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Abstract

Owing to the susceptibility of deep learning sys-

tems to adversarial attacks, there has been a great

deal of work in developing (both empirically and

certifiably) robust classifiers. While most work

has defended against a single type of attack, re-

cent work has looked at defending against mul-

tiple perturbation models using simple aggrega-

tions of multiple attacks. However, these methods

can be difficult to tune, and can easily result in

imbalanced degrees of robustness to individual

perturbation models, resulting in a sub-optimal

worst-case loss over the union. In this work, we

develop a natural generalization of the standard

PGD-based procedure to incorporate multiple per-

turbation models into a single attack, by taking

the worst-case over all steepest descent directions.

This approach has the advantage of directly con-

verging upon a trade-off between different pertur-

bation models which minimizes the worst-case

performance over the union. With this approach,

we are able to train standard architectures which

are simultaneously robust against ℓ∞, ℓ2, and ℓ1
attacks, outperforming past approaches on the

MNIST and CIFAR10 datasets and achieving ad-

versarial accuracy of 47.0% against the union of

(ℓ∞, ℓ2, ℓ1) perturbations with radius = (0.03,

0.5, 12) on the latter, improving upon previous

approaches which achieve 40.6% accuracy.

1. Introduction

Machine learning algorithms have been shown to be suscep-

tible to adversarial examples (Szegedy et al., 2014) through
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the existence of data points which can be adversarially per-

turbed to be misclassified, but are “close enough” to the

original example to be imperceptible to the human eye.

Methods to generate adversarial examples, or “attacks”,

typically rely on gradient information, and most commonly

use variations of projected gradient descent (PGD) to max-

imize the loss within a small perturbation region, usually

referred to as the adversary’s perturbation model. A number

of heuristic defenses have been proposed to defend against

this phenomenon, e.g. distillation (Papernot et al., 2016) or

logit-pairing (Kannan et al., 2018). However, as time goes

by, the original robustness claims of these defenses typi-

cally don’t hold up to more advanced adversaries or more

thorough attacks (Carlini & Wagner, 2017; Engstrom et al.,

2018; Mosbach et al., 2018). One heuristic defense that

seems to have survived (to this day) is to use adversarial

training against a PGD adversary (Madry et al., 2018), and

remains quite popular due to its simplicity and apparent em-

pirical robustness. The method continues to perform well

in empirical benchmarks even when compared to recent

work in provable defenses, though it comes with no formal

guarantees.

While adversarial training has primarily been used to learn

models robust to a single perturbation model, some recent

work has looked at empirically defending against multiple

perturbation models simultaneously. Schott et al. (2019)

proposed a variational autoencoder based architecture to

learn an MNIST classifier which was robust to multiple per-

turbation models, while Tramèr & Boneh (2019) proposed

simple aggregations of different adversaries for adversarial

training against multiple perturbation models.

While these approaches can achieve varying degrees of ro-

bustness to the considered adversarial perturbation models,

in practice it is quite difficult to achieve an optimal trade-off

which minimizes the worst-case error in the union of pertur-

bation models. Rather, these approaches tend to converge

to suboptimal local minima, resulting in a model that is

highly robust to certain perturbation models while failing to

defend against others, and the robust performance can often

vary substantially across datasets. This results in poor and

unpredictable robust performance against the worst-case at-

tack, and indicates that the optimization procedure actually

fails to minimize the worst-case loss in the union of the

perturbation models.



Adversarial Robustness Against the Union of Multiple Perturbation Models

We believe that achieving robustness to multiple perturba-

tions is an essential step towards the eventual objective of

universal robustness and our work further motivates research

in this area. In this work, we make three main contributions

towards learning models which are adversarially robust to

multiple perturbation models. First, we demonstrate the in-

consistency of previous approaches across datasets, showing

that they converge to suboptimal tradeoffs which may not

actually minimize the robust objective of worst-case loss

over the combined perturbation model. Second, we propose

a modified PGD-based algorithm called “Multi Steepest

Descent” (MSD) for adversarial training, which naturally

incorporates different gradient-based perturbation models

into a single unified adversary to directly solve the inner

optimization problem of finding the worst-case loss. Third,

we show empirically that our approach improves upon past

work by finding trade-offs between the perturbation models

which significantly improve the worst-case robust perfor-

mance against multiple perturbation models on both MNIST

and CIFAR10. Specifically, on MNIST, our model achieves

58.4% adversarial accuracy against the union of all three

attacks (ℓ∞, ℓ2, ℓ1) for ǫ = (0.3, 2.0, 10) respectively, sub-

stantially improving upon both the ABS models and also

simpler aggregations of multiple adversarial attacks, which

at best achieve 42.1% robust accuracy. Additionally, un-

like past work, we also train a CIFAR10 model against the

union of all three attacks (ℓ∞, ℓ2, ℓ1), which achieves 47.0%

adversarial accuracy for ǫ = (0.03, 0.5, 12) and improves

upon the simpler aggregations of multiple attacks which

can achieve 40.6% robust accuracy under this perturbation

model. In all cases, we find that our approach is able to

consistently reduce the worst-case error under the unified

perturbation model. Code for reproducing all the results can

be found at: https://github.com/locuslab/robust union.

