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A. Steepest descent and projections for ℓ∞, ℓ2,

and ℓ1 adversaries

In this section, we describe the steepest descent and projec-

tion steps for ℓp adversaries for p ∈ {∞, 2, 1}; these are

standard results, but are included for a complete description

of the algorithms. Note that this differs slightly from the

adversaries considered in Schott et al. (2019): while they

used an ℓ0 adversary, we opted to use an ℓ1 adversary. The

ℓ0 ball with radius ǫ is contained within an ℓ1 ball with the

same radius, so achieving robustness against an ℓ1 adversary

is strictly more difficult.

ℓ∞ space The direction of steepest descent with respect

to the ℓ∞ norm is

v∞(δ) = α · sign(∇l(x+ δ; θ)) (15)

and the projection operator onto ∆∞,ǫ is

P∆∞,ǫ
(δ) = clip[−ǫ,ǫ](δ) (16)

ℓ2 space The direction of steepest descent with respect to

the ℓ2 norm is

v2(δ) = α ·
∇ℓ(x+ δ; θ)

‖∇ℓ(x+ δ; θ)‖2
(17)

and the projection operator onto the ℓ2 ball around x is

P∆2,ǫ
(δ) = ǫ ·

δ

max{ǫ, ‖δ‖2}
(18)

ℓ1 space The direction of steepest descent with respect to

the ℓ1 norm is

v1(δ) = α · sign

(

∂ℓ(x+ δ; θ)

∂δi⋆

)

· ei⋆ (19)

where

i⋆ = arg max
i

|∇l(x+ δ; θ)i| (20)

and ei∗ is a unit vector with a one in position i∗. Finally, the

projection operator onto the ℓ1 ball,

P∆1,ǫ
(δ) = arg min

δ′:‖δ′‖1≤ǫ

‖δ − δ′‖22, (21)

can be solved with Algorithm 2, and we refer the reader to

Duchi et al. (2008) for its derivation.

Algorithm 2 Projection of some perturbation δ ∈ R
n onto

the ℓ1 ball with radius ǫ. We use | · | to denote element-wise

absolute value.

Input: perturbation δ, radius ǫ
Sort |δ| into γ : γ1 ≥ γ2 ≥ · · · ≥ γn

ρ := max
{

j ∈ [n] : γj −
1
j

(

∑j
r=1 γr − ǫ

)

> 0
}

η := 1
ρ
(
∑ρ

i=1 γi − ǫ)

zi := sign(δi)max {γi − η, 0} for i = 1 . . . n
return z

A.1. Enhanced ℓ1 steepest descent step

Note that the steepest descent step for ℓ1 only updates a

single coordinate per step. This can be quite inefficient,

as pointed out by Tramèr & Boneh (2019). To tackle this

issue, and also empirically improve the attack success rate,

Tramèr & Boneh (2019) instead select the top k coordinates

according to Equation 20 to update. In this work, we adopt a

similar but slightly modified scheme: we randomly sample

k to be some integer within some range [k1, k2], and update

each coordinate with step size α′ = α/k. We observe in our

experimentation that the randomness induced by varying the

number of coordinates aids in reducing the gradient masking

problem observed by Tramèr & Boneh (2019).

A.2. Restricting the steepest descent coordinate

The steepest descent direction for both the ℓ0 and ℓ1 norm

end up selecting a single coordinate direction to move the

perturbation. However, if the perturbation is already at the

boundary of pixel space (for MNIST, this is the range [0,1]

for each pixel), then it’s possible for the PGD adversary to

get stuck in a loop trying to use the same descent direction

to escape pixel space. To avoid this, we only allow the

steepest descent directions for these two attacks to choose

coordinates that keep the image in the range of real pixels.

B. Extended results

Here, we show the full break down of adversarial error rates

over individual attacks for both MNIST and CIFAR10.

