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Equations (1) to (36) and figures 1 to 8 are from the main
paper.

A. Proofs
Theorem 1. If all the objective functions are differentiable,
then for any direction d P Rn with dT dbal ą 0, there exists
a step size η0 ą 0, such that

µrplpθ ´ ηdqq ď µrplpθqq , @η P r0, η0s. (37)

Proof. Taylor’s expansion of the differentiable objective
function lj can be written with Peano’s form of remainder
as

ljpθ ´ ηdq “ ljpθq ´ η d
T gj ` opηq, (38)

where gj “ Blj{Bθ, and the asymptotic notation little-opηq
represents a function that approaches 0 faster than η. In
particular, for every ε ą 0, there exists an η0 ą 0 such that

ˇ

ˇ

ˇ

ˇ

opηq

η

ˇ

ˇ

ˇ

ˇ

ă ε, for |η| ă η0. (39)

In this proof, we will be using two additional properties
of opηq, viz. c ˆ opηq “ opηq for any constant c, and
opηq ` opηq “ opηq.

For brevity of notations, we expediently denote ljpθ ´ ηdq
as lηj , while ljpθq as simply lj . The non-uniformity of lpθq
can now be written as

µrplq “

řm
j“1 rj lj logprj ljq

Lr
` log

ˆ

m

Lr

˙

(40)

“ A ` B,

where Lr “
m
ÿ

j“1

rj lj . (41)

Similarly, the non-uniformity of lpθ´ ηdq can be written as

µrpl
ηq “

řm
j“1 rj l

η
j logprj l

η
j q

Lηr
` log

ˆ

m

Lηr

˙

(42)

“ Aη ` Bη,

where Lηr “
m
ÿ

j“1

rj l
η
j . (43)

Applying the Taylor’s expansion (38) to Lηr and using (41)
one can write

Lηr “ Lr ´ ηd
T

m
ÿ

j“1

rjgj ` opηq. (44)

In the above, we used the property cˆ opηq “ opηq. Using
Lηr of (44), the second term Bη in (42) can be analysed as

´Bη“ log
´

Lr ´ ηd
T

m
ÿ

j“1

rjgj ` opηq
¯

´ logpmq (45)

ě logpLrq´
ηdT

řm
j“1rjgj´opηq

Lηr
´logpmq (46)

� Bηď B `
ηdT

řm
j“1 rjgj

Lηr
´
opηq

Lηr
. (47)

For the inequality in (46), we use the following property

logpa` bq ě logpaq`
b

a` b
, for a ą maxp0,´bq, (48)

where a “ Lr, b “ ´ηdT
řm
j“1 rjgj ` opηq, and a` b “

Lηr . In this case, the usage of (48) is valid, because the
preference vector r and all the objective functions are always
non-negative.

Next, before we simplify the first term Aη in (42), let us
express logplηj q as

log
`

lj´ηd
T gj`opηq

˘

ď logpljq´
ηdT gj
lj

` opηq. (49)

The above inequality is due to another property of the log
function,

logpa` bq ď logpaq `
b

a
, for a ą maxp0,´bq, (50)

where a “ lj and b “ ´ηdT gj ` opηq; since, lj is not a
function of η, we can write opηq{lj “ opηq. Using (49), we
can now write the first term Aη as

Aη ď

řm
j“1 rjplj ´ ηd

T gjq logprj ljq

Lηr

´
ηdT

řm
j“1 rjgj

Lηr
`
opηq

Lηr
,

(51)
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where all the second or higher order terms of η are subsumed
in opηq.

Next, we upper bound the non-uniformity of lpθ ´ ηdq by
adding (47) and (51)

µrpl
nq ď

Lr
Lηr
A`B `

opηq

Lηr

´
ηdT

řm
j“1 rjgj logprj ljq

Lηr
.

(52)

Note that the opηq in (47) may not cancel out with the one
in (51), so we keep it in equation (52). The first term of (52)
can be further simplified by using (44)

Lr
Lηr
A “ A`

ηdT
řm
j“1 rjgjA

Lηr
`
opηq

Lηr
. (53)

Finally, we can relate the non-uniformity of l and lη by
using (53) in (52) as

µrpl
nq ď µrplq `

opηq

Lηr

`
ηdT

řm
j“1 rjgjpA´ logprj ljqq

Lηr
.