2. Related work

After their original introduction, one of the first widely-

considered attacks against deep networks had been the Fast

Gradient Sign Method (Goodfellow et al., 2015), which

showed that a single, small step in the direction of the sign

of the gradient could sometimes fool machine learning clas-

sifiers. While this worked to some degree, the Basic Itera-

tive Method (Kurakin et al., 2017) (now typically referred

to as the PGD attack) was significantly more successful

at creating adversarial examples, and now lies at the core

of many papers. Since then, a number of improvements

and adaptations have been made to the base PGD algorithm

to overcome heuristic defenses and create stronger adver-

saries. Adversarial attacks were thought to be safe under

realistic transformations (Lu et al., 2017) until the attack

was augmented to be robust to them (Athalye et al., 2018b).

Adversarial examples generated using PGD on surrogate

models can transfer to black box models (Papernot et al.,

2017). Utilizing core optimization techniques such as mo-

mentum can greatly improve the attack success rate and

transferability, and was the winner of the NIPS 2017 compe-

tition on adversarial examples (Dong et al., 2018). Uesato

et al. (2018) showed that a number of ImageNet defenses

were not as robust as originally thought, and Athalye et al.

(2018a) defeated many of the heuristic defenses submitted

to ICLR 2018 shortly after the reviewing cycle ended, all

with stronger PGD variations.

Throughout this cycle of attack and defense, some defenses

were uncovered that remain robust to this day. The afore-

mentioned PGD attack, and the related defense known as

adversarial training with a PGD adversary (which incor-

porates PGD-attacked examples into the training process)

has so far remained empirically robust (Madry et al., 2018).

Verification methods to certify robustness properties of net-

works were developed, utilizing techniques such as SMT

solvers (Katz et al., 2017), SDP relaxations (Raghunathan

et al., 2018b), and mixed-integer linear programming (Tjeng

et al., 2019), the last of which has recently been successfully

scaled to reasonably sized networks. Other work has folded

verification into the training process to create provably ro-

bust networks (Wong & Kolter, 2018; Raghunathan et al.,

2018a), some of which have also been scaled to even larger

networks (Wong et al., 2018; Mirman et al., 2018; Gowal

et al., 2018). Although some of these could potentially be

extended to apply to multiple perturbations simultaneously,

most of these works have focused primarily on defending

against and verifying only a single type of adversarial per-

turbation at a time.

Last but most relevant to this work are adversarial defenses

that are robust against multiple types of attacks simultane-

ously. Schott et al. (2019) used multiple variational autoen-

coders to construct a complex architecture called analysis by

synthesis (ABS) for the MNIST dataset that is not as easily

attacked by ℓ∞, ℓ2, and ℓ0 adversaries. The ABS model has

two variations, one which is robust to ℓ0 and ℓ2 but not ℓ∞
attacks and other which is robust to ℓ∞ and ℓ0 but not ℓ2
attacks. Similarly, Tramèr & Boneh (2019) study the the-

oretical and empirical trade-offs of adversarial robustness

in various settings when defending against aggregations of

multiple adversaries, however they find that the ℓ∞ pertur-

bation model interferes with other perturbation models on

MNIST (ℓ1 and ℓ2) and they study a rotation and translation

adversary instead of an ℓ2 adversary for CIFAR10. Croce &

Hein (2019) propose a provable adversarial defense against

all ℓp norms for p ≥ 1 using a regularization term. Finally,

while not studied as a defense, Kang et al. (2019) study

the transferability of adversarial robustness between models

trained against different perturbation models, while Jordan

et al. (2019) study combination attacks with low perceptual

distortion.

https://github.com/locuslab/robust_union
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Figure 1: A depiction of the steepest descent directions

for ℓ∞, ℓ2, and ℓ1 norms. The gradient is the black arrow,

and the α radius step sizes and their corresponding steepest

descent directions ℓ∞, ℓ2, and ℓ1 are shown in blue, red, and

green respectively.

