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A. Adversarial variational information

bottleneck

In this section, we extend the idea of Adversarial Neural

Pruning to Variational Information Bottleneck (VIB). Varia-

tional information bottleneck (Dai et al., 2018) uses infor-

mation theoretic bound to reduce the redundancy between

adjacent layers. Let p(hi|hi−) define the conditional prob-

ability and I(hi;hi−) define the mutual information be-

tween hidden layer activations hi and hi− for every hidden

layer in the network. For every hidden layer hi, we would

like to minimize the information bottleneck (Tishby et al.,

2000) I(hi;hi−) to remove interlayer redundancy, while

simultaneously maximizing the mutual information I(hi;y)
between hi and the output y to encourage accurate predic-

tions of adversarial examples. The layer-wise energy Li can

be written as:

Li = βiI(hi;hi−)− I(hi;y) (10)

The output layer approximates the true distribution p(y|hL)
via some tractable alternative q(y|hL). Using variational

bounds, we can invoke the upper bound as:

Li = βiEhi−∼p(hi−)[DKL[p(hi|hi−)||q(hi)]]−

E{x,y}∼D,h∼p(h|x̃)[log q(y|hL)] ≥ Li

(11)

Li in Equation 11 is composed of two terms, the first is

the KL divergence between p(hi|hi−) and q(hi), which

approximates information extracted by hi from hi− and

the second term represents constancy with respect to the

adversarial data distribution. In order to optimize Equa-

tion 11, we can define the parametric form for the distribu-

tions p(hi|hi−) and q(hi) as follow:

p(hi|hi−) = N (hi; fi(hi−)⊙ µi, diag[fi(hi−)
2 ⊙ σ2

i ]

q(hi) = N (hi; 0, diag[ξi])

(12)

where ξi is an unknown vector of variances that can be

learned from data. The gaussian assumptions help us to

get an interpretable, closed-form approximation for the KL

term from Equation 11, which allows us to directly optimize

ξi out of the model.

Ehi−∼p(hi−)[DKL[p(hi|hi−)||q(hi)]] =

∑

j

[

log

(

1 +
µ2
i,j

σ2
i,j

)]

(13)

The final variational information bottleneck can thus be

obtained using Equation 13:

L =
L
∑

i=1

βi

ri
∑

j=1

[

log

(

1 +
µ2
i,j

σ2
i,j

)]

−

E{x,y}∼D,h∼p(h|x̃)[log q(y|hL)]

(14)

where β ≥ 0 is a coefficient that determines the strength of

the bottleneck that can be defined as the degree to which we

value compression over robustness.

B. Experiment setup

In this section, we describe our experimental settings for

all the experiments. We follow the two-step pruning proce-

dure where we pretrain all the networks using the standard-

training procedure followed by network sparsification using

various sparsification methods. We train each model with

200 epochs with a fixed batch size of 64. All the results are

measured by computing mean and standard deviation across

5 trials upon randomly chosen seeds.

Our pretrained standard Lenet 5-Caffe baseline model

reaches over 99.29% accuracy on MNIST and VGG-16

architecture reaches 92.76% and 67.44% on CIFAR-10 and

CIFAR-100 dataset respectively after 200 epochs. We use

Adam (Kingma & Ba, 2014) with the learning rate for the

weights to be 0.1 times smaller than those for the variational

parameters as in (Neklyudov et al., 2017; Lee et al., 2018).

For Beta-Bernoulli Dropout, we set α/K = 10−4 for all the

layers and prune the neurons/filters whose expected drop

probability are smaller than a fixed threshold 10−3 as orig-

inally proposed in the paper. For Beta-Bernoulli Dropout,

we scaled the KL-term by different values of trade-off pa-

rameter β where β ∈ {1, 4, 8, 10, 12} for Lenet-5-Caffe and

β ∈ {1, 2, 4, 6, 8} for VGG-16. For Variational Informa-

tion Bottleneck (VIBNet), we tested with trade-off param-

eter β in Equation 14 where β ∈ {10, 30, 50, 80, 100} for

Lenet-5-Caffe with MNIST and β ∈ {10−4, 1, 20, 40, 60}
for VGG-16 with CIFAR-10 and CIFAR-100 dataset. For

generating black-box adversarial examples, we used an ad-

versarial trained full network for adversarial neural pruning

and the standard base network for the standard Bayesian

compression method.

C. More experimental results

Due to the length limit of our paper, some results are illus-

trated here.