(54)

By adding and subtracting B with A´ logprj ljq we obtain

A`B ´ plogprj ljq`Bq “ µrplq ´ logpml̂jq. (55)

Using the expression for dbal in (12) along with (54) and
(55), one can write

µrplq ´ µrpl
nq ě

ηdT dbal ´ opηq

Lηr
. (56)

We know that dT dbal ą 0 from the statement of the the-
orem 1. As the final step, we use the property of opηq as
mentioned in (39) by treating dT dbal as ε, and conclude that
there exists a step size η0 ą 0 such that

ˇ

ˇ

ˇ

ˇ

opηq

η

ˇ

ˇ

ˇ

ˇ

ă dT dbal,@η P r0, η0s, (57)

and hence µrplq ´ µrpl
ηq ě 0; the equality holds when

dbal “ 0 P Rn.

Claim 1. The adjustment vector a is perpendicular to the
multi-objective vector l in the objective space Rm

aT l “ 0. (58)

Proof. We expand (58) as

aT l “
m
ÿ

j“1

rj

´

log
´

ml̂j

¯

´ µrplq
¯

ˆ lj

“

m
ÿ

j“1

rj lj

˜

´

1´ l̂j

¯

log
´

l̂j

¯

´
ÿ

j1‰j

l̂j1 log
´

l̂j1
¯

¸

.

We use the fact that
řm
j“1 l̂j “ 1, and further expand as

aT l “
m
ÿ

j“1

rj lj

˜

ÿ

j1‰j

l̂j1 log
´

l̂j

¯

´
ÿ

j1‰j

l̂j1 log
´

l̂j1
¯

¸

“

m
ÿ

j“1

rj lj

˜

ÿ

j1‰j

l̂j1 log

˜

l̂j

l̂j1

¸¸

.

In the inner summation we can now add the term for j “ j1

as log

ˆ

l̂j

l̂j1

˙

“ logp1q “ 0 and write the above expression
as

aT l “
1

řm
j“1 rj lj

m
ÿ

j“1

m
ÿ

j1“1

rj ljrj1 lj1 log

˜

l̂j

l̂j1

¸

The double summation in the numerator can be written as
the inner product of a symmetric and a skew-symmetric
matrix which is equal to 0.

Lemma 1. If µrpltq “ 0, then the non-dominating direction
dnd becomes a descent direction, i.e.

dTndgj ě 0, @j P rms. (59)

Proof. If lt lies in the r´1 ray, i.e. µrpltq “ 0, then the
adjustment vector a is zero. This means J is empty (see
(17)). As a result, 1J “ 0 and all the constraints of (24b)
becomes

cTj β
˚ “ gTj Gβ

˚ “ gTj dnd ě 0, @j P rms. (60)

Thus, dnd becomes a descent direction.

Lemma 2. Let γ˚ “ aTCβ˚ be the maximum value of the
LP problem (24) when µrpltq ą 0.

If γ˚ ą 0, then dTnddbal ą 0. (61)

If γ˚ ď 0, then dTndgj ě 0, @j P rms. (62)

Proof. Proving (61), i.e. when γ˚ ą 0, is a matter of simply
rewriting its formula,

γ˚ “ aTCβ˚

ùñ γ˚ “ aTGTGβ˚

ùñ γ˚ “ dTbaldnd.

As a result, γ˚ ą 0 ùñ dTbaldnd ą 0.

Now, let us analyze the case γ˚ ď 0. A negative value of
dTbaldnd means that there is no gradient gj , j P rms, for
which dTbalgj ą 0. As a result, J is empty and 1J “ 0.
This is similar to the case of µrpltq “ 0 and (60). So dnd
becomes a descent direction.
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Lemma 3. The set of dominating multi-objective points is
a subset of the admissible set

Vďlt Ă Ar
lt . (63)

Proof.

l P Vďlt

ùñ l ď lt

ùñ r d l ď r d lt

ùñ r d l ď λt1

ùñ l ď qlt

6 l P Ar
lt .

