
MERL

Appendices
A. Hyperparameters Description
Table 1. Hyperparameters used for Predator-Prey, Keep-away and
Physical Deception

Hyperparameter MERL MATD3/MADDPG
Population size 10 N/A
Rollout size 10 10
Target weight 0.01 0.01
Actor Learning Rate 0.01 0.01
Critic Learning Rate 0.01 0.01
Discount Factor 0.95 0.95
Replay Buffer Size 1e6 1e6

Batch Size 1024 1024
Mutation Prob 0.9 N/A
Mutation Fraction 0.1 N/A
Mutation Strength 0.1 N/A
Super Mutation Prob 0.05 N/A
Reset Mutation Prob 0.05 N/A
Number of elites 4 N/A
Exploration Policy N (0,�) N (0,�)
Exploration Noise 0.4 0.4
Rollouts per fitness 10 N/A
Actor Architecture [100, 100] [100, 100]
Critic Architecture [100, 100] [300, 300]
TD3 Noise Variance 0.2 0.2
TD3 Noise Clip 0.5 0.5
TD3 Update Freq 2 2

Table 1 details the hyperparameters used for MERL,
MATD3, and MADDPG in tackling predator-prey and co-
operative navigation. The hyperparmaeters were inherited
from (Lowe et al., 2017) to match the original experiments
for MADDPG and MATD3. The only exception to this
was the use of hyperbolic tangent instead of Relu activation
functions.

Table 2 details the hyperparameters used for MERL,
MATD3, and MADDPG in the rover domain. The hyperpa-
rameters themselves are defined below:

• Optimizer = Adam
Adam optimizer was used to update both the actor and
critic networks for all learners.

• Population size M

This parameter controls the number of different actors
(policies) that are present in the evolutionary popula-
tion.

• Rollout size
This parameter controls the number of rollout workers

Table 2. Hyperparameters used for Rover Domain
Hyperparameter MERL MATD3/MADDPG
Population size 10 N/A
Rollout size 50 50
Target weight 1e�5 1e�5

Actor Learning Rate 5e�5 5e�5

Critic Learning Rate 1e�5 1e�5

Discount Factor 0.5 0.97
Replay Buffer Size 1e5 1e5

Batch Size 512 512
Mutation Prob 0.9 N/A
Mutation Fraction 0.1 N/A
Mutation Strength 0.1 N/A
Super Mutation Prob 0.05 N/A
Reset Mutation Prob 0.05 N/A
Number of elites 4 N/A
Exploration Policy N (0,�) N (0,�)
Exploration Noise � 0.4 0.4
Rollouts per fitness ⇠ 10 N/A
Actor Architecture [100, 100] [100, 100]
Critic Architecture [100, 100] [300, 300]
TD3 Noise variance 0.2 0.2
TD3 Noise Clip 0.5 0.5
TD3 Update Frequency 2 2

(each running an episode of the task) per generation.

Note: The two parameters above (population size k

and rollout size) collectively modulates the proportion
of exploration carried out through noise in the actor’s
parameter space and its action space.

• Target weight ⌧
This parameter controls the magnitude of the soft up-
date between the actors and critic networks, and their
target counterparts.

• Actor Learning Rate
This parameter controls the learning rate of the actor
network.

• Critic Learning Rate
This parameter controls the learning rate of the critic
network.

• Discount Rate
This parameter controls the discount rate used to com-
pute the return optimized by policy gradient.

• Replay Buffer Size
This parameter controls the size of the replay buffer.
After the buffer is filled, the oldest experiences are
deleted in order to make room for new ones.

MERL

• Batch Size
This parameters controls the batch size used to compute
the gradients.

• Actor Activation Function
Hyperbolic tangent was used as the activation function.

• Critic Activation Function
Hyperbolic tangent was used as the activation function.

• Number of Elites
This parameter controls the fraction of the population
that are categorized as elites. Since an elite individual
(actor) is shielded from the mutation step and preserved
as it is, the elite fraction modulates the degree of explo-
ration/exploitation within the evolutionary population.

• Mutation Probability
This parameter represents the probability that an actor
goes through a mutation operation between generation.

• Mutation Fraction
This parameter controls the fraction of the weights in a
chosen actor (neural network) that are mutated, once
the actor is chosen for mutation.

• Mutation Strength
This parameter controls the standard deviation of the
Gaussian operation that comprises mutation.

• Super Mutation Probability
This parameter controls the probability that a super mu-
tation (larger mutation) happens in place of a standard
mutation.

• Reset Mutation Probability
This parameter controls the probability a neural weight
is instead reset between N (0, 1) rather than being mu-
tated.

• Exploration Noise
This parameter controls the standard deviation of the
Gaussian operation that comprise the noise added to
the actor’s actions during exploration by the learners
(learner roll-outs).

