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Abstract

Multi-Task Learning (MTL) is a well established
paradigm for jointly learning models for multiple
correlated tasks. Often the tasks conflict, requir-
ing trade-offs between them during optimization.
In such cases, multi-objective optimization based
MTL methods can be used to find one or more
Pareto optimal solutions. A common requirement
in MTL applications, that cannot be addressed by
these methods, is to find a solution satisfying user-
specified preferences with respect to task-specific
losses. We advance the state-of-the-art by de-
veloping the first gradient-based multi-objective
MTL algorithm to solve this problem. Our unique
approach combines multiple gradient descent with
carefully controlled ascent to traverse the Pareto
front in a principled manner, which also makes it
robust to initialization. The scalability of our algo-
rithm enables its use in large-scale deep networks
for MTL. Assuming only differentiability of the
task-specific loss functions, we provide theoreti-
cal guarantees for convergence. Our experiments
show that our algorithm outperforms the best com-
peting methods on benchmark datasets.

1. Introduction
Multi-Task Learning (MTL) is a paradigm where data for
multiple related tasks is used to learn models for all the
tasks simultaneously. It aims to improve over learning each
task independently by utilizing the shared signal in the data
through an inductive transfer mechanism (Caruana, 1997).
Deep architectures based on MTL have led to state-of-the-
art models in many areas, such as computer vision (Liu et al.,
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2019a), natural language processing (Liu et al., 2019b) and
bioinformatics (Ramsundar et al., 2015).

A common approach to train MTL models is by minimiz-
ing the weighted sum of the empirical losses for each task,
also known as the linear scalarization approach. However,
this formulation cannot model competing tasks that arise
in many real-world applications, e.g., during drug design
we may want to simultaneously increase drug effectiveness
and decrease development cost. It may not be possible to
optimize all the objectives simultaneously and trade-offs
between tasks may be required. In such cases, Pareto opti-
mal solutions, obtained through multi-objective optimiza-
tion, are natural choices where each optimal solution is
non-dominated, i.e., no objective value can be improved
further without degrading some other objectives. There can
be multiple (possibly infinite) Pareto optimal solutions, rep-
resented by the Pareto front, each solution with a different
trade-off between the conflicting objectives.

The efficacy of multi-objective optimization for MTL was
first shown by Sener & Koltun (2018). Their algorithm ex-
tends the Multiple Gradient Descent Algorithm (Désidéri,
2012) to handle high-dimensional gradients, thereby making
it suitable for large-scale MTL with deep networks. How-
ever, their method finds a single arbitrary solution from the
Pareto set and cannot be used by MTL designers to explore
solutions with different trade-offs. This limitation was rec-
ognized by Lin et al. (2019) who partly address this problem
by decomposing the MTL problem and solving multiple sub-
problems with different trade-offs. Their method yields a
set of Pareto optimal solutions distributed over the Pareto
front.

In many MTL applications, the designer may want to ex-
plore solutions with specific trade-offs in the form of prefer-
ences or priorities among the tasks. For instance, in multi-
task recommender systems (Milojkovic et al., 2019) which
optimizes semantic relevance, content quality and revenue,
one may want (one or more) solutions that prioritizes rele-
vance over quality. Similar requirements arise in, e.g., emo-
tion recognition (Zhang et al., 2017) and the autonomous
driving self-localization problem (Wang et al., 2018). For-
mally, given preferences rj for each task, a Pareto optimal
solution is required such that for any two tasks, if ri ě rj ,
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(d) EPO Search

Figure 1. (Color Online) Pareto front (solid curve) for two loss functions l1, l2 and solutions on the Pareto front (blue circles) for different
preferences (dashed rays) obtained by (a) Linear Scalarization: cannot find solutions in the concave part; (b) MGDA-based methods
(e.g., (Sener & Koltun, 2018)): finds arbitrary Pareto optimal solutions (does not use input preference vectors); (c) Pareto MTL (Lin
et al., 2019): divides the Pareto front using multiple reference vectors to find solutions in the sub-regions; (d) EPO Search: can find exact
solutions at any given preference vector. See section 3.2 for more details and section 5.1 for experiment settings.

then the corresponding losses follow li ď lj . We call such a
solution a preference-specific Pareto optimal solution.

Finding preference-specific Pareto optimal solutions is chal-
lenging and cannot be solved by either linear scalarization or
existing multi-objective MTL methods. A preference vector
determines a direction and hence a point on the Pareto front.
Current methods cannot be used to reach a specific point on
the Pareto front (see fig. 1 and section 3.2). We advance the
state-of-the-art in multi-objective MTL methods by solving
this problem. Our contributions in this paper are:

• We develop the first gradient-based multi-objective MTL
algorithm, called Exact Pareto Optimal (EPO) Search, to
find a preference-specific Pareto optimal solution1.