3. Overview of adversarial training

Adversarial training is an approach to learn a classifier which

minimizes the worst-case loss within some perturbation re-

gion (the perturbation model). Specifically, for some net-

work fθ parameterized by θ, loss function ℓ, and training

data {xi, yi}i=1...n, the robust optimization problem of min-

imizing the worst-case loss within ℓp norm-bounded pertur-

bations with radius ǫ is

min
θ

∑

i

max
δ∈∆p,ǫ

ℓ(fθ(xi + δ), yi), (1)

where ∆p,ǫ = {δ : ‖δ‖p ≤ ǫ} is the ℓp ball with radius ǫ

centered around the origin. To simplify the notation, we

will abbreviate ℓ(fθ(x+ δ), y) = ℓ(x+ δ; θ).

3.1. Solving the inner optimization problem

We first look at solving the inner maximization problem,

namely

max
δ∈∆p,ǫ

ℓ(x+ δ; θ). (2)

This is the problem addressed by the “attackers” in the space

of adversarial examples, hoping that the classifier can be

tricked by the optimal perturbed image, x + δ⋆. Typical

solutions solve this problem by running a form of projected

gradient descent, which iteratively takes steps in the gradient

direction to increase the loss followed by a projection step

back onto the feasible region, the ℓp ball. Since the gradients

at the example points themselves (i.e., δ = 0) are typically

too small to make efficient progress, more commonly used

is a variation called projected steepest descent.

Steepest descent For some norm ‖ · ‖p and step size α,

the direction of steepest descent on the loss function ℓ for a

perturbation δ is

vp(δ) = arg max
‖v‖p≤α

vT∇ℓ(x+ δ; θ). (3)

Then, instead of taking gradient steps, steepest descent uses

the following iteration

δ(t+1) = δ(t) + vp(δ
(t)). (4)

In practice, the norm used in steepest descent is typically

taken to be the same ℓp norm used to define the perturbation

region ∆p,ǫ. However, depending on the norm used, the

direction of steepest descent can be quite different from

the actual gradient (Figure 1). Note that a single steep-

est descent step with respect to the ℓ∞ norm reduces to

v∞(x) = α · sign(∇ℓ(x+ δ; θ)), better known in the adver-

sarial examples literature as the Fast Gradient Sign Method

(Goodfellow et al., 2015).

Projections The second component of projected steepest

descent for adversarial examples is to project iterates back

onto the ℓp ball around x. Specifically, projected steepest

descent performs the following iteration

δ(t+1) = P∆p,ǫ

(

δ(t) + vp(δ
(t))
)

(5)

where P∆p,ǫ
(δ) is the standard projection operator that finds

the perturbation δ′ ∈ ∆p,ǫ that is “closest” in Euclidean

space to the input δ, defined as

P∆p,ǫ
(δ) = arg min

δ′∈∆p,ǫ

‖δ − δ′‖22. (6)

Visually, a depiction of this procedure (steepest descent

followed by a projection onto the perturbation region) for an

ℓ2 adversary can be found in Figure 1. If we instead project

the steepest descent directions with respect to the ℓ∞ norm

onto the ℓ∞ ball of allowable perturbations, the projected

steepest descent iteration reduces to

δ(t+1) = P∆∞,ǫ
(δ(t) + v∞(δ(t)))

= clip
[−ǫ,ǫ]

(

δ(t) + α · sign(∇ℓ(x+ δ(t); θ))
)

(7)

where clip[−ǫ,+ǫ] “clips” the input to lie within the range

[−ǫ, ǫ]. This is exactly the Basic Iterative Method used in

Kurakin et al. (2017), typically referred to in the literature

as an ℓ∞ PGD adversary.

3.2. Solving the outer optimization problem

We next look at how to solve the outer optimization problem,

or the problem of learning the weights θ that minimize the

loss of our classifier. While many approaches have been

proposed in the literature, we will focus on a heuristic called

adversarial training, which has generally worked well in

practice.
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Adversarial training Although solving the min-max op-

timization problem may seem daunting, a classical result

known as Danskin’s theorem (Danskin, 1967) says that the

gradient of a maximization problem is equal to the gradient

of the objective evaluated at the optimum. For learning

models that minimize the robust optimization problem from

Equation (1), this means that

∇θ

(

∑

i

max
δ∈∆p,ǫ

ℓ(xi + δ; θ)

)

=
∑

i

∇θℓ(xi + δ∗(xi); θ)

(8)

where δ∗(xi) = arg maxδ∈∆p,ǫ
ℓ(xi+δ; θ). In other words,

this means that in order to backpropagate through the robust

optimization problem, we can solve the inner maximization

and backpropagate through the solution. Adversarial train-

ing does this by empirically maximizing the inner problem

with a PGD adversary. Note that since the inner problem is

not solved exactly, Danskin’s theorem does not strictly ap-

ply. However, in practice, adversarial training does seem to

provide good empirical robustness, at least when evaluated

against the ℓp perturbation model it was trained against.