• TD3 Policy Noise Variance
This parameter controls the standard deviation of the
Gaussian operation that comprise the noise added to
the policy output before applying the Bellman backup.
This is often referred to as the magnitude of policy
smoothing in TD3.

• TD3 Policy Noise Clip
This parameter controls the maximum norm of the
policy noise used to smooth the policy.

• TD3 Policy Update Frequency
This parameter controls the number of critic updates
per policy update in TD3.

B. Expected Selection Rate
We use a multi-step selection process inside MERL. First
we select e top-performing individuals as elites sequentially
from the population without replacement. Then we con-
duct a tournament selection (Miller and Goldberg, 1995)
with tournament size t with replacement from the entire
population including the elites. t is set to 3 in this paper.
The candidates selected from the tournament selection are
pruned for duplicates and the resulting set is carried over
as the offsprings for this generation. The combined set of
offsprings and the elites represent the candidates selected
for that generation of evolution.

The expected selection rate P (s) is defined as the probabil-
ity of selection for an individual if the selection was random.
This is equivalent to conducting selection using a random
ranking of the population where the fitness scores were ig-
nored and a random number was assigned as an individual’s
fitness. Note that the selection rate is not the probability
of selection for a random policy (individual with random
neural network weights) inserted into the evolutionary pop-
ulation. The probability of selection for such a random
policy would be extremely low as the other individuals in
the population would be ranked significantly higher.

In order to compute the expected selected rate, we need
to compute it for the elite set and the offspring set. The
expected selection rate for the elite set is given by e/M .
The expected selection rate for the offspring set involves
multiple rounds of tournament selection with replacement
followed by pruning of duplicates to compute the combined
set along with the elites. We computed this expectation
empirically using an experiment with 1000000 iterations
and found the expected selection rate to be 0.47.

C. Extended EA Benchmarks
We conducted some additional experiments by varying the
population sizes used for the EA baseline. The purpose of
these experiments is to investigate if larger population sizes
(as is the norm for EA algorithms) can alleviate the need for
policy-gradient module within MERL.

Additionally, we also investigated Evolutionary Strategies
(ES) (Salimans et al., 2017), which has been widely adopted
in the community in recent years. We perform hyperparam-
eter sweeps to tune this baseline. All results are reported in
the rover domain with a coupling of 3.

C.1. Evolutionary Strategies (ES)

ES Population Sweep: Figure 11(left) compares ES with
varying population sizes in the rover domain with a coupling
of 3. Sigma for all ES runs are set at 0.1. Among the ES runs,
a population size of 100 yields the best results converging to

MERL

(a) ES Population Sweep (b) ES Sigma Sweep

Figure 11. (a) Evolutionary Strategies population size sweep on the rover domain with a coupling of 3. (b)Evolutionary Strategies Noise
magnitude (sigma) sweep on the rover domain with a coupling of 3

0.1 in 100-millions frames. MERL (red) on the other hand
is ran for 2-million frames and converges to 0.48.

ES Noise Sweep: Apart from the population size, a key
hyperparameter for ES is the variance of the perturbation
factor (sigma). We run a parameter sweep for sigma and
report results in Figure 11(right). We do not see a great deal
of improvement with the change of sigma.

Figure 12. Evolutionary Algorithm Population size sweep on the
rover domain with a coupling of 3. MERL was run for 2-million
steps while the other EA runs were ran for 100-million steps.

C.2. EA Population Size

Next, we conduct an experiment to evaluate the efficacy of
different population sizes from 10-1, 000 for the Evolution-
ary algorithm used in the paper. All results are reported for
the rover domain with a coupling factor of 3 and are illus-
trated in Figure 12. The best EA performance was found for
a population size of 100 reaching 0.3 in 100-million time
steps. Compare this to MERL which reaches a performance
of 0.48 in only 2 million time steps. This demonstrates a
key thesis behid MERL - the efficacy of the guided evolution
approach over purely evolutionary approaches.

D. Rollout Methodology
Algorithm 2 describes an episode of rollout under MERL
detailing the connections between the local reward, global
reward, and the associated replay buffer.
Algorithm 2 Rollout

1: function Rollout(⇡, R, noise, ⇠)
2: fitness = 0
3: for j = 1:⇠ do
4: Reset environment and get initial joint state js

5: while env is not done do
6: Initialize an empty list of joint action ja = []
7: for Each agent (actor head) ⇡k

2 ⇡ and sk in

js do
8: ja(ja [⇡

k(sk|✓⇡
k

) + noiset

9: end for
10: Execute ja and observe joint local reward jl,

global reward g and joint next state js
0

11: for Each Replay Buffer Rk 2R and sk, ak, lk,
s
0
k in js, ja, jl, js0 do

12: Append transition (sk, ak, lk, s0k) to Rk

13: end for
14: js = js

0

15: if env is done: then
16: fitness g

17: end if
18: end while
19: end for
20: Return fitness

⇠ , R
21: end function