• The unique approach of EPO Search combines gradient
descent and carefully controlled ascent, enabling it to:
– traverse the Pareto front until the required solution is

reached, thereby making it robust to initialization.
– find a Pareto optimal solution closest to the preference

if an exact solution does not exist.
– find multiple exact solutions on the Pareto front in a

principled manner, if multiple preferences are given.
– scale linearly with the gradient dimension and thereby

efficiently train large-scale deep networks for MTL.
• Assuming only differentiability of loss functions (they

need not be convex), we prove that EPO Search converges
to the exact preference-specific Pareto optimal.

• Experiments on synthetic and real data demonstrate the
superiority of EPO Search over state-of-the-art methods.

2. Related Work
MTL has been studied extensively – see (Zhang & Yang,
2018) for a general survey and (Ruder, 2017) for a survey
of neural MTL models. The most common neural approach
is to learn shared representations from data of related tasks,

1Python implementation available at: https://github.
com/dbmptr/EPOSearch

and optimization typically involves linear scalarization and
its variants, such as those with adaptive weights (Chen et al.,
2018; Heydari et al., 2019). Competing tasks and the trade-
offs between them cannot be modeled by such methods.

The problem of simultaneously optimizing multiple, pos-
sibly conflicting criteria has been studied in Multiobjec-
tive Optimization (MOO). Excellent surveys can be found
in (Marler & Arora, 2004; Gandibleux, 2006; Deb, 2014;
Wiecek et al., 2016). Gradient-free approaches are com-
monly used in MOO solvers (e.g., evolutionary algorithms
(Deb, 2001; Coello, 2006), continuation methods (Schütze
et al., 2005; Ringkamp et al., 2012) and deterministic ap-
proaches (Ehrgott, 2005; Evtushenko & Posypkin, 2014)).
In comparison, gradient-based approaches (Fliege & Svaiter,
2000; Fliege et al., 2009; Désidéri, 2012; Fliege & Vaz,
2016; Peitz & Dellnitz, 2018) are computationally less in-
tensive (Zerbinati et al., 2011).

Various kinds of preferences, such as objective weights, goal
specification and desirability thresholds, can be incorporated
in a MOO, as surveyed in (Rachmawati & Srinivasan, 2006;
Bechikh et al., 2015). Reference point or weight vector
based methods that can model priorities between criteria,
e.g., (Deb & Sundar, 2006; Cheng et al., 2016), typically
find regions in the Pareto front close to the given references.
The weighted Tchebycheff method (Steuer, 1989) and its
variants (see Wiecek et al. (2016) for a survey), formulate
a single objective optimization (SOO) problem using the
given objective function weights. Although its solution can
be preference-specific for some weights, this method can-
not explore the Pareto Front for all trade-off combinations
(Miettinen, 1998). To our knowledge, no previous gradient-
based MOO algorithm can find an exact preference-specific
Pareto optimal solution.

Pareto optimal solutions with different trade-offs were first
modeled in MTL through gradient-based MOO by Sener
& Koltun (2018). Their approach was generalized by Lin
et al. (2019) whose method yields multiple Pareto optimal

https://github.com/dbmptr/EPOSearch
https://github.com/dbmptr/EPOSearch
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solutions with different trade-offs. This work is closest to
ours and we give a technical description in section 3.2.

3. Preliminaries
We consider m tasks, each with a non-negative objective
function, lj : Rn Ñ R`, j P rms. The vector valued
function l : Rn Ñ Rm is a mapping from the Solution space
Rn to the Objective space Rm. We use l to denote both the
loss function and a point in Rm, which should be clear from
the context. The range of l, denoted by O, is a subset of the
positive cone:

Rm` :“ tl P Rm | lj ě 0 @j P rmsu . (1)

The partial ordering for any two points l1, l2 P Rm, denoted
by l1 ě l2 is defined by l1´ l2 P Rm` , which implies l1j ě l2j
for every j P rms and strict inequality l1 ą l2 occurs when
there is at least one j for which l1j ą l2j . Geometrically,
l1 ą l2 means that l1 lies in the positive cone pivoted at l2,
i.e. l1 P tl2u ` Rm` :“

 

l2 ` l
ˇ

ˇ l P Rm`
(

, and l1 ‰ l2.

In the context of minimization, a solution θ1 P Rn is dom-
inated by another solution θ2 P Rn iff lpθ1q ě lpθ2q.
Note that lpθ1q č lpθ2q if θ1 is not dominated by θ2, i.e.
lpθ1q R tlpθ2qu`Rm` . A solution θ˚ is Pareto optimal if it
is not dominated by any other solution. The set of all global
Pareto optimal solutions is given by

Pglo :“ tθ˚ P Rn | @θ P Rn ´ tθ˚u, lpθ˚q č lpθqu . (2)

We are interested in local Pareto optimal solutions given by

P :“

$

&

%

θ˚ P Rn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D N pθ˚q Ă Rn |
@θ P N pθ˚q ´ tθ˚u,
lpθ˚q č lpθq

,

.