Theorem 2. There exists a step size η0 ą 0, such that for
every η P r0, η0s, the multi-objective value of new solution
point θt`1 “ θt ´ ηdnd lies in the tth admissible set

l
`

θt`1
˘

P Ar
lt . (64)

Proof. From Lemma 1 and 2, we know that dnd can either
be a descent direction (62, 60), or have positive angle with
the balancing direction (61). So we divide our analysis into
these cases.

When dnd is a descent direction, gTj dnd ě 0 for all j P rms.
As a result, by using the Taylor’s expansion with Peano
form of remainder (38) and the property of little-o notation
(39), one can deduce that for every j P rms there exists a
step size η0j ą 0 such that

lpθt ´ ηdndq “ lt`1
j ď ltj

for all η P r0, η0js. If we choose η0 “ minjtη0ju, then for
all η P r0, η0s

lpθt ´ ηdndq “ lt`1
j ď ltj , @j P rms

ùñ lt`1 P Vďlt (65)

From Lemma 3 and (65) we conclude that lt`1 P Ar
lt for

all η P r0, η0s.

Now let us analyse the case when dnd is not a descent
direction. Let J` “ tj | gTj dnd ě 0u be the index set for
descending objectives and J´ “ rms ´ J for ascending
ones. So, there exists an η0j ą 0 for all j P J` such that

lpθt ´ ηdndq “ lt`1
j ď ltj

for all η P r0, η0js. Let ηJ
`

0 “ minjtη0j | j P J`u,
and η̃0 “ mintηµr0 , ηJ

`

0 u. Then for all η P r0, η̃0s, and

lt`1 “ lpθt ´ ηdndq

µrpl
t`1q ď µrpl

tq,

and lt`1
j ď ltj , @j P J`.

ùñ rj l
t`1
j ď rj l

t
j ď λt

ùñ lt`1
j ď qltj , @j P J`

Note that the constraints in (24c) ensures that J˚ Ă J`. If
all the other objectives in J´ also satisfy

rj l
t`1
j ď λt,@η P r0, η̃0s

then η̃0 can be used as the step size as it is. If this is not the
case, i.e. there exists some j1 P J´ such that

rj1 lj1pθ
t ´ η̃0dndq ą λt,

then continuity of the objective functions ensures that there
must exists some η0j1 ă η̃0 such that

rj1 l
t`1
j1 ď λt,@η P r0, η0j1s.

Moreover η0j1 ą 0, because rj ltj “ rj lpθ
tq ă λt. So

choosing η0 “ minj1tη0j1u we finally get

r d lpθt ´ ηdndq “ r d lt`1 ď λtr

ùñ lt`1 ď qlt

6 lt`1 P Ar
lt

for all η P r0, η0s.

Claim 2. Let θ˚ P P be a regular Pareto optimal solution.
If the set of exact Pareto optimal solutions Pr is nonempty,
then the non-dominating direction dnd “ Gβ˚ found by the
LP (24) is 0 P Rn if and only if θ˚ P Pr.

Proof. If θ˚ P Pr, then µrpl˚q “ µrplpθ
˚qq “ 0, hence the

adjustments a are also 0. From Lemma 1 we know that dnd
is a descent direction, i.e.

gTj dnd ě 0, @j P rms. (66)

Let us say dnd ‰ 0. Then in the next iteration we can reach
to a point in Vďl˚ , which violates our assumption that l˚ is
Pareto Optimal. So dnd “ 0.

If θ˚ R Pr, then µrpl
˚q ‰ 0, hence the adjustments a

are also nonzero. As θ˚ P P is a Pareto optimal solution,
0 P CHθ˚ , due to the criticality condition. As a result,
the convex cone of tg1, ¨ ¨ ¨ , gmu forms a linear subspace
spanned by gjs. The balancing direction dbal “ Ga also
belongs to this linear subspace, and hence dbal P CH˚θ .
Further, due to the regularity of θ˚, i.e. rank of G is m´ 1,
we know that dbal is not 0 P Rn. Therefore

max
dPCH˚θ

dTbald “ dTbaldnd ą 0, (67)
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which means dnd ‰ 0.

Note that even if θ˚ is not regular, i.e. rank of G is less
than m´ 1, this claim can be true as long as the adjustment
vector a is not in the Null space of G.