4. Adversarial training for multiple

perturbation models

We can now consider the core of this work, adversarial train-

ing procedures against multiple perturbation models. More

formally, let S represent a set of perturbation models, such

that p ∈ S corresponds to the ℓp perturbation model ∆p,ǫ,

and let ∆S =
⋃

p∈S ∆p,ǫ be the union of all perturbation

models in S. Note that the ǫ chosen for each ball is not

typically the same, but we still use the same notation ǫ for

simplicity, since the context will always make clear which

ℓp-ball we are talking about. Then, the generalization of

the robust optimization problem in Equation (1) to multiple

perturbation models is

min
θ

∑

i

max
δ∈∆S

ℓ(xi + δ; θ). (9)

The key difference is in the inner maximization, where the

worst-case adversarial loss is now taken over multiple ℓp per-

turbation models. In order to perform adversarial training,

using the same motivational idea from Danskin’s theorem,

we can backpropagate through the inner maximization by

first finding (empirically) the optimal perturbation,

δ∗ = arg max
δ∈∆S

ℓ(x+ δ; θ). (10)

To find the optimal perturbation over the union of perturba-

tion models, we begin by discussing simple generalizations

of standard adversarial training, which will use aggrega-

tions of PGD solutions for individual adversaries to approx-

imately solve the inner maximization over multiple adver-

saries. The computational complexity of these approaches

are a constant factor times than the complexity of standard

adversarial training, where the constant is equal to the num-

ber of adversaries. We will focus the exposition primarily

on adversarial training based approaches as these are most

related to our proposed method, and we refer the reader

to Schott et al. (2019) for more detail on the analysis by

synthesis approach.

4.1. Simple combinations of multiple perturbations

First, we study two simple approaches to generalizing ad-

versarial training to multiple perturbation models, which

can learn robust models and do not rely on complicated

architectures. While these methods work to some degree,

we later find empirically that these methods do not necessar-

ily minimize the worst-case performance, can converge to

unexpected tradeoffs between multiple perturbation models,

and can have varying dataset-dependent performance.

MAX: Worst-case perturbation One way to generalize

adversarial training to multiple perturbation models is to

use each perturbation model independently, and train on

the adversarial perturbation that achieved the maximum

loss. Specifically, for each adversary p ∈ S, we solve the

innermost maximization with an ℓp PGD adversary to get

an approximate worst-case perturbation δp,

δp = arg max
δ∈∆p,ǫ

ℓ(x+ δ; θ), (11)

and then approximate the maximum over all adversaries as

δ∗ ≈ arg max
δp

ℓ(x+ δp; θ). (12)

When |S| = 1, then this reduces to standard adversarial

training. Note that if each PGD adversary solved their sub-

problem from Equation (11) exactly, then this is the optimal

perturbation δ⋆. This method corresponds to the “max”

strategy from Tramèr & Boneh (2019).

AVG: Augmentation of all perturbations Another way

to generalize adversarial training is to train on all the adver-

sarial perturbations for all p ∈ S to form a larger adversarial

dataset. Specifically, instead of solving the robust problem

for multiple adversaries in Equation (9), we instead solve

min
θ

∑

i

∑

p∈S

max
δ∈∆p,ǫ

ℓ(xi + δ; θ) (13)

by using individual ℓp PGD adversaries to approximate

the inner maximization for each perturbation model. This

reduces to standard adversarial training when |S| = 1 and

corresponds to the “avg” strategy from Tramèr & Boneh

(2019).

While these methods work to some degree, (which is shown

later in Section 5), both of these approaches solve the inner
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Algorithm 1 Multi steepest descent for learning classifiers

that are simultaneously robust to ℓp attacks for p ∈ S

Input: classifier fθ, data x, labels y

Parameters: ǫp, αp for p ∈ S, maximum iterations T ,

loss function ℓ

δ(0) = 0
for t = 0 . . . T − 1 do

for p ∈ S do

δ
(t+1)
p = P∆p,ǫ

(δ(t) + vp(δ
(t)))

end for

δ(t+1) = arg max
δ
(t+1)
p

ℓ(fθ(x+ δ
(t+1)
p ), y)

end for

return δ(T )

maximization problem independently for each adversary.