-

, (3)

where N pθ˚q is an open neighbourhood of θ˚. Note that
Pglo Ă P . The set of multi-objective values of the Pareto
optimal solutions, lpPq Ă O, is called the Pareto front.

3.1. Gradient-based Multi-Objective Optimization

In gradient-based MOO, we find a Pareto optimal solution
by starting from an arbitrary initialization θ0 P Rn and
iteratively finding the next solution θt`1 that dominates the
previous one θt (i.e., lt`1 ď lt, where lt :“ lpθtq), by
moving against a direction d with step size η, i.e. θt`1 “

θt´ηd, such that descent happens in every objective, lt`1
j ď

ltj . This can happen only if d has positive angles with the
gradients of every objective function at θt.

Let gj “ ∇θ lj be the gradient of the jth objective function
at θ, and G P Rnˆm be the matrix having gj as its jth

column. The descent direction ddes is given by dTdesgj ě 0
for all j P rms. Thus, moving against ddes, starting from

θ, amounts to a decrease in the objective values, with no
change when dTdesgj “ 0.

Désidéri (2012) showed that descent directions can be found
in the Convex Hull of the gradients, defined by

CHθ :“ tGβ | β P Smu , (4)

where Sm :“
!

β P Rm`

ˇ

ˇ

ˇ

řm
j“1 βj “ 1

)

(5)

is the m´dimensional regular simplex, and their Multiple
Gradient Descent Algorithm (MGDA) converges to a local
Pareto optimal by iteratively using the descent direction

d˚ “ arg min
dPCHθ

}d}22. (6)

Sener & Koltun (2018) design a method to solve (6) that
scales to high-dimensional gradients.

3.2. Problem Statement

Given relative preferences for each task rj ą 0, j P rms,
we want to find a Pareto optimal solution θ˚r P P such that,
if rj ě rj1 then ljpθ˚r q ď lj1pθ

˚
r q.

Limitations of current methods. We briefly discuss possi-
ble approaches to solving this problem with existing MTL
methods and their limitations. Consider linear scalarization
that uses single objective optimization (SOO) where the
preferences can be task-specific weights:

θ˚ “ arg min
θ

spθq “ rT lpθq. (7)

As discussed in (Boyd & Vandenberghe, 2004)[Ch 4.7], if
O is non-convex in Rm then it may not be possible to find
such a θ˚r ; and the desired θ˚r can be found only if O is
convex near lpθ˚r q and initialization θ0 to solve (7) is done
to ensure that θ0 is not far from θ˚r .

In MGDA-based algorithms (e.g., (Sener & Koltun, 2018)),
using ddes we can only find a solution that dominates the
previous one, without any control over moving towards the
preference. Thus, depending on the initialization θ0, the
algorithm may reach any local Pareto optimal. This has also
been empirically verified by Lin et al. (2019).

The Pareto MTL (PMTL) algorithm by Lin et al. (2019)
finds multiple solutions on the Pareto front. Their algo-
rithm uses several reference vectors uk, k “ 1, . . . ,K to
partition the solution space into K sub-regions Ωk :“
 

θ P Rn
ˇ

ˇ uTk lpθq ě uTk1 lpθq @k
1 ‰ k

(

and then has two
phases. In the first phase, starting from an initial point,
they find a point θ0r P Ωk, such that the corresponding uk
is the preferred direction of optimal multi-objective value
lpθ˚r q. In the second phase, they iteratively use ddes to
reach a Pareto optimal θ˚ P P that is close to θ˚r to find
lpθ˚q P lpPq X lpΩkq. However, their method does not
guarantee that the outcome of second phase θ˚ also lies in
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Ωk. Moreover, to reach a desired preference, they have to
increase the number of uk exponentially with increase in
number of tasks m, making it practically infeasible. Thus,
although their reference vectors can be based on user pref-
erences, their method, by design, does not reach the exact
preference but only in the sub-regions of the Pareto front
between the references (see fig. 1).

4. Exact Pareto Optimal Search
An Exact Pareto optimal (EPO) solution with respect to a
preference vector r belongs to the set:

Pr “
 

θ˚ P P
ˇ

ˇ r1l
˚
1 “ ¨ ¨ ¨ “ rj l

˚
j “ ¨ ¨ ¨ “ rml

˚
m

(

, (8)

where l˚j “ ljpθ
˚q. Note that for any EPO solution θ˚r ,

lpθ˚r q is a point on the Pareto front intersecting the ray to-
wards r´1 :“ p1{r1, ¨ ¨ ¨ , 1{rmq (see fig. 1(d)) and r d l
is proportional to 1 “ p1, ¨ ¨ ¨ , 1q P Rm, where d is the
element-wise product operator. Clearly any EPO solution is
a preference-specific Pareto optimal solution. We now de-
velop our algorithm to find EPO solutions. Detailed proofs
of all the theoretical results are in Appendix A.