B.1. MNIST results

Expanded table of results Table 3 contains brak down of

adversarial accuracies against all attacks for all models on

the MNIST dataset. All attacks were run on a subset of the

first 1000 test examples with 10 random restarts, with the

exception of Boundary Attack, which by default makes 25

trials per iteration, and DDN attack, which does not benefit

from restarts owing to a deterministic starting point. The

results for B-ABS and ABS models are reported directly

from Schott et al. (2019), which uses gradient estimation
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Table 3: Summary of adversarial accuracy results for MNIST

P∞ P2 P1 B-ABS ABS MAX AVG MSD

Clean Accuracy 99.1% 99.2% 99.3% 99% 99% 98.6% 99.1% 98.3%

PGD-ℓ∞ 90.3% 0.4% 0.0% - - 51.0% 65.2% 62.7%

FGSM 94.9% 68.3% 6.4% 85% 34% 81.4% 85.5% 82.8%

PGD-Foolbox 92.1% 8.5% 0.1% 86% 13% 65.8% 73.5% 69.2%

MIM 92.3% 11.2% 0.1% 85% 17% 70.7% 76.7% 71.0%

ℓ∞ attacks (ǫ = 0.3) 90.3% 0.4% 0.0% 77% 8% 51.0% 65.2% 62.7%

PGD-ℓ2 68.8% 69.2% 38.7% - - 64.1% 67.9% 70.2%

PGD-Foolbox 88.9% 77.9% 48.7% 63% 87% 75.6% 80.3% 78.4%

Gaussian Noise 98.9% 98.6% 98.9% 89% 98% 97.7% 98.6% 97.2%

Boundary Attack 18.2% 81.4% 62.1% 91% 83% 73.6% 71.8% 72.4%

DeepFool 93.0% 86.8% 59.5% 41% 83% 81.7% 87.3% 80.7%

Pointwise Attack 40.6% 95.1% 96.7% 87% 94% 90.8% 85.9% 89.6%

DDN 63.9% 70.5% 40.0% - - 62.5% 64.6% 69.5%

CWL2 79.6% 74.5% 44.8% - - 72.1% 72.4% 74.5%

ℓ2 attacks (ǫ = 2.0) 13.6% 69.2% 38.5% 39% 80% 61.9% 60.1% 67.9%

PGD-ℓ1 61.8% 51.1% 74.6% - - 61.2% 66.5% 70.4%

Salt & Pepper 62.1% 96.4% 97.7% 96% 95% 94.6% 90.6% 89.1%

Pointwise Attack 5.3% 83.3% 89.1% 82% 78% 65.3% 45.4% 70.7%

ℓ1 attacks (ǫ = 10) 4.2% 43.4% 70.0% 82% 78% 52.6% 39.2% 65.0%

All attacks 3.7% 0.4% 0.0% 39% 8% 42.1% 34.9% 58.4%

techniques whenever a gradient is needed, and the robust-

ness against all attacks for B-ABS and ABS is an upper

bound based on the reported results. Further, they used ep-

silon balls of radii (0.3,1.5,12) for (ℓ∞, ℓ2, ℓ0) adversaries.

Moreover, they used an ℓ0 perturbation model of a higher

radius and evaluated against ℓ0 attacks. So the reported

number is a near estimate of the ℓ1 adversarial accuracy.

B.2. CIFAR10 results

Expanded table of results Table 4 contains the full table

of results for all attacks on all models on the CIFAR10

dataset. All attacks were run on a subset of the first 1000

test examples with 10 random restarts, with the exception

of Boundary Attack, which by default makes 25 trials per

iteration, and DDN attack, which does not benefit from

restarts owing to a deterministic starting point. Further note

that salt & pepper and pointwise attacks in the ℓ1 section are

technically ℓ0 attacks, but produce perturbations in the ℓ1
ball. Finally, it is clear here that while the training against

an ℓ1 PGD adversary defends against said PGD adversary, it

does not seem to transfer to robustness against other attacks.

C. Experimental details

C.1. Hyperparameters for PGD adversaries

In this section, we describe the parameters used for all PGD

adversaries in this paper.

MNIST The ℓ∞ adversary used a step size α = 0.01
within a radius of ǫ = 0.3 for 50 iterations.

The ℓ2 adversary used a step size α = 0.1 within a radius

of ǫ = 2.0 for 100 iterations.

The ℓ1 adversary used a step size of α = 0.8 within a radius

of ǫ = 10 for 50 iterations. By default the attack is run with

two restarts, once starting with δ = 0 and once by randomly

initializing δ in the allowable perturbation ball. k1 = 5, k2 =

20 as described in A.1.

At test time, we increase the number of iterations to

(100, 200, 100) for (ℓ∞, ℓ2, ℓ1).

CIFAR10

The ℓ∞ adversary used a step size α = 0.003 within a radius

of ǫ = 0.03 for 40 iterations.

The ℓ2 adversary used a step size α = 0.05 within a radius

of ǫ = 0.5 for 50 iterations.

