′, 0) >

ε

2

)
≤

N (γ,F , 2n1) exp
( −3n1ε

2

24σ2(S) + 4C1ε

)
Putting it all together:

P
(
Rf1

l
(γ)− εwf1

l
(z, γ) > ε

)
≤ 2P

(
Rf•(0)− εw′

f• (z
′, 0) >

ε

2

)
≤ 2N (γ,F , 2n1) exp

( −3n1ε
2

24σ2(S) + 4C1ε

)

Setting δ(ε) to match the upper bound, inverting w.r.t. ε and
removing the (negative) term Rf•(0)2 from the right-hand
side, we get that stated bound with probability 1− δ.

Next, we define the auxiliary function space, which will
allow us to study non-zero training set violations.

Definition A5. [Restated from (Schölkopf et al., 2001), def-
inition 13] Let L(X ) be the set of real valued, non-negative
functions f onX with support supp(f) countable, that is the
functions in in L(X ) are non-zero for at moust countably
many points. We define the inner product of two functions
f, g ∈ L(X ) by:

f · g
∑

x∈supp(f)

f(x)g(x).

The 1-norm on L(X ) is defined by ||f ||1 =∑
x∈supp(f) f(x). Let LD(X ) := {f ∈ L(X ) : ||f ||1 ≤

D}. Define a transformation, or embedding of X into the
product space X × L(X ) as follows:

$ : X → X × L(X )

$ : x→ (x,∆x),

where

∆x =

{
1, y = x,

0, otherwise

For a function f ∈ F a set of training examples z of size n,
define the function gf ∈ L(X )

gf (y) :=
∑
x,y∈z

w1(x) min{0, γ − rf1
l
(x, y)}∆x(y),

where y = {yi}ni=1

We can now state the risk of overestimation for general
sturdy functions.

Theorem A1. Let F be any sturdy function class defined
over input space X , z = {xi, yi}i:ti=t, where xi, yi ∼
pt(X,Y ), and Ct be as defined in (1). For f tl ∈ F , and any
γ > 0, let the associated Dwt(z, f1t , γ) = D > 0. With a
probability 1− δ over the draw of random samples, we have
that:

Rf lt (γ) ≤ 4Ct(kt + log 1
δ )

3nt
+

√
8d2(p||pt)(kt + log 1

δ )

nt
.

(9)
where, for t ∈ {0, 1},

kt =

⌈
logN (γ/2,F , 2nt) + logN (γ/2, LD(X ), 2nt)

⌉
.
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Proof sketch. The proof extends lemma A3, replacing the
function class F with the function class of the augmented
space, that is F + L(X ) := {f + g : f ∈ F , g ∈ L(X )}.
The details of the proof are identical to theorem 14 in
Schölkopf et al. (2001), and are hence omitted.

The following lemma, restated from Shawe-Taylor & Cris-
tianini (2002) gives a bound on the auxiliary function com-
plexity for linear functions (defined in kernel spaces).
Lemma A4. Due to Shawe-Taylor & Cristianini (2002).
For D > 0, all γ > 0:

logN (γ, LD(X ), n)

≤
⌊
D

2γ

⌋
log

(
exp(n+ D/2γ − 1)

D/2γ

)
Finally, by replacing the auxiliary function term from theo-
rem A1 (that is logN (γ/2, LD(X ), 2nt)) with its bound
for linear functions acquired from lemma A4 (that is
log exp(nt+D/γ−1)

D/γ ), we get the proof for theorem 1.