To find EPO solutions, we not only have to find descent
directions towards the Pareto front but also towards solutions
that satisfy the condition in (8). To achieve the latter, we
define a new criterion. For any point θ in the solution space
Rn, we define the Non-Uniformity of its objective values
with respect to a given preference vector r as

µrplpθqq “
m
ÿ

j“1

l̂jpθq log

˜

l̂jpθq

1{m

¸

, (9)

“ KL

ˆ

l̂pθq
ˇ

ˇ

ˇ

1

m

˙

, (10)

where l̂j is the weighted normalization

l̂j “
rj lj

řm
j1“1 rj1 lj1

. (11)

KL divergence of l̂ from the uniform 1{m befits the descrip-
tion of non-uniformity as it quantifies the extent to which
rj lj are unequal from each other: µrplq “ 0 when all the
rj lj are equal, otherwise it is strictly positive. Moreover,
the weighted normalized vector l̂ always lies in Sm. Fig. 2
plots µr for 3 objective functions and a preference vector.

4.1. Achieving Uniformity

We first find a direction such that if we move against it,
starting from θ, then the non-uniformity of the new solu-
tion is less than that of θ. We use a linear combination of
the m known gradients gj P Rn to construct the required
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Figure 2. (Color Online) Variation of non-uniformity µr on the 3d
simplex S3, for a specific preference vector r “ r0.6, 0.2, 0.2s.
The view is from p1, 1, 1q direction towards origin.

“balancing” direction:

dbal “
m
ÿ

j“1

gjaj (12)

where the weights aj are the corresponding relative de-
viations from overall non-uniformity µrplq, that we call
adjustments:

aj “ rj

˜

log

˜

l̂j
1{m

¸

´ µrplq

¸

. (13)

We prove that dbal guarantees decrease in non-uniformity.

Theorem 1. If all the objective functions are differentiable,
then for any direction d P Rn with dT dbal ą 0, there exists
a step size η0 ą 0, such that

µrplpθ ´ ηdqq ď µrplpθqq , @η P r0, η0s. (14)

Proof Sketch. A first order Taylor expansion of the multi-
objective loss lpθ ´ ηdq is used to lower bound µrplpθqq ´
µrplpθ ´ ηdqq. We then show that this lower bound is posi-
tive if dT dbal ą 0.

Notice that the adjustments aj are non-negative for some
objectives and negative for the rest, i.e., unless all rj lj are
equal, there will always be some objectives whose gradient
terms in dbal are negative.

Let J “ tj | gTj dbalą 0u be the index set of all gradients
that lie in the positive half plane of dbal, and J̄ “ rms ´ J
be the index set for the gradients in the negative half plane
of dbal. If we use dbal to move to a new solution θt`1

η “

θt ´ ηdbal, then for some step size η0 ą 0,

ljpθ
t`1
η q ă ljpθ

tq, @j P J, (15a)

and ljpθt`1
η q ě ljpθ

tq, @j P J̄ , (15b)
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for any η P p0, η0s. Thus, when dbal is used to update
a point θt, gradient descent happens for objectives in J ,
whereas gradient ascent happens for the objectives in J̄ .

Apart from facilitating a balancing direction in the solution
space Rn, the adjustments a in (13) have interesting prop-
erties in the objective space Rm as well. If we construct m
vectors in Rm by using the gradients as

cj “ GT gj , @j P rms, (16)

then the index sets J and J̄ can be rewritten as

J “ tj | aT cj ą 0u and J̄ “ tj | aT cj ď 0u. (17)

Note that the matrix C “ GTG P Rmˆm with cj as its
columns is a symmetric matrix. Another remarkable prop-
erty of a is its relation with the loss vector l:

Claim 1. The adjustment vector a is perpendicular to the
multi-objective vector l in the objective space Rm

aT l “ 0. (18)

4.2. Achieving Uniformity and Pareto optimality

We now seek a direction that enables us to move from a solu-
tion θt to θt`1 such that either θt`1 dominates θt (lt`1 ď lt)
or has better uniformity (µrplt`1q ď µrpl

tq) or both. In
other words, θt`1 is not dominated by θt (lt`1 č lt). We
solve this problem through linear programming (LP).

From (Désidéri, 2012), we know that a descent direction
in d P CHθt , the convex hull of the gradients at θt, will be
towards the Pareto front. From (4) and (5), d “ Gβ, where
β P Sm, them´dimensional simplex. From Theorem 1, we
know that moving against a direction which makes a positive
angle with dbal “ Ga, will improve uniformity. Combining
the two requirements, we want to find a direction in CHθt

that has maximum angle with dbal, i.e., we maximize

dT dbal “ βTGTGa “ βTCa. (19)

However, once uniformity is achieved, when µrpltq “ 0 or
the multi-objective value of the current iteration lies on the
r´1 ray, we can enter a “pure descent” mode. This is done
by finding a direction in CHθt whose inner product with the
sum of all gradients is maximum. Thus, we maximize

m
ÿ

j“1

dT gj “ βTGTG1 “ βTC1. (20)

Together, (19) and (20) give us our objective function, (24a),
where 1µtr is a scalar indicator for non-zero µrpltq.