The ℓ1 adversary used a step size α = 1.0 with ǫ = 12 for

50 iterations. k1 = 5, k2 = 20 as described in A.1.

At test time, we increase the number of iterations to

(100, 500, 100) for (ℓ∞, ℓ2, ℓ1).

C.2. Training hyperparameters

In this section, we describe the parameters used for adver-

sarial training.
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Table 4: Summary of adversarial accuracy results for CIFAR10

P∞ P2 P1 MAX AVG MSD

Clean accuracy 83.3% 90.2% 73.3% 81.0% 84.6% 81.1%

PGD-ℓ∞ 50.3% 48.4% 29.8% 44.9% 42.8% 48.0%

FGSM 57.4% 43.4% 12.7% 54.9% 51.9% 53.7%

PGD-Foolbox 52.3% 28.5% 0.6% 48.9% 44.6% 53.5%

MIM 52.7% 30.4% 0.7% 49.9% 46.1% 50.7%

ℓ∞ attacks (ǫ = 0.03) 50.7% 28.3% 0.2% 44.9% 42.5% 48.0%

PGD-ℓ2 59.0% 62.1% 28.9% 64.1% 66.9% 66.6%

PGD-Foolbox 61.6% 64.1% 4.9% 65.0% 68.0% 68.2%

Gaussian Noise 82.2% 89.8% 62.3% 81.3% 84.3% 80.9%

Boundary Attack 65.5% 67.9% 2.3% 64.4% 69.2% 69.4%

DeepFool 62.2% 67.3% 0.9% 64.4% 67.4% 66.1%

Pointwise Attack 80.4% 88.6% 46.2% 78.9% 83.8% 79.8%

DDN 60.0% 63.5% 0.1% 64.5% 67.7% 67.0%

CWL2 62.0% 71.6% 0.1% 66.9% 71.5% 64.7%

ℓ2 attacks (ǫ = 0.05) 57.3% 61.6% 0.0% 61.7% 65.0% 64.3%

PGD-ℓ1 16.5% 49.2% 69.1% 39.5% 54.0% 53.4%

Salt & Pepper 63.4% 74.2% 35.5% 75.2% 80.7% 73.9%

Pointwise Attack 49.6% 62.4% 8.4% 63.3% 77.0% 69.7%

ℓ1 attacks (ǫ = 12) 16.0% 46.6% 7.9% 39.4% 54.0% 53.0%

All attacks 15.6% 27.5% 0.0% 34.9% 40.6% 47.0%

MNIST For all the models, we used the Adam optimizer

without weight decay, and used a variation of the learning

rate schedule from Smith (2018), which is piecewise linear

from 0 to 10−3 over the first 6 epochs, and down to 0 over

the last 9 epochs.

We perform a large hyperparameter search for each of the

MAX, AVG, MSD models, by training them for 15 epochs

on all combinations of the following step sizes: α1 = {0.75,

0.8, 1.0, 2.0}, α2 = {0.1, 0.2}, α∞ = {0.01, 0.02, 0.03}.

Also, we find that setting the maximum value of learning

rate to 10−3 works best among other values that we experi-

ment on.

The MSD adversary used step sizes of α = (0.01, 0.1, 0.8)
for the (ℓ∞, ℓ2, ℓ1) directions within a radius of ǫ =
(0.3, 2.0, 10) for 100 iterations.

The MAX approach used step sizes of α = (0.01, 0.1, 1.0)
for the (ℓ∞, ℓ2, ℓ1) directions within a radius of ǫ =
(0.3, 2.0, 12) for (50, 100, 100) iterations respectively. We

had to make an early stop at the end of the fourth epoch,

since further training made the model biased towards ℓ∞
robustness. We also had to increase the number of restarts

and attack iterations for the ℓ1 PGD attack.

The AVG approach used step sizes of α = (0.01, 0.2, 1.0)
for the (ℓ∞, ℓ2, ℓ1) directions within a radius of ǫ =
(0.3, 2.0, 12) for (50, 100, 50) iterations respectively. Note

that we had to change the perturbation model for the ℓ1 ad-

versary to make it relatively stronger in-order to “balance”

the trade-offs between different perturbation models.

Finally, we train the standard P1, P2, P∞ models for an

extended period till 20 epochs with respective step sizes α1

= 1.0, α2 = 0.1, and α∞ = 0.01.