B. Extensions and Variants of EPO Search
B.1. Restricting Trajectory of Pure Descent

In practice, we choose a fixed step size for every iteration.
In such a scenario, the indicator 1µtr in (24a) for non-zero
µrpl

tq becomes a strict condition to enter into the pure
descent mode. Although eventually the iterations converge,
the multi-objective values could fluctuate around the r´1

ray before reaching the EPO. This is because, the fixed step
size may not allow the multi-objective value to reach exactly
onto the r´1 ray, i.e. µrpltq “ 0, and hence perform pure
descent mode.

One approach to address this is to relax the indicator’s con-
dition from µtr ą 0 to µtr ą ε for some small positive ε,
so that pure descent can occur whenever µtr ď ε. In other
words, whenever the iterate lt lies inside the cone

Mr
ε “

 

l P Rm`
ˇ

ˇ µrplq ď ε
(

, (68)

the algorithm performs a pure descent step.

Even after relaxing the indicator condition for practical
implementation with fixed step size, the fluctuations near
the r´1 ray may not be avoided, as shown in fig. 4a. This
is because a descent direction d P CHθt that maximizes
dTG “ βTG1 may not decrease the iterate lt along the r´1

ray. To find a descent direction that will take r´1 ray into
consideration, we add another constraint in the LP in the
pure descent mode

β˚ “ arg max
βPSm

βTC1 (69)

s.t. βT cj ě 0 , @j P rms (70)

βTCa ě

ˆ

max
j
tcTj au

˙´

, (71)

where pxq´ “ x if x ă 0, and 0 otherwise. The restriction
(71) essentially means that we want β˚TCa “ dTnddbal
to be non-negative if there exists at least one gradient gj
making a non-nonegative angle with dbal, i.e. gTj dbal “
cTj a ě 0. When there is no such gj , we want dTnddbal to be
at least as high as the maxjtg

T
j dbalu. The result of applying

this restriction is shown in fig. 4b. The experimental setup
for this is described in section 5.1.

Distinction from Pareto MTL. The above restricted de-
scent approach appears to be similar to Pareto MTL Lin
et al. (2019) (described in section 3.2), where in the first
phase one finds a solution θ0r P Ωk such that θ˚r P Ωk, and in
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Figure 9. Illustration of annealing schedule for updating the thresh-
old εt when µrpl

t
q ď εt using fpεq as defined in (72).

the second phase one does pure descent. Their construction
of Ωk is such that lpΩkq is also a cone.

However, their method does not guarantee that the outcome
of second phase θ˚ also lies in Ωk. Because while descend-
ing, the multi-objective value may go outside the cone lpΩkq.
On the other hand, our method guarantees that the multi-
objective value of the final solution will be inside the cone
Mr

ε . Because, if in some iteration lt RMr
ε , then the indi-

cator 1µtr is activated to balance the multi-objective values
and bring it back inside the cone Mr

ε in the subsequent
iterations.

Moreover, the angular fineness of their cone lpΩkq, which
dictates the accuracy of the final solution, is dependent on
how many reference vectors uk, k “ 1, ¨ ¨ ¨ ,K are used,
which increases exponentially with the number of objectives
m. On other hand, the angular fineness of our cone Mr

ε can
be set by merely choosing a small value of ε.

B.2. Annealed EPO Search

We observe that when ε “ 0, the cone Mr
ε becomes the

r´1 ray itself. But making ε “ 0 from the beginning makes
it difficult for the iterate lt to enter this degenerate cone
when using a fixed step size, as discussed in the previous
section. However, when the iterate is already inside an ε
neighbourhood of l˚ “ lpθ˚r q in the objective space, we
can decrease the value of ε to bring the it further close to
l˚. Reducing the value of threshold ε can be performed
repeatedly whenever lt P Mr

ε . This strategic decrease in
ε can be interpreted as an annealing procedure, wherein
the cone Mr