In the pure descent mode, i.e., while maximizing (20), we
simply require the constraint of a descent direction:

dT gj “ βTGT gj “ βT cjě0, @j P rms. (21)

Algorithm 1 Update Equations for EPO Search

1: Input: θt P Rn, preference r P Rm, and step size η
2: Objective Values: ltj “ ljpθ

tq, j P rms

3: Gradients: gj “
Blj
Bθ

ˇ

ˇ

ˇ

θt
, j P rms,

G “ rg1, ¨ ¨ ¨ , gms, cj “ GT gj , C “ rc1, ¨ ¨ ¨ , cms.

4: Non-uniformity: µrpltq (using (9))
5: Loss adjustments: a (using (13))
6: Index Sets: J, J̄ , J˚ (using (17), (23))
7: Find β˚ by solving LP (24)
8: Non-dominating direction: dnd “ Gβ˚

9: Output: θt`1 “ θt ´ ηdnd

The non-negative angle of d with each gradient ensures that
all objective values decrease and θt`1 dominates θt.

When maximizing (19), the angle made by d with some
of the gradients gj need to be negative, to allow ascent
for objectives with low values of rj ltj and descent for the
ones with high-values. From (15), we know that ascent can
happen for all the objectives in J̄ if dbal P CHθt . When
dbal R CHθt , we can allow the required d to have negative
angles with the gradients of objectives in J̄ . Since aT cj ď 0,
we achieve this by modifying (21) to βT cj ě aT cj , @j P J̄ .

When dbal does not make positive angles with any of the
gradients, i.e. J is empty and J̄ “ rms, we should not allow
negative angles between d and the gradients, to prevent
ascending all the objectives values simultaneously. This can
be ensured by using a scalar indicator 1J for a non-empty
index set J and further modifying the constraint to:

βT cj ě aT cj 1J , @j P J̄ (22)

Finally, this ascent must be controlled to prevent the objec-
tive values from diverging while improving the uniformity.
This is done by choosing descent for the objectives in the
index set J˚, for the maximum relative objective values in
the tth iteration, given by:

J˚ “

"

j

ˇ

ˇ

ˇ

ˇ

rj l
t
j “ max

j1

 

rj1 l
t
j1
(

*

. (23)

The proof of Theorem 2 shows that this ensures con-
trolled ascent and convergence. Altogether, the final
non-dominating direction dnd “ Gβ˚ is obtained by solv-
ing the following m´dimensional LP:

β˚ “ arg max
βPSm

βTC
`

a 1µtr ` 1
`

1´ 1µtr
˘˘

(24a)

s.t. βT cj ě aT cj 1J , @j P J̄ ´ J˚ (24b)

βT cj ě 0 , @j P J˚, (24c)

We omit superscripts in C, a and J that change in every
iteration to avoid clutter.
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In an iteration t, the LP in (24) either maximizes βTCa
or βTC1, but not both. We prove that, when the latter is
chosen the LP finds a descent direction:

Lemma 1. If µrpltq “ 0, then the non-dominating direction
dnd becomes a descent direction, i.e.

dTndgj ě 0, @j P rms. (25)

When µrpltq ą 0, we require a non-dominating direction
that can either balance r d lt or descend the multi-objective
value lt. The LP also ensures this property:

Lemma 2. Let γ˚ “ aTCβ˚ be the maximum value of the
LP problem (24) when µrpltq ą 0.

If γ˚ ą 0, then dTnddbal ą 0. (26)

If γ˚ ď 0, then dTndgj ě 0, @j P rms. (27)

In case of (26), we know from Theorem 1 that by mov-
ing against dnd, the non-uniformity of lt can be decreased
whereas, in case of (27), dnd becomes a descent direction.

Algorithm 1 shows all the steps in each iteration.

4.3. Convergence

We prove the convergence of our algorithm in two steps.
First we define an admissible set Ar

lt Ă Rm that contains
potential lt`1 “ lpθt`1q values in an iteration. Then we
prove that the sequence of sets tAr

ltu converges to Pr, the
set of exact Pareto optimal solutions, if it exists. To char-
acterize the properties of θt`1 obtained by moving against
dnd, we define some sets in Rm that are illustrated in fig. 3.

Vďlt

Mr
lt

lt

l˚

r´1 Ray

qlt

Ar
lt

Pareto
Front

l2

l1

Figure 3. (Color Online) Illustration of the sets associated with
the admissible set Ar

lt in the objective space R2, at iteration t.
This admissible set contains the multi-objective value lt`1 of next
iteration.