CIFAR10 For all the models, we used the SGD optimizer

with momentum 0.9 and weight decay 5 · 10−4. We used a

variation of the learning rate schedule from Smith (2018) to

achieve superconvergence in 50 epochs, which is piecewise

linear from 0 to 0.1 over the first 20 epochs, down to 0.005

over the next 20 epochs, and finally back down to 0 in the

last 10 epochs.

The MSD adversary used step sizes of α = (0.003, 0.02,

1.0) for the (ℓ∞, ℓ2, ℓ1) directions within a radius of ǫ =
(0.03, 0.5, 12) for 50 iterations.

The MAX adversary used step sizes of α = (0.005, 0.05,

1.0) for the (ℓ∞, ℓ2, ℓ1) directions within a radius of ǫ =
(0.03, 0.3, 12) for (40, 50, 50) iterations respectively. We

do an early stop at epoch 45 for best accuracy.

The AVG adversary used step sizes of α = (0.003, 0.05, 1.0)
for the (ℓ∞, ℓ2, ℓ1) directions within a radius of ǫ =
(0.03, 0.3, 12) for (40, 50, 50) iterations respectively.

Note: For obtaining the best-performing MAX and AVG

models, we artificially balance the size of the ℓ2 perturbation

region, reducing its radius to 0.3 from the actual threat

model of radius 0.5.
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Table 5: Comparison with Tramèr & Boneh (2019) on MNIST (higher is better). Results for all models except MSD are

taken as is from Tramèr & Boneh (2019)

Vanilla Adv∞ Adv1 Adv2 AdvAVG AdvMAX MSD

Clean accuracy 99.4% 99.1% 98.9% 98.5% 97.3% 97.2% 98.3%

ℓ∞ attacks (ǫ = 0.3) 0.0% 91.1% 0.0% 0.4% 76.7% 71.7% 75.9%

ℓ2 attacks (ǫ = 2.0) 12.4% 12.1% 50.6% 71.8% 58.3% 56.0% 67.9%

ℓ1 attacks (ǫ = 10) 8.5% 11.3% 78.5% 68.0% 53.9% 62.6% 74.8%

All attacks 0.0% 6.8% 0.0% 0.4% 49.9% 52.4% 65.2%

Table 6: Comparison with Tramèr & Boneh (2019) on CIFAR10 (higher is better). Results for all models except MSD are

taken as is from (Tramèr & Boneh, 2019)

Vanilla Adv∞ Adv1 AdvAVG AdvMAX MSD

Clean accuracy 95.7% 92.0% 90.8% 91.1% 91.2% 92.0%

ℓ∞ attacks (ǫ = 4
255 ) 0.0% 71.0% 53.4% 64.1% 65.7% 66.8%

ℓ1 attacks (ǫ = 2000
255 ) 0.0% 16.4% 66.2% 60.8% 62.5% 65.3%

All attacks 0.0% 16.4% 53.1% 59.4% 61.1% 63.2%

D. Comparison with Tramèr & Boneh (2019)

In this section, we compare the results of our trained MSD

model with that of Tramèr & Boneh (2019), who study the

theoretical and empirical trade-offs of adversarial robust-

ness in various settings when defending against multiple

adversaries. Training methods presented by them in their

comparisons, namely AdvAVG and AdvMAX closely resem-

ble the simpler approaches discussed in this paper: AVG and

MAX respectively. We use the results as is from their work,

and additionally compare the position of our MSD models

at the revised thresholds used by Tramèr & Boneh (2019).

We make our best attempt at replicating the same attack

strengths as of those used in the evaluation in Tramèr &

Boneh (2019). We use all attacks from the Foolbox library,

apart from the PGD ℓ1 or SLIDE attack (Tramèr & Boneh,

2019). Further, we do not make multiple random restarts for

these comparisons, which is in line with their evaluation.

The results of Tables 5 and 6 show that the relative advan-

tage of MSD over simpler techniques does hold up. The

MSD model was not retrained for the comparison on the

MNIST dataset since it was trained to be robust to the same

perturbation region in the main paper as well.

In case of CIFAR10, we train a model using the WideRes-

Net architecture (Zagoruyko & Komodakis, 2016) with 5

residual blocks and a widening factor of 10, as used by

Tramèr & Boneh (2019). It may be noted that this model

has 4 times more parameters than the pre-activation version

of ResNet which was used for the comparisons in the main

paper. Further, for the CIFAR10 results in Table 6, the mod-

els are trained and tested only for ℓ∞ and ℓ1 adversarial

perturbations with ǫ = ( 4
255 , 2000

255 ) ∼(0.0157, 7.84). Note

that the size of the perturbation regions considered in the

main paper is strictly larger than these perturbation regions.