Consequently, each individual PGD adversary is myopic to

its own perturbation model and does not take advantage of

the fact that the perturbation region is enlarged by other per-

turbation models. To leverage the full information provided

by the union of perturbation regions, we propose a modi-

fication to standard adversarial training, which combines

information from all considered perturbation models into a

single PGD adversary that is potentially stronger than the

combination of independent adversaries.

4.2. Multi Steepest Descent

To create a PGD adversary with full knowledge of the per-

turbation region, we propose an algorithm that incorporates

the different perturbation models within each step of pro-

jected steepest descent. Rather than generating adversarial

examples for each perturbation model with separate PGD

adversaries, the core idea is to create a single adversarial

perturbation by simultaneously maximizing the worst-case

loss over all perturbation models at each projected steep-

est descent step. We call our method multi steepest descent

(MSD), which can be summarized as the following iteration:

δ(t+1)
p = P∆p,ǫ

(δ(t) + vp(δ
(t))) for p ∈ S

δ(t+1) = arg max
δ
(t+1)
p

ℓ(x+ δ(t+1)
p ) (14)

The key difference here is that at each iteration of MSD,

we choose a projected steepest descent direction that maxi-

mizes the loss over all attack models p ∈ S, whereas stan-

dard adversarial training and the simpler approaches use

comparatively myopic PGD subroutines that only use one

perturbation model at a time. The full algorithm is in Al-

gorithm 1, and can be used as a drop in replacement for

standard PGD adversaries to learn robust classifiers with

adversarial training. We direct the reader to Appendix A for

a complete description of steepest descent directions and

projection operators for ℓ∞, ℓ2, and ℓ1 norms.1

5. Results

In this section, we present experimental results on using gen-

eralizations of adversarial training to achieve simultaneous

robustness to ℓ∞, ℓ2, and ℓ1 perturbations on the MNIST

and CIFAR10 datasets. Our primary goal is to show that

adversarial training can be used to directly minimize the

worst-case loss over the union of perturbation models to

achieve competitive results by avoiding any trade-off that

biases one particular perturbation model at the cost of the

others. Our results improve upon the state-of-the-art in three

key ways. First, we can continue to use simple, standard

architectures for image classifiers, without relying on com-

plex architectures or input binarization as done by Schott

et al. (2019). Second, our method is able to learn a single

model (on both MNIST and CIFAR10) which optimizes the

worst-case performance over the union of all three perturba-

tion models, whereas previous approaches are only robust

against two at a time, or have performance which is dataset

dependent. Finally, we provide the first CIFAR10 model

trained to be simultaneously robust against ℓ∞, ℓ2, and ℓ1
adversaries, in comparison to previous work which trained

a model robust to ℓ∞, ℓ1, and rotation/translation attacks

(Tramèr & Boneh, 2019).

We train models using MSD, MAX and AVG approaches

for both MNIST and CIFAR10 datasets. We additionally

train models against individual PGD adversaries to measure

the changes and tradeoffs in universal robustness. Since

the analysis by synthesis model is not scalable, we do not

include it in our experimentation for CIFAR10. We perform

an extensive evaluation of these models with a broad suite of

both gradient and non-gradient based attacks using Foolbox2

(the same attacks used by Schott et al. (2019)), and also

incorporate all the PGD-based adversaries discussed in this

paper. All aggregate statistics that combine multiple attacks

compute the worst-case error rate over all attacks for each

example, in order to reflect the worst-case loss over the

combined perturbation model.

Summaries of these results at specific thresholds can be

found in Tables 1 and 2, where B-ABS and ABS refer to

binarized and non-binarized versions of the analysis by

synthesis models from Schott et al. (2019), Pp refers to

a model trained against a PGD adversary with respect to

the p-norm, MAX and AVG refer to models trained using

the worst-case and data augmentation generalizations of

adversarial training, and MSD refers to models trained using

1The pure ℓ1 steepest descent step is inefficient since it only
updates one coordinate at a time. It can be improved by taking
steps on multiple coordinates, similar to that used in Tramèr &
Boneh (2019), and is also explained in Appendix A.

2https://github.com/bethgelab/foolbox (Rauber et al., 2017)
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multi steepest descent. Full tables containing the complete

breakdown of these numbers over all individual attacks

used in the evaluation are in Appendix B. We report the

results against individual attacks and perturbation models

for completeness, however we note that the original goal

and motivation of all these algorithms is to minimize the

robust optimization objective from Equation (9). While

there may be different implicit tradeoffs between individual

perturbation models that can be difficult to compare, the

robust optimization objective, or the performance against

the union of all attacks, provides a single common metric

that all approaches are optimizing.