3. Risk of overestimation of ITE
The risk of overestimation for the ITE can be stated as a
simple extension of theorem 1. We define the ITE as τ(x) =
Y (x, 1)− Y (x, 0), where Y (x, t) is the potential outcome
under treatment T = t, for patient with characteristics X =
x. We use τ̃l(x) to denote f1l (x) − f0u(x), where f1l , f

0
u

are some estimates of the lower bound for the outcome
under treatment and the upper bound of the outcome under
non-treatment respectively. In addition, we define:

rf (x, y) = f(x)− y,
and for zt = {xi, yi}i:ti=t, define

D
wt

(z, f tu, γ) =
∑
x,y∈z

wt(x) min{0, γ − rftu(x, y)}

Corollary A1. Let F be the class of linear functions in
a kernel defined feature space, zt = {xi, yi}i:ti=t, where
xi, yi ∼ pt(X,Y ), and Ct be as defined in expression (1).
For f1l , f

0
u ∈ F , and any γ > 0, let the associated

Dw1(z1, f
1
l , γ) = D1 > 0, and D

w0
(z0, f

0
u , γ) = D0 > 0

Define τ̃l := f1l − f0u . With probability 1− δ over random
samples, we have that:

Rτ̂l(γ) ≤
∑
t

4Ct(kt + log 1
δ )

3nt

+

√
8d2(p||pt)(kt + log 1

δ )

nt
.

(10)

where, for t ∈ {0, 1},

kt =

⌈
logN (γ/2,F , 2nt) + logN (γ/2, LDt(X ), 2nt)

⌉
.

Proof. Consider the event:

E =
{
x : τ(x) < τ̃l(x)− 2γ

}
where x ∼ p. Note that event E implies that one of the
following two events must hold:

E1 =
{

(x, y) : rf1
l
(x, y) < γ

}
for t = 1.

E0 =
{

(x, y0) : rf0
u
(x, y) < γ

}
for t = 0.

Note that p(E1) = Rf1
l
(γ). So, theorem A1 implies that

p(E1) ≤ 4Ct(kt + log 1
δ )

3nt
+

√
8d2(p||pt)(kt + log 1

δ )

nt

for kt as defined in theorem A1. Similarly p(E0) = R(f0u),
and by a similar construction can obtain the bound on p(E0).
Using a union bound we have that

p(E) = p(E1 ∪ E0) = p(E1) + p(E0)− p(E1 ∩ E0)

≤ p(E1) + p(E0),

which completes the proof.

4. Proof of Theorem 2
To build up to the proof of theorem 2, we first seek a bound
on the fat-shattering dimension of functions defined in def-
inition 5. This bound is constructed in a similar spirit to
theorem 1.6 in (Bartlett & Shawe-Taylor, 1999). Specifi-
cally, to get a bound on the fat-shattering dimension, we
rely on the lemmas A5 and A6. The former shows that the
sum of any shattered set is far from the remainder of that
set, the latter shows that the same sums cannot be too far
apart.

Lemma A5. Let Fu,Fl, A,B be as defined in definition 5.
Let I = {xi}ni=1, where xi ∼ p(X,Y ).For a fixed γ > 0, if
I is γ−shattered by Fl then every subset I ′ ∈ I satisfies:

min
q∈{p,2}

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
q

≥ 2nγ

A+B

Proof. If I is γ shattered by Fl, denote the correspond-
ing “witness” vector by {si}ni=1, then for all σ =
{σ1 . . . σi . . . σn} there is an f with ‖fl‖ ≤ A such that
σi · (θ>xi − si) ≥ γ for i = 1 . . . n. Suppose that:∑

i∈I′
si ≥

∑
i∈I\′I

si (11)
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Then fix σi = 1 if i ∈ I ′. In that case we have that

〈fl, xi〉 ≥ si + γ ∀i ∈ I ′ (12)
〈fl, xi〉 < si − γ ∀i ∈ I \ I ′. (13)

Pick fu ∈ Fu such that ||fu − fl||p = B′ ≤ B, and:

〈fu − fl, xi〉 ≥ si + γ ∀i ∈ I ′ (14)
〈fu − fl, xi〉 < si − γ ∀i ∈ I \ I ′. (15)

Showing that such a function exists is trivial: simply take
fu := fl. For that we have ||fu − fl|| = 0 ≤ B, which
means that the function does exist in Fu.