C.1. Robustness of adversarial variational information

bottleneck

The results for ANP-VS with Variational Information Bot-

tleneck are summarized in Table 4. We can observe that

ANP-VS with Variational Information Bottleneck signifi-

cantly outperforms the base adversarial training for robust-

ness of adversarial examples by achieving an improvement

of ∼ 2% in adversarial accuracy. Note that, ANP-VS leads

to ∼ 50% and ∼ 25% reduction in vulnerability for CIFAR-

10 and CIFAR-100 dataset with memory and computation

efficiency. We emphasize that ANP can similarly be ex-
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Table 4. Robustness and compression performance for MNIST on Lenet-5-Caffe, CIFAR-10 and CIFAR-100 on VGG-16 architecture

under ℓ∞-PGD attack for ANP-VS with Variational Information Bottleneck. All the values are measured by computing mean and standard

deviation across 5 trials upon randomly chosen seeds. The best results over adversarial baselines are highlighted in bold.

Adversarial accuracy (↑) Vulnerability (↓) Computational efficiency

Model Clean

accuracy (↑)

White box

attack

Black box

attack

White box

attack

Black box

attack

Memory (↓) xFLOPS (↑) Sparsity (↑)

M
N

IS
T

Standard 99.29±0.02 0.00±0.0 8.02±0.9 0.129±0.001 0.113±0.000 100.0±0.00 1.00±0.00 0.00±0.00

BP 99.32±0.04 5.66±0.4 15.47±0.3 0.091±0.001 0.078±0.001 4.34±0.34 9.39±0.25 82.46±0.61

AT 99.14±0.02 88.03±0.7 94.18±0.8 0.045±0.001 0.040±0.000 100.0±0.00 1.00±0.00 0.00±0.00

AT BNN 99.16±0.05 88.44±0.4 94.87±0.2 0.364±0.023 0.199±0.031 200.0±0.00 0.50±0.00 0.00±0.00

Pretrained AT 99.18±0.06 88.26±0.6 94.49±0.7 0.412±0.035 0.381±0.029 100.0±0.00 1.00±0.00 0.00±0.00

ADMM 99.01±0.02 88.47±0.4 94.61±0.7 0.041±0.002 0.038±0.001 100.00±0.00 1.00±0.00 80.00±0.00

TRADES 99.07±0.04 89.67±0.4 95.04±0.6 0.037±0.001 0.033±0.001 100.0±0.00 1.00±0.00 0.00±0.00

ANP-VS (ours) 98.86±0.02 90.11±0.9 95.14±0.8 0.017±0.001 0.015±0.001 4.87±0.21 10.06±0.87 78.48±0.42

C
IF

A
R

-1
0

Standard 92.76±0.1 13.79±0.8 41.65±0.9 0.077±0.001 0.065±0.001 100.0±0.00 1.00±0.00 0.00±0.00

BP 92.73±0.1 12.28±0.3 76.35±0.8 0.035±0.002 0.032±0.001 12.38±0.12 2.38±0.0.05 76.35±0.23

AT 87.50±0.5 49.85±0.9 63.70±0.6 0.050±0.002 0.047±0.001 100.0±0.00 1.00±0.00 0.00±0.00

AT BNN 86.69±0.5 51.87±0.9 64.92±0.9 0.267±0.013 0.238±0.011 200.0±0.00 0.50±0.00 0.00±0.00

Pretrained AT 87.50±0.4 52.25±0.7 66.10±0.8 0.041±0.002 0.036±0.001 100.0±0.00 1.00±0.00 0.00±0.00

ADMM 78.15±0.7 47.37±0.6 62.15±0.8 0.034±0.002 0.030±0.002 100.00±0.00 1.00±0.00 75.00±0.00

TRADES 80.33±0.5 52.08±0.7 64.80±0.5 0.045±0.001 0.042±0.005 100.0±0.00 1.00±0.00 0.00±0.00

ANP-VS (ours) 87.56±0.2 53.41±0.5 68.12±0.7 0.025±0.002 0.021±0.001 12.09±0.26 2.43±0.02 77.02±0.32

C
IF

A
R

-1
0
0

Standard 67.44±0.7 2.81±0.2 14.94±0.8 0.143±0.007 0.119±0.005 100.0±0.00 1.00±0.00 0.00±0.00

BP 69.09±0.5 2.73±0.3 19.53±0.4 0.084±0.001 0.073±0.001 18.46±0.42 1.95±0.03 63.84±0.62

AT 57.79±0.8 19.07±0.8 32.47±1.4 0.079±0.003 0.071±0.003 100.0±0.00 1.00±0.00 0.00±0.00

AT BNN 53.75±0.7 19.40±0.6 30.38±0.2 0.446±0.029 0.385±0.051 200.0±0.00 0.50±0.00 0.00±0.00

Pretrained AT 57.14±0.9 19.86±0.6 35.42±0.4 0.071±0.001 0.065±0.002 100.0±0.00 1.00±0.00 0.00±0.00

ADMM 52.52±0.5 19.65±0.5 31.30±0.3 0.060±0.001 0.056±0.001 100.00±0.00 1.00±0.00 65.00±0.00

TRADES 56.70±0.7 21.21±0.3 32.81±0.6 0.065±0.003 0.060±0.003 100.0±0.00 1.00±0.00 0.00±0.00

ANP-VS (ours) 59.77±0.4 21.53±0.6 36.82±0.7 0.048±0.002 0.042±0.002 16.46±0.34 2.06±0.02 67.19±0.57

tended to any existing or future sparsification method to

improve performance. Table 5 further shows the number of

units for the baselines and our proposed method.