5.1. Experimental setup

Architectures and hyperparameters For MNIST, we

use a four layer convolutional network with two convo-

lutional layers consisting of 32 and 64 5 × 5 filters and 2

units of padding, followed by a fully connected layer with

1024 hidden units, where both convolutional layers are fol-

lowed by 2× 2 Max Pooling layers and ReLU activations

(this is the same architecture used by Madry et al. (2018)).

This is in contrast to past work on MNIST, which relied

on per-class variational autoencoders to achieve robustness

against multiple perturbation models (Schott et al., 2019),

which was also not easily scalable to larger datasets. Since

our methods have the same computational complexity as

standard adversarial training, they also easily apply to stan-

dard CIFAR10 architectures, and in this paper we use the

well known pre-activation version of the ResNet18 architec-

ture consisting of nine residual units with two convolutional

layers each (He et al., 2016).

A complete description of the hyperparameters used is in

Appendix C. All reported ǫ are for images scaled to be be-

tween the range [0, 1]. All experiments were run on modest

amounts of GPU hardware (e.g. a single 1080ti).

Attacks used for evaluation To evaluate the model, we

incorporate the attacks from Schott et al. (2019) along with

our PGD based adversaries, and provide a short descrip-

tion of the same here. Note that we exclude attacks based

on gradient estimation, since the gradient for the standard

architectures used here are readily available.

For ℓ∞ attacks, although we find the ℓ∞ PGD adversary

to be quite effective, for completeness, we additionally use

the Foolbox implementations of Fast Gradient Sign Method

(Goodfellow et al., 2015), PGD attack (Madry et al., 2018),

and Momentum Iterative Method (Dong et al., 2018).

For ℓ2 attacks, in addition to the ℓ2 PGD adversary, we use

the Foolbox implementations of the same PGD adversary,

the Gaussian noise attack (Rauber et al., 2017), the boundary

attack (Brendel et al., 2017), DeepFool (Moosavi-Dezfooli

et al., 2016), the pointwise attack (Schott et al., 2019), DDN

based attack (Rony et al., 2018), and C&W attack (Carlini

& Wagner, 2017).

For ℓ1 attacks, we use both the ℓ1 PGD adversary as well

as additional Foolbox implementations of ℓ0 attacks at the

same radius, namely the salt & pepper attack (Rauber et al.,

2017) and the pointwise attack (Schott et al., 2019). Note

that an ℓ1 adversary with radius ǫ is strictly stronger than

an ℓ0 adversary with the same radius, and so we choose to

explicitly defend against ℓ1 perturbations instead of the ℓ0
perturbations considered by Schott et al. (2019).

We make 10 random restarts for each of the results men-

tioned hereon for both MNIST and CIFAR10 3. We en-

courage future work in this area to incorporate the same,

since the success of all attacks, specially decision based or

gradient free ones, is observed to increase significantly over

restarts.

5.2. MNIST

We first present results on the MNIST dataset, which are

summarized in Table 1 (a more detailed breakdown over

each individual attack is in Appendix B.1). Complete robust-

ness curves over a range of epsilons over each perturbation

model can be found in Figure 2. Although we reproduce

the simpler approaches here, a more detailed discussion of

how these results compare with those presented by Tramèr

& Boneh (2019) can be found in Appendix D.

Suboptimal trade-offs While considered an “easy”

dataset, we first note that most of the previous approaches

for multiple perturbation models on MNIST are only able to

defend against two out of three perturbation models at a time,

resulting in a suboptimal trade-off between different pertur-

bation models which has poor overall performance against

the worst-case attack in the combined perturbation model.

Despite relying on a significantly more complex architec-

ture, the B-ABS model is weak against ℓ2 attacks while the

ABS model is weak against ℓ∞ attacks. Meanwhile, the

AVG model is weak against strong ℓ1 decision-based attacks.

The MAX and MSD models achieve relatively better trade-

offs, with the MSD model performing the best with a robust

accuracy rate of 58.4% against the union of (ℓ∞, ℓ2, ℓ1)
perturbations with radius ǫ = (0.3, 2.0, 10), which is over a

15% improvement in comparison to the MAX model.