From expression 12, we have that:〈
fl,
∑
i∈I′

xi
〉

=
∑
i∈I′
〈fl, xi〉 ≥

∑
i∈I′

si + Card(I ′)γ,

where Card(.) denotes the cardinality. Similarly for I \ I ′,
we have that

〈
fl,

∑
i∈I\I′

xi
〉
<
∑
i∈I\I′

si + Card(I \ I ′)γ

Combining the expressions for I ′ and I \ I ′, and from ex-
pression 11: 〈

fl,
∑
i∈I′

xi −
∑
i∈I\I′

xi
〉
≥ nγ. (16)

We now construct the same arguments for the distance. Let
fd := fu − fl. From expression 14, we have that:〈

fd,
∑
i∈I′

xi
〉

=
∑
i∈I′
〈fd, xi〉 ≥

∑
i∈I′

si + Card(I ′)γ,

and from expression 15:〈
fd,

∑
i∈I\I′

xi
〉
<
∑
i∈I\I′

si + Card(I \ I ′)γ

Combining the two, and from expression 11:〈
fd,
∑
i∈I′

xi −
∑
i∈I\I′

xi
〉
≥ nγ. (17)

Putting expressions 16 and 17 together,〈
fl,
∑
i∈I′

xi −
∑
i∈I\I′

xi
〉

(18)

+
〈
fd,
∑
i∈I′

xi −
∑
i∈I\I′

xi
〉
≥ 2nγ. (19)

Note that by Cauchy-Schwartz,〈
fl,
∑
i∈I′

xi −
∑
i∈I\I′

xi
〉
≤ ‖fl‖

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
≤ A

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
≤ A min

q∈{p,2}

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
q

.

and,〈
fd,
∑
i∈I′

xi −
∑
i∈I\I′

xi
〉
≤ ‖fd‖p

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
p

≤ B′
∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
p

≤ B
∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
p

≤ B min
q∈{p,2}

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
q

.

For expression 18 to hold:

A min
q∈{p,2}

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
q

+B min
q∈{p,2}

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
q

≥ 2nγ

(A+B) min
q∈{p,2}

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
q

≥ 2nγ

min
q∈{p,2}

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
q

≥ 2nγ

(A+B)
,

which completes the proof.
Lemma A6. Let Fu,Fl, r be as defined in definition 5. Let
I = {xi}ni=1, where xi ∼ p(X,Y ).For a fixed γ > 0, if I
is γ−shattered by Fl then every subset I ′ ∈ I satisfies:∥∥∥∥∑

i∈I′
xi −

∑
i∈I\I′

xi

∥∥∥∥ ≤ √nr
The proof is identical to Lemma 1.3 in (Bartlett & Shawe-
Taylor, 1999), and is hence omitted.
Lemma A7. Let Fu,Fl, A,B, r be as defined in defini-
tion 5. For a fixed γ > 0, the γ−fat shattering dimension of
Fl can be bounded as follows:

fat(γ,Fl) ≤
(
r · (A+B)

2γ

)2
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Combining the results from Lemmas A6 and A5, we get
that:

2nγ

A+B
≤ min
q∈{p,2}

∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥
q

≤
∥∥∥∥∑
i∈I′

xi −
∑
i∈I\I′

xi

∥∥∥∥ ≤ √nr,
which gives us that:

√
n ≤ r(A+B)

2γ
,

which completes the proof.

Theorem A2. Let F tl , F tu, A, B, and r be as defined in
definition 5, z, and D as defined in theorem 1,and Ct be as
defined in expression (1). For f tl ∈ F tl , f tu ∈ F tu and any
γ > 0, with a probability 1 − δ over the draw of random
samples, we have that:

Rf lt (γ) ≤ 4Ct(kt + log 1
δ )

3nt
+

√
8d2(p||pt)(kt + log 1

δ )

nt
.