The set of all attainable multi-objective values that dominate
the current multi-objective lt is denoted as

Vďlt “
 

l P O
ˇ

ˇ l ď lt
(

. (28)

The set of all attainable multi-objectives that have better
uniformity than lt is denoted as

Mr
lt “ t l P O | µrplq ď µrpl

tqu. (29)

During descent lt`1 P Vďlt , and a balancing direction leads
to lt`1 P Mr

lt . For the tth iteration, we define a point
qlt P Rm` as

qlt “ λtp1{r1, ¨ ¨ ¨ , 1{rmq (30)

where λt “ max tltjrj | j P rmsu. (31)

λt, and hence qlt, are bounded, as each rj is positive. Using
qlt we define the admissible set as

Ar
lt “

!

l P O
ˇ

ˇ

ˇ
l ď qlt

)

, (32)

which is also bounded. Note its relation with Vďlt :

Lemma 3. The set of dominating multi-objective points is
a subset of the admissible set

Vďlt Ă Ar
lt . (33)

Using lemmas 1, 2 and 3, we can show:

Theorem 2. There exists a step size η0 ą 0, such that
for every η P r0, η0s, the multi-objective value of the new
solution point θt`1 “ θt ´ ηdnd lies in the tth admissible
set

l
`

θt`1
˘

P Ar
lt . (34)

Clearly, the admissible set contains all the points in O
that dominate the lt, i.e. Vďlt Ă Ar

lt . Moreover, when
µrpl

tq ą 0, it also has points with better uniformity than
lt, i.e. Ar

lt XM
r
lt ‰ φ. Therefore, the admissible set con-

tains the required solution for the next iteration, satisfying
both uniformity and dominating properties. A natural conse-
quence of Theorem 2 is the monotonicity of λt and Ar

lt`1 .

Corollary 1. The sequence of relative maximum values
tλtu is monotonic with λt`1 ď λt, which means

Ar
lt`1 Ă Ar

lt , (35)

and the sequence of bounded sets tAr
ltu converges.

An interesting characteristic of λt is that if the
non-uniformity µrpltq “ 0, then lt “ qlt, hence Ar

lt “ Vďlt .

A Pareto solution is regular if its gradient matrix G has rank
m´ 1 (Zhang et al., 2008; Hillermeier, 2001). A necessary
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condition for Pareto optimality is Pareto criticality (Fliege
& Svaiter, 2000; Désidéri, 2012). At a Pareto critical point
θ P Rn in the solution space, there exists a β P Sm such that
Gβ “ 0 P Rn. Previous gradient-based methods attain this
condition at every Pareto optimal solution. In contrast, our
proposed method is designed to find β, and hence meet the
criticality condition, only at exact Pareto optimal solutions.

Claim 2. Let θ˚ P P be a regular Pareto optimal solution.
If the set of exact Pareto optimal solutions Pr is nonempty,
then the non-dominating direction dnd “ Gβ˚ found by the
LP (24) is 0 P Rn if and only if θ˚ P Pr.

Claim 2 shows that when an EPO solution exists, the algo-
rithm does not stop prematurely at a local Pareto Optimal
solution; it traces the Pareto front until an EPO solution is
found. Beyond the mild regularity condition, this claim is
true for certain irregular Pareto solutions as well (discussed
in the proof). Note that if an EPO solution does not exist
for the given r, our algorithm halts, i.e. dnd becomes 0, at
a Pareto optimal solution θ˚ whose multi-objective value
lpθ˚q has least non-uniformity µrplpθ˚qq with respect r.

When a fixed step size is used for every iteration, the multi-
objective values could fluctuate around the r´1 ray before
converging to the EPO. To mitigate this problem we discuss
modifications in our LP that lead to relaxed and restricted
descent trajectories (see fig. 4) in Appendix B.
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(b) Restricted Descent

Figure 4. (Color Online) Modifications to our LP enable us to
reduce and eliminate fluctuations in pure descent mode. See Ap-
pendix B for details.

4.4. Time Complexity

Our method scales linearly with the dimension (n) of the
gradients, since the computation of C “ GTG has runtime
Opm2nq. With the current best LP solver (Cohen et al.,
2019), our LP (24), that has m variables and at most 2m` 1
constraints, has a runtime2 of O˚pm2.38q. In deep MTL
networks, usually n " m.

2O˚ is used to hide mop1q and logOp1q p1{δq factors, δ being
the relative accuracy. See (Cohen et al., 2019) for details.

5. Experiments
5.1. Synthetic Data

We illustrate the behavior of our algorithm using the syn-
thetic data from (Lin et al., 2019). The two objectives to be
minimized are non-convex functions:

l1pθq “ 1´ e
´

›

›

›
θ´ 1?

n

›

›

›

2

2 , (36a)

l2pθq “ 1´ e
´

›

›

›
θ` 1?

n

›

›

›

2

2 , (36b)
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Figure 5. (Color Online) 1d solution space for (36)

where θ P Rn, as shown in fig. 5. The set of attainable
multi-objective values O is also non-convex in the objective
space Rm.