We emphasize that the evaluation method adopted in the

main paper is stronger than that in this comparison. This

may also be noted from the results in Table 5, where the

same MSD model (without retraining) achieves nearly 7%

higher accuracy of 65.2% against all attacks that were con-

sidered by Tramèr & Boneh (2019), while the same model

achieved an overall robust accuracy of 58.4% in our evalua-

tion in Table 1 in the main paper. These differences can be

largely attributed to:

1. Use of random restarts: We observe in our experi-

ments that using up to 10 restarts for all our attacks

leads to a decrease in model accuracy from 5 to 10%

across all models. Tramèr & Boneh do not mention

restarting their attacks for these models and so the ro-

bust accuracies for their models in Tables 5, 6 could

potentially be lowered with random restarts.

2. Larger Suite of Attacks Used: The attacks used by

Tramèr & Boneh in case of the CIFAR10 dataset are

PGD, EAD (Chen et al., 2017) and Pointwise Attack

(Schott et al., 2019) for ℓ1; PGD, C&W (Carlini &

Wagner, 2017) and Boundary Attack (Brendel et al.,

2017) for ℓ2; and PGD for ℓ∞. We use a more expan-

sive suite of attacks as shown in Appendix B. Some

attacks like DDN, which proved to be strong adver-

saries in most cases, were not considered by them.

Our observations re-emphasize the importance of perform-

ing multiple restarts and using a broad suite of attacks in

order to be able to best determine the robust performance of

a proposed algorithm.
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E. Analyzing learned Filters for MNIST

As described in § 5.1, we use a simple 4 layer CNN model

to classify MNIST digits. Each of the two convolutional

layers has 5x5 filters. Specifically, the first layer contains 32

such filters. We begin our analysis by observing the learned

filters of an ℓ∞ robust model. We observe that many of the

learned filters are extremely sparse with only one non-zero

element as shown in Figure 6a. Interestingly, such a view

is unique to the case of the ℓ∞ robust model and is not

observed in ℓ2 (Figure 6b) and ℓ1 (Figure 6c) robust models.

The presence of such learned filters that act as thresholding

filters, due to the immediately followed activation layer, has

been hypothesized to be the reason for gradient masking

in such models by Madry et al. (2018); Tramèr & Boneh

(2019). The hypothesis is in line with our experimental cor-

relations of ℓ∞ model being the only standard model that

performs poorly against decision-based adversaries while

being significantly robust to first-order adversaries. There-

fore, we go beyond this preliminary analysis to observe the

initial layers of MSD (Figures 7a, 7b), MAX (Figures 8a,

8b), AVG (Figures 9a, 9b) models. In all the three cases,

we have two models that are almost identically trained, but

with different ℓ∞ step sizes: α∞ = 0.01 on the left and

α∞ = 0.03 on the right. While we display results only on

two extreme settings of relative attack step-sizes, we find

that changing the relative step size of different PGD adver-

saries can help reduce the number of thresholding filters in

the MSD approach, which also leads to better accuracies

against decision-based attacks like the Pointwise Attack.

However, the MAX and AVG models are nearly invariant to

the individual attack step-sizes.

As a result, in order to achieve reasonable performance

in case of MAX and AVG models against decision-based

attacks, we had to employ methods to manipulate the per-

turbation models in an ‘ad-hoc’ manner. More specifically,

in case of MAX we had to increase the number of restarts

of the ℓ1 attack during training, and perform an early stop

at the end of the fourth epoch (Figure 10a) since further

training biased the model towards ℓ∞ robustness, and made

it susceptible to decision-based attacks. In case of AVG, we

had to increase the maximum radius of the ℓ1 attack to 12

(Figure 10b). It is worth noting that both the approaches

help cosmetically strengthen the relative effect of the ℓ1
attack and help reduce the number of sparse filters. We ob-

serve that these models perform significantly better against

decision-based attacks as opposed to those in Figures 8, 9.

Finally, we emphasize that while learning sparse convolu-

tion filters and the susceptibility to gradient-free attacks is

often correlated, there is no consistent relation between the

“number” of such filters and the final model performance

or the presence of gradient masking. We perform this em-

pirical analysis for completeness to follow up on previous

Table 7: Performance on CIFAR-10-C

Accuracy

Standard model 66.0%

P∞ 75.0%

P2 82.7%

P1 57.8%

MAX 70.8%

AVG 76.8%

MSD 74.2%

work by Madry et al. (2018), and it comes with no formal

statements. In fact, a model may perform better against

decision-based attacks even if it has more sparse filters than

another model. We hope that these preliminary observations

encourage further exploration around the phenomenon of

gradient masking in adversarially robust models.