(20)
where, for t ∈ {0, 1},

kt =

⌈(
2r(A+B)

γ

)2

log

(
8nt(b− a)2

γ2

)
log

(
4ent(b− a)γ

r2(A+B)2

)
+
D

γ
log

e(nt + D/γ − 1)
D/γ

⌉
.

Using Corollary 3.8 (Shawe-Taylor et al., 1998), we can
logN (γ/2,F , 2nt) by its fat shattering dimension. Combin-
ing the results from lemma A7 and theorem 1, we get the
final result.

5. Equivalence to quantile regression
Consider the following problem

minimize
fu,fl

`
(1)
w̃ (fu(xi), fl(xi))

subject to
∑
i:ti=t

w̃ti max[yi − fu(xi), 0] ≤ β
∑
i:ti=t

w̃ti max[fl(xi)− yi, 0] ≤ β

fu(xi) ≥ fl(xi), ∀i : ti = t

(21)

Theorem A3. Assume that (21) is strictly convex and has
a strictly feasible solution. Then, for any fixed quantile t ∈
(0.5, 1), there is a parameter β ≥ 0 such that the minimizer
of (21) with weighted absolute loss and the minimizer of
the werighted quantile loss, for quantiles (t, 1 − t) with
non-crossing constraints, are equal and have false coverage
rate 1− q.

Proof. Problem (21) with absolute loss `(y, y′) = |y − y′|
can be stated as

minimize
fu,fl

∑
i:ti=t

w̃ti |fu(xi)− fl(xi)|

subject to
∑
i:ti=t

w̃ti max[yi − fu(xi), 0] ≤ β
∑
i:ti=t

w̃ti max[fl(xi)− yi, 0] ≤ β

fu(xi) ≥ fl(xi), ∀i : ti = t

Let Qβ(fu, fl) = w̃ti |fu(xi)− fl(xi)| denote the objective
and F the feasibility region. Introducing Lagrange multipli-
ers for the first two constraints, we obtain the regularized
objective

L(fu, fl, λu, λl) =
∑
i:ti=t

w̃ti |fu(xi)− fl(xi)|

+
λu
n

n∑
i=1

max(yi − fu(xi), 0)− β

+
λl
n

n∑
i=1

max(fl(xi)− yi, 0)− β

and by convexity and strict feasibility, strong duality holds
through Slater’s condition,

min
u,l∈F

Qβ(u, l) = max
λu,λl≥0

min
u≥l

L(u, l, λu, λl) .

By strict convexity, for each β ≥ 0, the minimizers u∗, l∗

on either side are equal for the maximizers λ∗u, λ
∗
l . Now,

consider the following objective, equivalent in minima to
L̃(fu, fl, λu, λl),

L̃(fu, fl, λu, λl) :=
∑
i:ti=t

w̃ti |fu(xi)− fl(xi)|

+ λu
∑
i:ti=t

w̃ti max(yi − fu(xi), 0)

+ λl
∑
i:ti=t

w̃ti max(fl(xi)− yi, 0)

We can separate L̃ into terms for which yi ≥ fu(xi) and
yi ≥ fl(xi) respectively, adding and subtracting

∑
i yi

L̃(fu, fl, λu, λl)

= (λu − 1)
∑

yi≥u(xi)

w̃ti(yi − fu(xi))−
∑

yi<fu(xi)

w̃ti(yi − fu(xi))

+ (1− λl)
∑

yi≥fl(xi)

w̃ti(yi − fl(xi))−
∑

yi<fl(xi)

w̃ti(yi − fl(xi))

Now, let λu = λl = 1/(1− q) for q ∈ (0, 1), which means
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(1− q) ≥ 0. Multiplying by (1− q) leaves us with

L̃(fu, fl, λu, λl)

∝
∑

yi≥fu(xi)

q · w̃ti(yi − fu(xi))+

∑
yi<fu(xi)