Note that linear scalarization misses any solution in the
concave part of the Pareto front. The method of Sener &
Koltun (2018) cannot use reference vectors (see fig. 1).
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Figure 6. (Color Online) Trajectories of EPO Search (left) and
PMTL (right) in R2 with n “ 20 dimensional solution space,
when initializations are near Pareto optimal, θ0 P B (Top) and are
far, θ0 R B (Bottom).



Exact Pareto Optimal Search

0.0 0.2 0.4 0.6 0.8 1.0

task 1 accuracies

0.0

0.2

0.4

0.6

0.8

1.0

ta
sk

2
a
cc

u
ra

ci
es

baseline

0.0 0.2 0.4 0.6 0.8 1.0

task 1 accuracies

0.0

0.2

0.4

0.6

0.8

1.0

ta
sk

2
a
cc

u
ra

ci
es

0.0 0.2 0.4 0.6 0.8 1.0

task 1 accuracies

0.0

0.2

0.4

0.6

0.8

1.0

ta
sk

2
a
cc

u
ra

ci
es

EPO

PMTL

LinScalar

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

8.50

task 1 loss

ta
sk

2
lo

ss

(a) Multi-MNIST

0.0 0.5 1.0

0.0

0.5

1.0

task 1 loss

ta
sk

2
lo

ss
r−1 Ray

(b) Multi-Fashion

7.5

0.0 0.5 1.0 1.5

0.0

0.5

1.0

6.0

task 1 loss

ta
sk

2
lo

ss

(c) Multi Fashion`MNIST

Figure 7. (Color Online) The top row show the accuracies, and the bottom row losses for 3 datasets. In each figure, x axis corresponds to
task-1 while y axis corresponds to task-2. Different colors indicate different preference vectors, which are shown with corresponding r´1

rays. EPO solutions have the highest per-task accuracy and are closest to the preference vectors.

We run PMTL with the same reference vectors that are given
as preferences to EPO search. The set of Pareto optimal so-
lutions P for the multi-objective functions in (36) is a subset
of the hyper-box B “ tθ P Rn | ´1{

?
n ďn θ ďn 1{

?
nu,

where ďn denotes the partial ordering induced by the pos-
itive cone Rn` in solution space. We test both the methods
when initialization θ0 is randomly sampled from inside and
outside this hyper-box. PMTL is run for 200 iterations while
EPO Search is run for only 80 iterations.

When initialization is inside the hyperbox (fig. 6, top row),
we observe that PMTL, that does not use any uniformity-
based criterion, descends in every step and reaches a Pareto
optimal but not at the preference vectors. On the other hand,
EPO search reaches the preference-specific solutions. When
initialization is outside the hyperbox (fig. 6, bottom row),
we see that EPO Search both descends and ascends in a
controlled manner. It traces the Pareto front to find the
required solutions, which makes it robust to initialization.
No updates are seen in phase 2 of PMTL, when initialization
is outside the hyper-box and far from the preference vectors.
It reaches the Pareto front only in 2 out of 4 runs.

5.2. Real Data

Classification. We use three benchmark datasets: (1) Mul-
tiMNIST, (2) MultiFashion, and (3) Multi-Fashion+MNIST.
In the MultiMNIST dataset (Sabour et al., 2017), two im-
ages of different digits are randomly picked from the origi-
nal MNIST dataset (Lecun et al., 1998), and combined to

form a new image, where one is in the top-left and the other
is in the bottom-right. There is zero padding in the top-right
and bottom-left. The MultiFashion dataset is generated in a
similar manner from the FashionMNIST dataset (Xiao et al.,
2017). In Multi-Fashion+MNIST dataset, one image is from
MNIST (top-left) and the other image is from FashionM-
NIST (bottom-right). In each dataset, there are 120, 000
samples in the training set and 20, 000 samples in the test
set. These are the same datasets used by Lin et al. (2019)3.

For each dataset, there are two tasks: 1) classifying the top-
left image, and 2) classifying the bottom-right image. Cross
entropy losses are used for training. For a fair comparison
with PMTL, we use the same network (LeNet (Lecun et al.,
1998)) used in (Lin et al., 2019) as the MTL neural network.
The baseline for comparison is training the network for in-
dividual tasks. In addition we show the results from linear
scalarization (LinScalar). For all the methods stochastic
gradient descent is used for training with the same hyperpa-
rameters: number of epochs, number of mini-batches and
learning rate. We test the performance of all methods for
the same 5 preference vectors, shown as rays in the bottom
row of fig. 7. Ideal solutions should lie on these rays. Thus,
each method has exactly 5 points corresponding to the test
set losses in the bottom row and the top row shows the test
set accuracies of the corresponding 5 DNN solutions.