Gradient Masking in MNIST models We find that even

though models trained via the MAX and AVG approaches

provide reasonable robustness against first-order attacks

3All attacks were run on a subset of the first 1000 test examples
with 10 random restarts, with the exception of Boundary Attack,
which by default makes 25 trials per iteration and DDN based At-
tack which does not benefit from the same owing to a deterministic
initialization of δ.
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Table 1: Summary of adversarial accuracy results for MNIST (higher is better)

P∞ P2 P1 B-ABS4 ABS4 MAX AVG MSD

Clean Accuracy 99.1% 99.2% 99.3% 99% 99% 98.6% 99.1% 98.3%

ℓ∞ attacks (ǫ = 0.3) 90.3% 0.4% 0.0% 77% 8% 51.0% 65.2% 62.7%

ℓ2 attacks (ǫ = 2.0) 13.6% 69.2% 38.5% 39% 80% 61.9% 60.1% 67.9%

ℓ1 attacks (ǫ = 10) 4.2% 43.4% 70.0% 82% 78% 52.6% 39.2% 65.0%

All Attacks 3.7% 0.4% 0.0% 39% 8% 42.1% 34.9% 58.4%

Figure 2: Robustness curves showing the adversarial accuracy for the MNIST model trained with MSD, AVG, MAX against

ℓ∞ (left), ℓ2 (middle), and ℓ1 (right) perturbation models over a range of epsilon.

Figure 3: A view of each of the (5x5) learned filters of the

first layer of a CNN robust to ℓ∞ attacks. The singular

sharp values are characteristic features of models robust to

ℓ∞ attacks.

(breakdown of attacks in Appendix B.1), they can be vulner-

able to gradient-free attacks like the Pointwise Attack and

Boundary Attack. This indicates the presence of masked

gradients that prevent first-order adversaries from finding

the optimal steepest descent direction (Athalye et al., 2018a),

similar to how ℓ∞ trained models are weak against decision-

based attacks in other norms as also observed by Schott

et al. (2019) and Tramèr & Boneh (2019). We analyze the

4Results are reported directly from Schott et al. (2019), which
used epsilon balls of radii (0.3,1.5,12) for (ℓ∞, ℓ2, ℓ0) adversaries.
They used an ℓ0 perturbation region of a higher radius and evalu-
ated against ℓ0 attacks. So the reported number is a near estimate
of the ℓ1 adversarial accuracy. They used an ℓ2 perturbation model
of a lower radius = 1.5. Further, they do not perform attack restarts
and the adversarial accuracy against all attacks is an upper bound

learned weights of the first layer filters of the CNN models

trained on the MNIST, and observe a strong correlation of

the presence of thresholding filters (Figure 3) with the sus-

ceptibility to decision-based ℓ1 and ℓ2 adversaries. Further

analysis of the learned filter weights for all the models can

be found in Appendix E, where we observe that by reducing

the number of thresholding filters, the MSD model is able to

perform better against decision based adversaries, whereas

learning filter patterns similar to that of an ℓ∞ robust model

correlates with susceptibility of MAX and AVG training

methods to gradient-free adversaries.

Unreliable training of MAX and AVG To give the MAX

and AVG approaches the best chance at succeeding, we

searched over a wide range of hyperparameters (which are

described in Appendix C.2). However, we frequently ob-

serve that these training runs result in masked gradients as

described earlier, and are seemingly unable to balance the

right trade-off between multiple attacks. In Figure 4, we

show the sensitivity of different training methods to training

time hyperparameter choices. The worst case accuracy is

evaluated using the worst case over three gradient based

attacks (PGD attacks in ℓ∞, ℓ2, ℓ1 space) and one gradient-

free attack (pointwise attack in ℓ1 space). The MAX training

method achieves greater than 40% robust accuracy in only

10% of all the hyperparameter configurations tried. The sen-

sitivity was even higher for the AVG method on the MNIST

based on the reported accuracies for individual perturbation models.
Finally, all ABS results were computed using numerical gradient
estimation, since gradients are not readily available.
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Table 2: Summary of adversarial accuracy results for CIFAR10 (higher is better)

P∞ P2 P1 MAX AVG MSD

Clean accuracy 83.3% 90.2% 73.3% 81.0% 84.6% 81.1%

ℓ∞ attacks (ǫ = 0.03) 50.7% 28.3% 0.2% 44.9% 42.5% 48.0%

ℓ2 attacks (ǫ = 0.5) 57.3% 61.6% 0.0% 61.7% 65.0% 64.3%

ℓ1 attacks (ǫ = 12) 16.0% 46.6% 7.9% 39.4% 54.0% 53.0%

All attacks 15.6% 27.5% 0.0% 34.9% 40.6% 47.0%
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Figure 4: Among all the models trained using the MSD,

MAX and AVG methods during our hyperparameter search,

we plot the percentage of models for each method that

achieve robust accuracies greater than a particular threshold

(against the union of ℓ∞, ℓ1, ℓ2 attacks).

dataset. Also, note that nearly all models attain greater than

50% robust accuracy when only attacked by gradient-based

adversaries, and the performance drop is largely attributed

to the gradient-free attack.