ε gradually becomes thinner and eventually
degenerates to be the r´1 ray. We choose the following
annealing schedule

fpεq “ ε´ ε exp
`

´ logpmnqε2
˘

(72)

to update the threshold as ε Ð fpεq whenever the
non-uniformity µtr of iterate lt is less than ε. The schedule
fpεq is illustrated in fig. 9.
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In the beginning of annealing process, ε need not be a small
value. In other words, the permissible region for pure de-
scent could be a large cone Mr

ε in the objective space. But
whenever every pure descent occurs, the threshold ε is up-
dated as lt P Mr

ε , i.e. µrpltq ď ε. On the other hand, in
balance mode ε is kept unchanged. Notice also that the
rate of decrease for high valued ε is less as compared to
the low valued ones. This facilitates more descent steps in
the beginning by letting the iterate lt move closer towards a
local Pareto Front.

We split the LP in (24) into two different LP problems, such
that only one of them is solved in every step depending on
the position of the iterate lt. If lt RMr

ε , then we solve

β˚ “ arg max
βPSm

βTCa (73)

s.t. βT cj ě aT cj 1J , @j P J̄ ´ J˚

βT cj ě 0 , @j P J˚

for balancing the multi-objective values. Whereas if lt P
Mr

ε , then we solve

β˚ “ arg max
βPSm

βTC r d lt (74)

s.t. βT cj ě 0 , @j P rms (75)

in order to perform a pure descent step. Notice that the ob-
jective in (74) becomes the original objective βTC1 when
ε “ 0. The intuition behind generalizing the objective is
to find a descent direction that will take the preference r
into account while decreasing the objective values. Because,
when ε ‰ 0, there is still scope for balancing the objec-
tives, and maximizing βTC rd lt is an attempt to implicitly
achieve that.

Although the annealed EPO Search is conceptually appeal-
ing – gradual reduction the angular reason of cone Mr

ε – we
did not find any significant difference in search trajectories
as compared to the plain EPO search of (24).

C. Experimental Results
C.1. Additional Properties of EPO Search

C.1.1. FINDING THE BEST POSSIBLE SOLUTION

We test our algorithm when the preferred solution does
not exist, i.e. Pr is empty. We shift the loss functions in
(36) as l1 Ð l1 ` s and l2 Ð l2 ` s with a scalar value
s ą 0, so that 0 will not be the optimal value for any
objective. As a result, not all rays in the positive quadrant
will intersect the Pareto Front. We choose s “ 1.4 and use
the same experimental setup (preference vectors r, step size
and number of iterations) as in fig. 6. In 2 out of 4 cases,
the exact Pareto optimal w.r.t. the preference vector does
not exist. The result is shown in fig. 10. As discussed after
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Figure 10. EPO search finds the solutions with minimum non-
uniformity (in the sense of definition (9)), when the preference
specific Pareto optimal does not exist.

claim 2, the EPO search finds a solution that is closest to
the r´1 ray, when it doesn’t intersect the Pareto front.

C.1.2. TRACING THE PARETO FRONT
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Figure 11. Tracing the Pareto Front of the 3 objectives in (76)
using EPO search. Both figures plot the same data from different
view points: azimuth angles for 11a and 11b are 45° and ´45°
respectively, while both have the same elevation of 25°.

The previous experiment also shows how EPO search can
be used to traverse the Pareto Front. We use the θ˚ of one
preference to initialize EPO search for another preference.
This technique can be used to trace curves, hence find many
Pareto solutions, in high dimensional Pareto Fronts as well.
To visually verify this, we construct the following three loss
functions:

l1pθq “ 1´ exp

˜

´

›

›

›

›

θ ´
1
?
n

›

›

›

›

2

2

¸

, (76a)

l2pθq “ 1´ exp

˜

´

›

›

›

›

θ `
1
?
n

›

›

›

›

2

2

¸

, (76b)

l3pθq “ 1´ exp

¨

˝´

›

›

›

›

›

θ `
r1
?
n

›

›

›

›

›

2

2

˛

‚, (76c)

where r1 P Rn with ´1 in odd indices and 1 in even indices.
We then choose few evenly spread preference vectors in
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R3 and solve for them sequentially. The curves generated
while tracing the 2 dimensional Pareto front is shown fig. 11.
Note that the r´1 ray corresponding to second preference
(orange) doesn’t intersect the Pareto Front (dark surface), so
EPO search finds the closest solution on the border.