The results in fig. 7. show that the per-task accuracy of

3Downloaded from: https://github.com/Xi-L/
ParetoMTL

https://github.com/Xi-L/ParetoMTL
https://github.com/Xi-L/ParetoMTL
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EPO search is higher than that of PMTL in every single run
(top). The test set losses (bottom) show that the solutions
from EPO search are closer to the corresponding preference
vectors, compared to the solutions from PMTL.

We observe that the performance of LinScalar is worse than
both the MOO-based methods. Recall that search direction
is a convex combination of the gradients. In PMTL and
EPO search, this combination is optimally chosen in each
iteration. In LinScalar it is fixed, in every iteration, to
the input user preference (L1 normalized). This causes
opposing gradients to cancel each other and decrease the
magnitude of the resulting update. Thus, update magnitude
of LinScalar is lesser than that of other methods in almost
every iteration. With learning rate and number of iterations
fixed across methods, update magnitude finally determines
proximity to the Pareto front.

Regression. We use the River Flow dataset (Spyromitros-
Xioufis et al., 2016) that has m “ 8 tasks: predicting the
flow at 8 sites in the Mississippi River network. Each sample
contains, for each site, the most recent and time-lagged
flow measurements from 6, 12, 18, 24, 36, 48, 60 hours in
the past. Thus, there are 64 features and 8 target variables.
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Tasks
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�
l

×103

EPO

PMTL

LinScalar

Baseline

Figure 8. (Color Online) Comparison of mean RLP (with standard
deviation; lower is better) of MTL methods after training the same
neural network model to predict flow at 8 sites in the Mississippi
River.

We remove samples with missing values and use 6, 300
samples for training and 2, 700 for testing. We use a fully
connected feed-forward neural network (FNN) with 4 layers
(layerwise sizes: 64Ñ 32Ñ 16Ñ 8Ñ 8) with n “ 6, 896
parameters to fit the data. We randomly choose 20 input
preference vectors r P R8

` (with
ř

j rj “ 1) and train the
FNN using EPO search, PMTL and LinScalar. We use each
of the 8 objectives trained separately as baselines. The same
hyper-parameters are used for each method as done in the
previous experiment. We used Mean Squared Error (MSE)
as the loss for each task. Since visualization is difficult for
8 dimensions, we compare the methods using the relative
loss profile (RLP) r d l on the test data as shown in fig. 8.

We observe that EPO Search outperforms the other methods,

indicating that it complies better with the input user prefer-
ences; the RLP of EPO search is more uniform (in the sense
of definition (9)). Compared to the previous experiment
with 2 tasks, the improvement over PMTL is higher. This is
expected since the number of reference vectors required by
PMTL, to reach a desired preference, grows exponentially
with m. Interestingly, our method also improves over the
baseline which shows the advantage of MTL for correlated
tasks over learning each task independently: predicting river
flow at one site helps improving the prediction at other sites
as all the sites are from the same river.

Appendix C contains additional experimental results. We
illustrate how EPO Search can trace the Pareto Front and
scales with increasing number of objectives. We also evalu-
ate EPO Search on a multi-label classification task.

6. Conclusion
EPO search advances the state-of-the-art in Multi-Objective
Optimization and Multi-Task Learning. EPO Search finds
the exact Pareto optimal solution for a given preference
vector intersecting the Pareto front. We prove that for differ-
entiable loss functions, it is guaranteed to converge. EPO
search is robust to initialization and also provides a way to
systematically traverse the Pareto front. This is achieved
without compromising on scalability and EPO search can
be used to train large-scale neural networks for MTL tasks,
as seen in our experiments where EPO search outperforms
competing approaches.

The combination of multiple gradient descent with con-
trolled ascent makes EPO Search a unique approach that
may find applications in other MOO problems. For instance,
in Interactive MOO (Xin et al., 2018) where preference
vectors are progressively varied until a satisfactory solution
is obtained. In such cases, EPO Search that finds exact
preference-specific solutions can be used as an effective tool
for exploring the Pareto Front.

An exact Pareto optimal is also a preference-specific Pareto
optimal solution, and thus EPO Search allows an MTL de-
signer to find solutions with specific trade-offs or priorities
among multiple tasks. Such preferences may be set based
on task requirements or statistics of the data in each task.
For example, data for tasks may differ in noise levels and
practitioners can choose higher preferences for sources with
less error. Thus, tasks with more accurate data will be fitted
by the underlying DNN model better and this may avoid
overfitting of noisy data. Another application could be in
multi-class classification with imbalanced data. An effec-
tive approach in such cases is by re-weighting class-specific
losses (Cui et al., 2019). This can be reformulated as a MTL
problem, and solved using EPO Search, by considering the
classification of each class as a task.
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