However, MSD is comparatively much easier to tune and

achieves greater than 50% accuracy in around 40% of the

runs. Moreover, we find that MSD offers a natural way to

counteract any unwanted bias towards one perturbation type

by adjusting the relative step-sizes of individual descent

directions, whereas doing the same for the MAX and AVG

approaches does not help.

We note that in order to train the MAX and AVG approaches

reasonably well on the MNIST dataset (Table 1), we had

to set the radius of the ℓ1 ball to 12 for AVG and increase

the number of PGD ℓ1 attack restarts during training for

MAX. These methods help make the PGD ℓ1 attack rel-

atively stronger by changing the perturbation model, and

re-aligns the optimal trade-offs when the training process

is unable to naturally capture them. We observe that small

starts, as employed by Tramèr & Boneh (2019) to make their

models work better, may have a similar effect of re-aligning

the strength of various perturbation models. Rather than

“fixing” the balance between different perturbation models

by changing the individual attacks used for training, MSD

is able to achieve the right trade-off by directly balancing

them, leading to greater reliability and consistency when

compared to the MAX and AVG approaches.

5.3. CIFAR10

Next, we present results on the CIFAR10 dataset, which

are summarized in Table 2 (a more detailed breakdown

over each individual attack is in Appendix B.2). Our

MSD approach reaches the best performance against

the union of attacks, and achieves 47.0% (individu-

ally 48.0%, 64.3%, 53.0%) adversarial accuracy against

the union of (ℓ∞, ℓ2, ℓ1) perturbations of size ǫ =
(0.03, 0.5, 12). We note that the P1 model trained against

an ℓ1 PGD adversary is not very robust when evaluated

against decision-based attacks, even though it can defend

reasonably well against the ℓ1 PGD attack in isolation (Ta-

ble 4 in Appendix B.2). Complete robustness curves over

a range of epsilons over each perturbation model can be

found in Figure 5. The specific heuristic adjustments made

to obtain the best-performing MAX and AVG models are de-

tailed in Appendix C.2. Although we reproduce the simple

adversarial training approaches here, a direct comparison

of how these results compare to those reported by (Tramèr

& Boneh, 2019) can be found in Appendix D. Furthermore,

while adversarial defenses are generally not intended to

be robust to attacks outside of the perturbation model, we

show some experiments exploring this aspect in Appendix

F, namely the performance on the CIFAR10-C dataset (CI-

FAR10 with common corruptions) as well as exploring what

happens when one defends against only two adversaries and

evaluates on a third, unseen adversary.

Dataset variability In addition to converging to subop-

timal trade-offs between different adversaries as seen on

MNIST, we find that the performance of simpler versions of

adversarial training for multiple perturbations can also vary

significantly based on the dataset. While the MAX approach

performed better than AVG on MNIST, in the CIFAR10

setting we find that these roles are swapped: the MAX ap-

proach converged to a suboptimal local minima which is

5.7% less robust against the union of perturbation models

than AVG. Once again, this highlights the inconsistency of

the simpler generalizations of adversarial training: depend-

ing on the problem setting, they may converge to suboptimal
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Figure 5: Robustness curves showing the adversarial accuracy for the CIFAR10 model trained with MSD, AVG, MAX

against ℓ∞ (left), ℓ2 (middle), and ℓ1 (right) perturbation models over a range of epsilon.

local optima which do not minimize the robust optimization

objective from Equation (9). On the other hand, in both

problem settings, we find MSD consistently converges to

a local optimum which is better at minimizing the worst-

case loss in the union of the perturbation models, achieving

47.0% robust accuracy, improving upon the best-performing

simpler method of AVG by 6.4%.

6. Conclusion

In this paper, we showed that previous approaches aimed

towards learning models which are adversarially robust to

multiple perturbation models can be highly variable (across

parameters and datasets), and difficult to tune, thereby con-

verging to suboptimal local minima with trade-offs which do

not defend against the union of multiple perturbation models.

On the other hand, by incorporating the different perturba-

tion models directly into the direction of steepest descent,

our proposed approach of MSD consistently outperforms

past approaches across both MNIST and CIFAR10. The ap-

proach inherits the scalability and generality of adversarial

training, without relying on specific complex architectures,

and is able to better accomplish the robust optimization ob-

jective. We recommend using MSD to directly minimize

the worst-case performance among multiple perturbation

models.
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