(q − 1) · w̃ti(yi − fu(xi))

+
∑

yi≥fu(xi)

(1− q) · w̃ti(yi − fl(xi))

+
∑

yi<fu(xi)

(−q) · w̃ti(yi − fl(xi))

∝
∑
i:ti=t

w̃ti max[q(yi − fu(xi)), (q − 1)(yi − fu(xi)]

+
∑
i:ti=t

w̃ti max[(1− q)(yi − fl(xi)), (−q)(yi − fl(xi)]

=
∑
i:ti=t

ρ
(q)
w̃ti

(yi − fu(xi)) + ρ
(1−q)
w̃ti

(yi − fl(xi)) ,

where ρ
(q)
w̃ is the weighted quantile loss for quantile

q. Recalling that our original problem had the con-
straint fu(xi) ≥ fl(xi), we recover the non-crossing con-
straint.

6. Cross-validation algorithm
Define Ω denote a set of candidate hyperparameters. Sup-
pose we have M possible hyperparameters, cross-validating
BP proceeds as follows:

Algorithm 1 BP cross-validation for M sets of hyperparam-
eters, and required FCR = ν

Input: D = {xi, ti, yi, wi}, p, ν, {Ω}M
Output: Ω∗

Split D into Dtrain, Dvalidate
for m = 1 to M do

Use Dtrain to solve problem (6) or (7)
Estimate ν̂(m), and ||ÎW||(m)

p on Dvalidate
end for
Define M ′ = {m : ν̂(m) ≤ ν}
Set Ω∗ := minm∈M ′ ||ÎW||(m)

p

7. Experiments
7.1. Cross-validation details

For our BP method, we have 5 hyperparameters to pick.
These are α, the regularization parameter, the kernel band-
width, βu and βl which are the allowed violations. The last
parameter, γBP > 0, as described in section 5.3. Note that
the kernel bandwidth is only relevant for the experiments

done on the ACIC data, but not the IST experiments since a
linear kernel is used in the latter.

For the kernel regression (KR), we first split the training
data into 2. On the first half, we do the typical 3-fold cross-
validation to pick the model that minimizes the weighted
empirical error. This allows us to pick the kernel bandwidth,
and a regularization parameter the is multiplied by the L2
norm of the weights. Again, the kernel bandwidth is only
relevant for the experiments done on the ACIC data, but
not the IST experiments since a linear kernel is used in the
latter. The intervals are then estimated in one of two ways.
For KR-MI, we use the second part of the training data to
estimate the residuals. We follow algorithm 2 in (Lei et al.,
2018) to get the final interval estimates. For KR-γ, we use
the second half of the training data to estimate the FCR,
ν̂γKR , with γKR defined as the “shifting” parameter, where
f̃KRu (xi) = µ̃t(xi) + γKR and f̃KRl (xi) = µ̃t(xi)− γKR,
for µ̃t(xi) being the predicted response value. We then pick
the smallest γKR that does not violated the required FCR.

For the Gaussian process (GP), we pick the kernel band-
width, the noise level added to the diagonal of the kernel.
For BART models, we use the BartMachine package in R
(Kapelner & Bleich, 2016). We do 3 fold cross-validation
to pick the parameter k, which controls the prior probability
that E(y|x) is contained in the interval (ymin,ymax), based
on a normal distribution. We set the number of trees to be
200, since that did not seem to affect the results. For the
CMGP, we pick the lengthscale of the RBF kernels of the
two response surfaces as well as the variance and correlation
parameters.