C.2. Features vulnerability

Figure 6 shows the histogram of the feature vulnerability

for various datasets. We consistently observe that standard

Bayesian pruning zeros out some of the distortions, AT

reduces the distortion level of all the features and ANP-VS

does both, with the most significant number of features with

zero distortion and low distortion level in general which

confirms that our proposed method works successfully as a

defense against adversarial attacks. All these results overall

confirm the effectiveness of our defense.

C.3. Features visualization

One might also be curious about the representation of the

robust and vulnerable features in the latent-feature space.

We visualize the robust and vulnerable features based on the

vulnerability of a feature in the latent-feature space from

our paper. Figure 7 shows the visualization of robust and

vulnerable features in the latent space for adversarial train-

ing. Note that, AT contains features with high vulnerability

(vulnerable feature) and features with less vulnerability (ro-

bust feature), which aligns with our observation that the

latent features have a varying degree of susceptibility to

adversarial perturbations to the input. As future work, we

plan to explore more effective ways to suppress perturbation

at the intermediate latent features of deep networks.
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Model No of neurons

M
N

IS
T

Standard 20 – 50 – 800 – 500

BP (BBD) 14 – 21 – 150 – 49

BP (VIB) 12 – 19 – 160 – 37

AT 20 – 50 – 800 – 500

ANP-VS (BBD) 7 – 21 – 147 – 46

ANP-VS (VIB) 10 – 23 – 200 – 53

C
IF

A
R

-1
0

Standard 64 – 64 – 128 – 128 – 256 – 256 – 256 – 512 – 512 – 512 – 512 – 512 – 512 – 512 – 512

BP (BBD) 57 – 59 – 127 – 101 – 150 – 71 – 31 – 41 – 35 – 10 – 46 – 48 – 16 – 16 – 25

BP (VIB) 49 – 56 – 106 – 92 – 157 – 74 – 26 – 43 – 32 – 10 – 39 – 40 – 7 – 7 – 13

AT 64 – 64 – 128 – 128 – 256 – 256 – 256 – 512 – 512 – 512 – 512 – 512 – 512 – 512 – 512

ANP-VS (BBD) 42 – 57 – 113 – 96 – 147 – 68 – 25 – 37 – 27 – 9 – 39 – 40 – 13 – 13 – 12

ANP-VS (VIB) 40 – 57 – 104 – 93 – 174 – 96 – 30 – 48 – 39 – 9 – 49 – 57 – 10 – 10 – 12

C
IF

A
R

-1
0
0

Standard 64 – 64 – 128 – 128 – 256 – 256 – 256 – 512 – 512 – 512 – 512 – 512 – 512 – 512 – 512

BP (BBD) 62 – 64 – 128 – 123 – 244 – 203 – 84 – 130 – 95 – 18 – 152 – 157 – 32 – 32 – 101

BP (VIB) 52 – 64 – 119 – 116 – 229 – 179 – 83 – 99 – 71 – 17 – 107 – 110 – 12 – 11 – 49

AT 64 – 64 – 128 – 128 – 256 – 256 – 256 – 512 – 512 – 512 – 512 – 512 – 512 – 512 – 512

ANP-VS (BBD) 60 – 64 – 126 – 122 – 235 – 185 – 77 – 128 – 101 – 17 – 165 – 177 – 35 – 35 – 45

ANP-VS (VIB) 44 – 58 – 110 – 109 – 207 – 155 – 81 – 86 – 66 – 19 – 88 – 86 – 15 – 15 – 36

Table 5. Distribution of neurons for all the layers of Lenet-5 Caffe for MNIST and VGG-16 architecture for CIFAR-10 and CIFAR-100

datasets.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Histogram of vulnerability of the features for the input layer for MNIST in the top row, CIFAR-10 in the middle and CIFAR-100

in the bottom with the number of zeros shown in orange color.



Adversarial Neural Pruning with Latent Vulnerability Suppression

(a) (b) (c) (d) (e) (f) (g)

Figure 7. Visualization of convolutional features of first layer of adversarial trained VGG-16 network with CIFAR-100 dataset. b) - d)

represents the vulnerable latent-feature with high vulnerability (vulnerable feature) on b) clean example, c) Adversarial example d)

Vulnerability (difference between clean and adversarial example) e) - f) represents the vulnerable latent-feature with low vulnerability

(robust feature) on e) clean example, f) Adversarial example g) Vulnerability (difference between clean and adversarial example)