C.2. Synthetic Experiments: Many Objectives
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Figure 12. Comparison for how the algorithms scale with increas-
ing number of objective functions. Fig. 12a is for the quality of
preference specific optimal solution, and fig. 12b is for run time
for 200 iterations.

We test how our algorithm scale with increasing number of
objectives and compare that with Pareto MTL. We create m
loss functions as

ljpθq “ 1´ exp

ˆ

´

›

›

›
θ ´ θ̂j

›

›

›

2

2

˙

, j P rms, (77)

where the entries of θ̂j P Rn are sampled uniformly in
r´1{n, 1{ns. For every m, we run both the algorithms
for 20 different n, dimension of solution space, randomly
sampled within 20 and 100. We randomly select a prefer-
ence vector in Rm` for every pm,nq pair. In addition to a
preference vector, the PMTL algorithm requires K refer-
ence vectors, which, according to the authors, should be
increased exponentially with the increasing m. However,
for a fair comparison, we provide K “ 2m ` 2 (number
of constraints in EPO search) reference vectors, which are
again randomly Rm` .

We use the non-uniformity µr in (9) as a measure of the
quality of preference-specific Pareto optimal solutions found
by the algorithms; result shown in fig. 12a. Clearly, EPO
search scales better with increasing number of objectives
as compared to the Pareto MTL method. For every pm,nq
pair, both the algorithms were run for 200 iterations with
equal step size using the same computing infrastructure (see
sec. C.4). We used GNU’s Linear Programming kit (glp,
2012) for solving the LP of EPO search. The comparison of
overall run time (in seconds) is shown in 12b.

C.3. Multi-Label Classification

We test our algorithm for multi-class classification of music
into 6 emotions (Trohidis et al., 2011): amazed-surprised
(E1), happy-pleased (E2), relaxing-calm (E3), quiet-still
(E4), sad-lonely (E5), and angry-fearful (E6). A music is
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Figure 13. Relative loss profile for emotion recognition of music
features.

represented using 72 features. There are 391 examples for
training and 202 for testing. We used a feed forward neural
network of 4 layers (of sizes 72 Ñ 36 Ñ 18 Ñ 9 Ñ 6).
Sigmoid Binary Cross Entropy (SBCE) is used to compute
the class-specific loss for every output unit of this network.
Similar to the experiment in fig 8, we use the relative loss
profiles (RLP), i.e. r d l, for comparison in fig. 13. The
fact that linear scalarization has an almost uniform RLP
suggests that the Pareto Front might be bordering a convex
neighborhood in the objective space. Our algorithm has
better or equal performance (in terms of relative loss), except
for E2, as compared to Pareto MTL.

C.4. Hyperparameters used and Computing
Infrastructure Details

All the experiments were carried out in the same machine
with an Intel Xeon Gold 6130 CPU (2.10GHz). Additionally,
for the MTL experiments in figure 7, 8 and 13, we have used
a NVIDIA Tesla V100 GPU.

Figures m n l N η
1, 4, 10,

6 top row 2 20 eq (36) 80 0.1

6a bottom 2 20 eq (36) 80 0.4
6b bottom 2 20 eq (36) 200 0.4

7 2 31912 CE 100 10´3

8 8 6896 MSE 100 10´4

11 3 20 eq (76) 200 0.05
12 2´ 38 20´ 100 eq (77) 200 1{n
13 6 6595 SBCE 200 10´3

Table 1. Hyper-parameters used in different experiments, referred
using the corresponding figure number.

Details of the loss functions and hyper parameters used in
all the experiments are provided in table 1 : m is number



Exact Pareto Optimal Search

of objectives/tasks; n is number of network parameters or
dimension of solution space; l is the loss function for each
task/objective; N is the number of epochs for MTL or itera-
tions for MOO (synthetic experiments); and η is the learning
rate for MTL or step size for MOO. In the loss functions,
Cross Entropy is abbreviated as CE, Mean Square Error as
MSE, and Sigmoid Binary Cross Entropy as SBCE. Both
experiments in figure 8 and 13 uses tanh activation func-
tion in the MTL network, whereas the experiment in 7 uses
ReLu activation function.
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