7.2. Additional IST details

Figure 4 shows the histogram of the ages in the training data
for the treated and the control population. Ages> 70 were
downsampled to introduce a confounding effect.
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Figure 4. Distribution of data in the IST experiment
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7.3. Additional IST results (heteroskedasticity)

In this section we analyze the performance of our model
when the well-behavedness assumption is violated, specifi-
cally when there is heteroskedasticity. We use the IST data,
and follow the same train/test splits as is done in the main
paper. Here, we focus on the outcome under treatment, Y (1)
only. Specifically, we generate the outcome under treatment
as Y (1) = x2 + ε, where x is the age rescaled to fall be-
tween -2, 2, and εi is drawn from a Gaussian distribution
with mean 0 and standard deviation = 0.1 if x ≤ 0, and from
a Gaussian distribution with mean 0 and standard deviation
= 0.1 + x otherwise. We set the required FCR to be ≤ 0.01.
Since our main aim is to analyze how the different models
perform when when heteroskedasticity occurs, we focus
only on tightness of bounds as an objective.

Figure 3 shows the results from averaged over 20 simu-
lations. It shows that of all the models that achieve the
required FCR, BP-D-L2 achieves the tightest intervals. Fig-
ure 5 shows why: neither BP-D-L2 and QR (equivalent to
BP-D-L1) make assumptions about well-behavedness of the
residual distribution. They git adaptive intervals, which are
tight when the heteroskedastic noise is low, and loose when
it is high.

Table 3. IST heteroskedasticity results. Table shows results aver-
aged over 20 simulations 5.

Model FCR Mean IW Max IW

BP-D-L2 0.007 (0.5) 5.55 (0.56) 10.68 (2.35)
QR/BP-D-L1 0.006 (0.31) 6.49 (0.96) 11.63 (2.37)
KR-γ 0.065 (0.86) 3.98 (0.06) 3.98 (0.06)
KR-CI 0.007 (0.52) 6.94 (0.69) 6.94 (0.69)

7.4. ACIC results including CCI

Figure 6 is similar to figure 3 presented in the main paper
but includes the performance of CCI models.

7.5. Additional ACIC results

We consider a larger sample size than that presented in the
main paper. Instead of sampling n = 200 for training and
validation of the main model, we sample n = 1000. In this
setting, we are better able to fit the true outcomes since the
larger sample size affords us the ability to fit more complex
models. Figure 7 shows the results. Once again we see
that our models outperform all kernel based methods. Here
we see that BART-gamma achieves a tighter interval width
than our model for the same level of FCR violation. This
highlights the strength of tree based models in that they fit
highly adaptive “kernels”.
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Figure 5. IST heteroskedasticity results. Plot shows results from
a single simulation. Black dots show potential outcomes on the
test set, lines show fitted values. The plot show that BP-D-L2 and
QR (equivalent to BP-D-L1) are the only ones that are able to fit
adaptive intervals (wider where there is high heteroskedasticity).
BP-D-L2 achieves the tightest intervals on average.
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(a) Comparing tightness of estimated intervals
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Figure 6. ACIC results. Plots show results averaged over 20 simulations. Plot 6a shows the mean interval width for different values of the
achieved FCR on a held-out test set. Plot 6b shares the same legend as plot 6a, and shows the violation of the required FCR (= achieved -
required) at different values of required FCR. Models above the dotted black line are in violation of the required FCR. The two plots show
that BP achieves a mean interval width comparable to that of BART but at a lower violation of the required FCR. BP outperforms all
kernel-based methods in terms of mean interval width and violation to the required FCR. CCI methods achieve the worst violations.
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(b) Comparing violation to the required FCR
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Figure 7. ACIC results. Plots show results averaged over 20 simulations. Plot 7a shows the mean interval width for different values of the
achieved FCR on a held-out test set. Plot 7b shares the same legend as plot 7a, and shows the violation of the required FCR (= achieved -
required) at different values of required FCR. Models above the dotted black line are in violation of the required FCR. The two plots show
that BP achieves a mean interval width comparable to that of BART but at a lower violation of the required FCR. BP outperforms all
kernel-based methods in terms of mean interval width and violation to the required FCR. CCI methods achieve the worst violations.
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