F. Attacks outside the perturbation model

In this section, we present some additional experiments ex-

ploring the performance of our model on attacks which lie

outside the perturbation model. Note that this is presented

only for exploratory reasons and there is no principled rea-

son why the adversarial defenses should generalize beyond

the perturbation model defended against.

Common corruptions We measure the performance of

all the models on CIFAR-10-C, which is a CIFAR10 bench-

mark which has had common corruptions applied to it (e.g.

noise, blur, and compression). We report the results in Ta-

ble 7. We find that that, apart from the P1 model, the rest

achieve some improved robustness against these common

corruptions above the standard CIFAR10 model.

Defending against ℓ1 and ℓ∞ and evaluating on ℓ2 We

also briefly study what happens when one trains against

ℓ1 and ℓ∞ perturbation models, while evaluating against

the ℓ2 adversary. Specifically, we take the MSD approach

on MNIST and simply remove the ℓ2 adversary from the

perturbation model. This results in a model which has its ℓ1
and ℓ∞ robust performance against a PGD adversary drop by

1% and its ℓ2 robust performance against a PGD adversary

(which it was not trained for) drops by 2% in comparison to

the original MSD approach on all three perturbation models.

As a result, we empirically observe that including the ℓ2
perturbation model in this setting actually improved overall

robustness against all three perturbation models. Unsurpris-

ingly, the ℓ2 performance drops to some degree, but the

model does not lose all of its robustness.
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(a) P∞ Model (b) P2 Model (c) P1 Model

Figure 6: A view of each of the (5x5) learned filters of the first layer of P∞, P2, P1 models trained on the MNIST dataset.

While there are many learned filters in the P∞ model that have only one non-zero element (rest of the values are nearly

zero), such a phenomenon is absent in P2, P1 models.

(a) MSD Model (α1 = 0.8, α2 = 0.1, α∞ = 0.01) (b) MSD Model (α1 = 0.8, α2 = 0.1, α∞ = 0.03)

Figure 7: A view of each of the (5x5) learned filters of the first layer of MSD models trained on the MNIST dataset. The

training hyper-parameters for the left and right images only differ in the step-size for the ℓ∞ attack, where α∞ = 0.01 for

the left and α∞ = 0.03 for the right image. The figure suggests how adjusting the relative step-sizes can help reduce the

occurrence of sparse filters in case of MSD models.

(a) MAX Model (α1 = 0.8, α2 = 0.1, α∞ = 0.01) (b) MAX Model (α1 = 0.8, α2 = 0.1, α∞ = 0.03)

Figure 8: A view of each of the (5x5) learned filters of the first layer of MAX models trained on the MNIST dataset. The

training hyper-parameters for the left and right images only differ in the step-size for the ℓ∞ attack, where α∞ = 0.01 for

the left and α∞ = 0.03 for the right image. The learned filters are nearly identical for both models and indicate how there

may not be a natural way of balancing the trade-offs between different perturbation models in the training schedule for MAX

models.
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(a) AVG Model (α1 = 0.8, α2 = 0.1, α∞ = 0.01) (b) AVG Model (α1 = 0.8, α2 = 0.1, α∞ = 0.03)

Figure 9: A view of each of the (5x5) learned filters of the first layer of AVG models trained on the MNIST dataset. The

training hyper-parameters for the left and right images only differ in the step-size for the ℓ∞ attack, where α∞ = 0.01 for

the left and α∞ = 0.03 for the right image. The learned filters are nearly identical for both models and indicate how there

may not be a natural way of balancing the trade-offs between different perturbation models in the training schedule for AVG

models.

(a) Final MAX Model (b) Final AVG Model

Figure 10: A view of each of the (5x5) learned filters of the first layer of MAX and AVG models trained on the MNIST

dataset. These models are not susceptible to decision-based attacks as opposed to those in Figures 8, 9. Notably, we had to

employ ‘ad-hoc’ techniques to manipulate the individual perturbation models to be able to train these models. However,

even after such manipulations, the accuracy against the worst-case adversary in the union of ℓ∞, ℓ2, ℓ1 perturbation models

for MAX, AVG approaches is considerably worse than the MSD approach.


